

VK Multimedia Information Systems

Mathias Lux, mlux@itec.uni-klu.ac.at Dienstags, 16.oo Uhr

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

- Evaluations
- Local features
- Bag of visual words
- Clustering

Evaluations

- Wang SIMPLIcity data set
 - 10 categories á 100 images 1,000 images in total
 - Photographs from the Corel Stock Photos
- Uncompressed Colour Image Database (UCID)
 - 1,338 images and ~260 queries
 - Photographs

Evaluations

LIRE on the SIMPLIcity data set

Feature	map	p@10	\mathbf{er}
CEDD	0.507	0.710	0.195
Color Correlogram	0.498	0.740	0.163
Color Layout	0.439	0.612	0.307
Edge Histogram	0.333	0.500	0.403
FCTH	0.501	0.701	0.202
JCD	0.514	0.722	0.184
Joint Histogram	0.449	0.689	0.201
Opponent Histogram	0.450	0.635	0.274
PHOG	0.352	0.535	0.370
RGB Color Histogram	0.450	0.705	0.194
Scalable Color	0.305	0.470	0.464

Evaluations

LIRE on the UCID data set

Feature	map	p@10	\mathbf{er}
CEDD	0.442	0.427	0.531
Color Correlogram	0.585	0.480	0.370
Color Histogram	0.403	0.356	0.550
Color Layout	0.277	0.285	0.679
Edge Histogram	0.180	0.202	0.813
\mathbf{FCTH}	0.452	0.416	0.527
JCD	0.466	0.430	0.515
Joint Histogram	0.348	0.313	0.603
Opponent Histogram	0.319	0.308	0.649
PHOG	0.238	0.238	0.714
Scalable Color	0.175	0.184	0.836

Evaluations PHOG use case on MIRFLICKR

Query

Results

13% match 15% match 16% match 16\% ma

13% match 13% match 13% match 13% match 13% match 13% match 14% match 14% match 13% ma

Evaluations *Edge Histogram use case on logo data*

Query

Results

Search OH, JH, EH, CH, JCD, CL, PHOG Search OH, JH, EH, CH, SEARCH OH, SEARCH OH,

- Evaluations
- Local features
- Bag of visual words
- Clustering

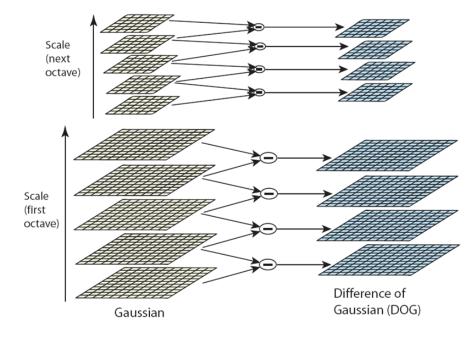
Local Features

Capture points of interest

- Example: SIFT, SURF, ...
- Instead of global description
- Cp. Ferrari driving video
 - House moves over different frames

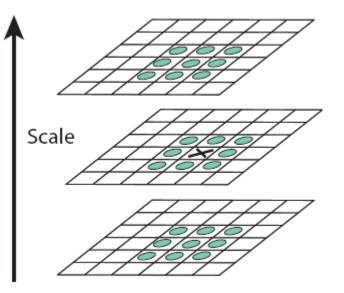
Scale space extrema detection

- Interest point identification
 - Difference of Gaussians
 - Use Gaussian blurred images at different octaves (resolutions)
 - Compute differences of adjacent blurred images pixel wise



Scale space extrema detection

- Compare each pixel
 - 8 direct neighbours
 - 2x9 neighbours in different scales
- Find minima and maxima
- Which are considered candidate interest points



- Scale space extrema detection produces too many candidate interest points
- I.e. SIFT reduces by
 - discarding low-contrast keypoints
 - eliminating edge responses

src. Wikipedia http://en.wikipedia.org/wiki/File:Sift_keypoints_filtering.jpg

- Orientation assignment
 - based on local image gradient directions
 - achieves invariance against rotation

Extraction

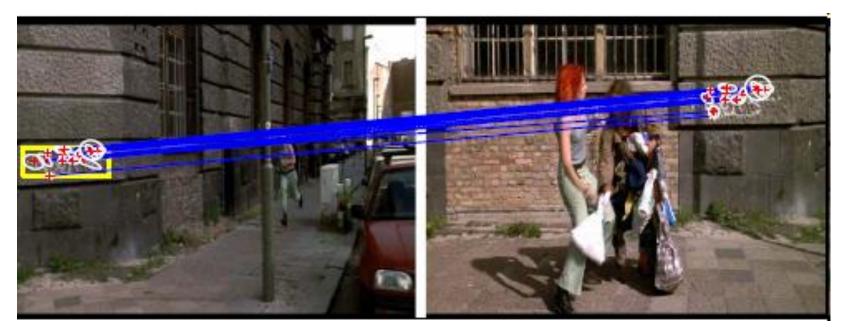
- gradient magnitude at every scale
- for all neighbouring pixels
- gradient histogram with 36 bins
- peaks are interpreted as main directions

Keypoint Descriptor

- Extracted from
 - scale of the keypoint
 - a 16x16 pixel neighborhood
 - gradient and orientation histograms
- Descriptor has 128 dimensions

Local Feature Matching

• Descriptors matching with L1, L2



Src. Sivic & Zisserman: Video Google: A Text Retrieval Approach to Object Matching in Videos, ICCV 2003, IEEE

Image Stitching

- creating panoramas from multiple images.

- 3D scene reconstruction
 - cp. Microsoft Photosynth
 - see http://photosynth.net/

Local Features

- Scale Invariant Feature Transform: SIFT
 - Lowe, David G. (1999). "Object recognition from local scale-invariant features". Proceedings of the ICCV 1999, pp. 1150–1157
- Speeded Up Robust Features: SURF
 - Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008
- Performance
 - Mikolajczyk, K.; Schmid, C. (2005). "A performance evaluation of local descriptors". IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (10): 1615–1630
- In detail lecture book
 - Kristen Grauman and Bastian Leibe: Visual Object Recognition, Morgan Claypool, Synthesis, 2011

Local Features

• Process can be adapted to specific needs

interest point / blob detection

- Harris Corner Detector
- Laplacian of Gaussian (LoG)
- Difference of Gaussians (DoG)
- Fast Hessian Detector
- Maximally stable extremal regions (MSER)
- Adaptive and generic corner detection based on the accelerated segment test (AGAST)
- ... and many more
- feature point description
 - SIFT, SURF, GLOH, HOG, LESH, BRISK, FREAK, ...

Local Features in Java

- Java SIFT (ImageJ Plugin)
 - http://fly.mpi-cbg.de/~saalfeld/Projects/javasift.html
- jopensurf
 - http://code.google.com/p/jopensurf/
- MSER
 - Lire, net.semanticmetadata.lire.imageanalysis.mser.MSER
- OpenIMAJ
 - extensive library: http://www.openimaj.org/

Local Features in Applications

- OpenCV
 - platform independent
 - based on C
 - build with cmake
 - FAST, BRISK, FREAK, ...

http://opencv.willowgarage.com/wiki/

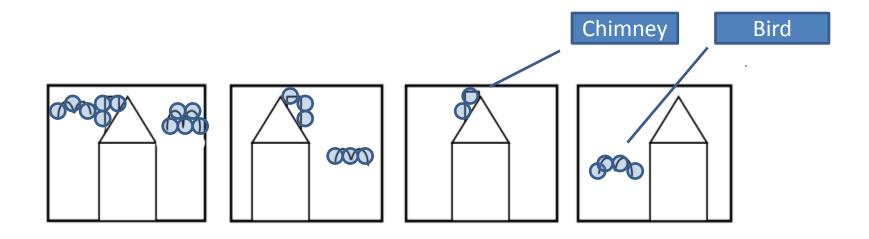
- Evaluations
- Local features
- Bag of visual words
- Clustering

Bag of Visual Words

- Local features are computationally expensive
 - many features per frame / image
 - pair wise distance computation leads to a huge number of distance function calls
 - e.g. *n* features vs. *m* features -> *m*n* distance function calls.

Bag of Visual Words

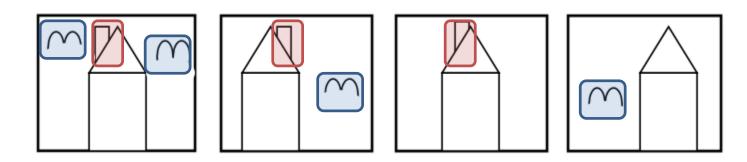
- Group similar local features
- Assign identifier to such a group



Bag of Visual Words

Tag images containing features of group

 – {bird, bird, chimney}, {bird, chimney}, {chimney},
 {bird}

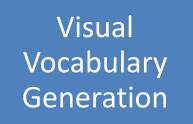


Bag of visual words

- Groups are created unsupervised
 - not named, no semantic entities
 - model created is called <u>visual vocabulary</u> or <u>codebook</u>
- Group labels are called <u>visual words</u>

just a number, not a concept

BoVW Pipeline Overview



Assignment of Visual Words

Local Feature Extraction

- Extract SIFT / SURF features
 - $-k_i >> 1$ features for image I_i
 - the bigger the image the more features

Visual Vocabulary Generation

- Select representative sample
- Cluster the union set of features
 - to a pre-selected number of clusters

- Example: 1M images
 - Select 50,000 randomly
 - Cluster features of the 50k images

Assignment of Visual Words

- For each image I in the corpus
 - For each feature of I
 - Find the best matching cluster (center)
 - Assign visual word to the image

Best practice

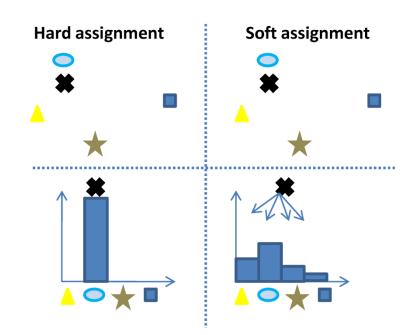
- Representative sample of documents
 - random sampling
 - up to a manageable number of features
- Vocabulary generation
 - parallel or distributed implementation
 - re-generate when necessary
- Assignment based on medians / medoids

 employ good index structure (e.g. hashing)

Example: SURF

- Simplicity data set
 - 1000 images, 10 categories, 100 images each
- SURF features (jopensurf)
 - 98 ms / image for extraction
- Vocabulary creation
 - 400 images,
 - with ~ 92.000 features (depends on sampling)
 - 10.000 clusters, ~ 2 minutes processing time

- fuzzy instead of binary assignments
 - one feature can express multiple visual words
 - based on a fuzzy
 membership function
 - also called "soft assignments"



Alternative Clustering Approach

- Fuzzy C-Means
 - add a feature to more than one cluster
 - adds robustness in terms of vocabulary size

Weighting

- TF works
- IDF not so well
- Distribution?
- ... this is an unresolved problem.

VLAD

Using the

- "difference to cluster centers"
- instead of bin counts.

Needs more dimensions

- If local feature has 128 dimensions
- And there are 10 centers
- It's 1,280 dimensions.
- Reduction of dimensions
 - Ie. done with PCA

- Evaluations
- Local features
- Bag of visual words
- Clustering

What is Clustering?

- Clustering is unsupervised classification with:
 - Maximized similarity in groups
 - Minimized similarity between groups
- Clustering creates structure

Clustering slides adapted from Benno Stein, University of Weimar http://www.uni-weimar.de/cms/Lecture-Notes.550.0.html

and "Data Clustering: A Review", Jain, Murty & Flynn, 1999

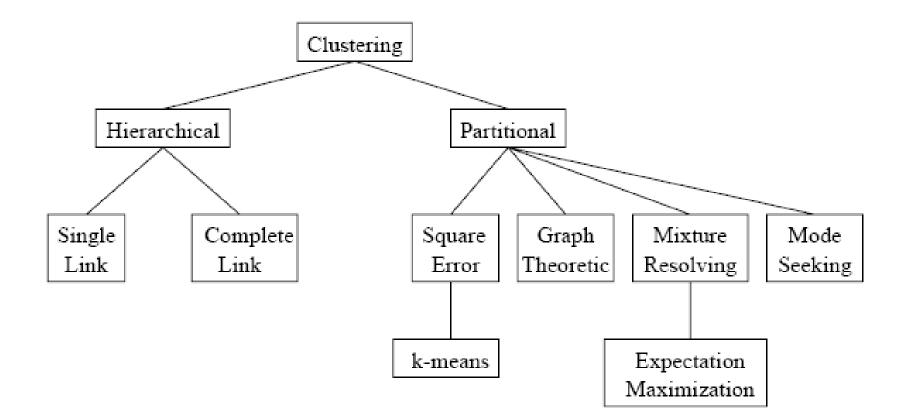
Clustering: Example

• Object has *d* features

– d … number of dimensions

• For 2 dimensions:

Clustering Techniques



Hierarchical Clustering

Input: $G = \langle V, E, w \rangle$. Weighted graph. $d_{\mathcal{C}}$. Distance measure between two clusters.

Output: $T = \langle V_T, E_T \rangle$. Cluster hierarchy or dendrogram.

1.
$$\mathcal{C} = \{\{v\} \mid v \in V\}$$
 // define initial clustering

2.
$$V_T = \{v_C \mid C \in \mathcal{C}\}$$
, $E_T = \emptyset$ // define initial dendrogram

3. While $\left|\mathcal{C}\right|>1$ do

4. update_distance_matrix(
$$C, G, d_C$$
)

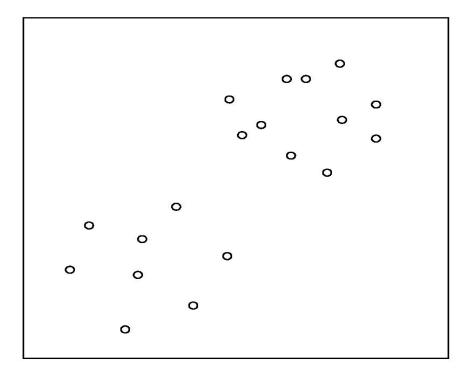
5. $\{C, C'\} = \operatorname*{argmin}_{\{C_i, C_j\} \in \mathcal{C}: C_i \neq C_j} d_{\mathcal{C}}(C_i, C_j)$

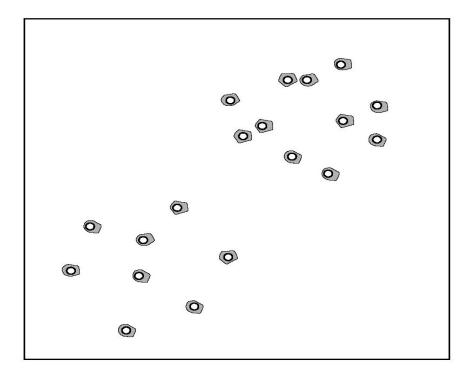
6. $\mathcal{C} = (\mathcal{C} \setminus \{C, C'\}) \cup \{C \cup C'\}$ // clustering

7. $V_T = V_T \cup \{v_{C,C'}\}$, $E_T = E_T \cup \{\{v_{C,C'}, v_C\}, \{v_{C,C'}, v_{C'}\}\}$ // dendrogram

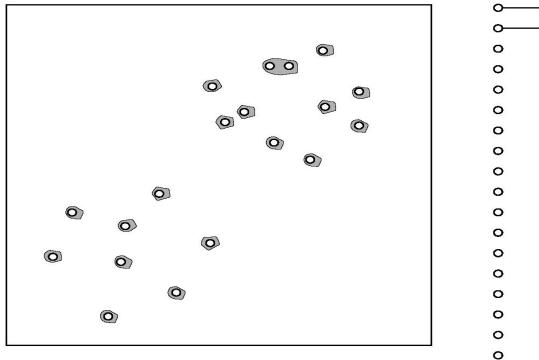
8. ENDDO

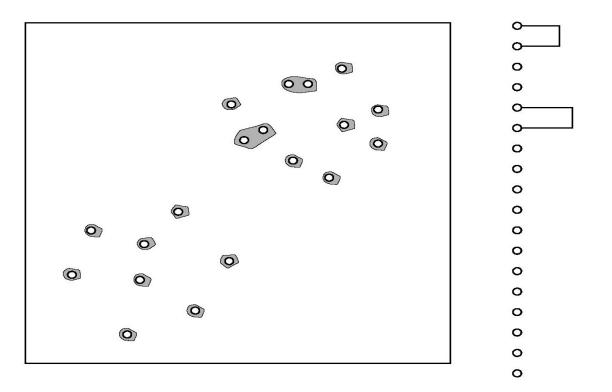
9. $\operatorname{return}(T)$



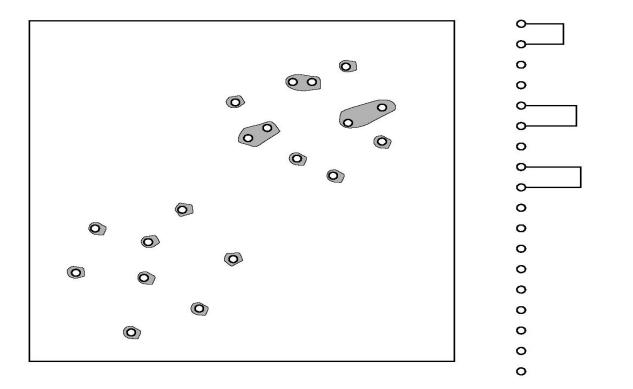


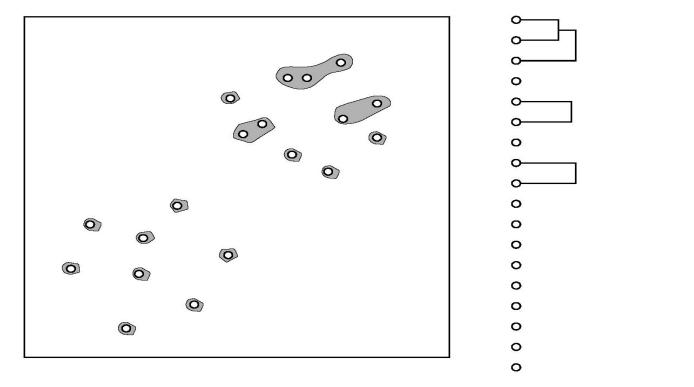
- Distanz



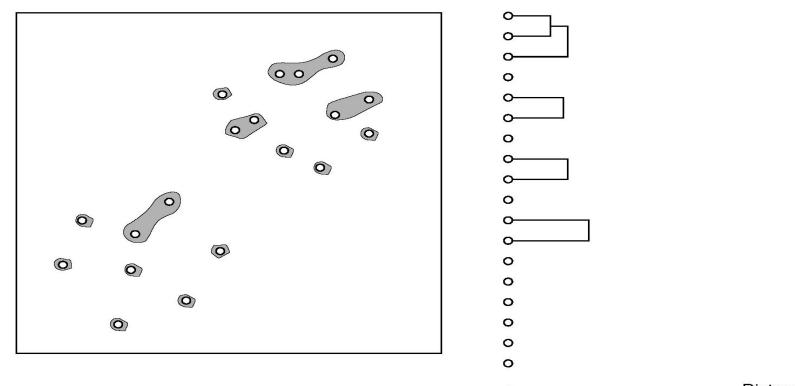


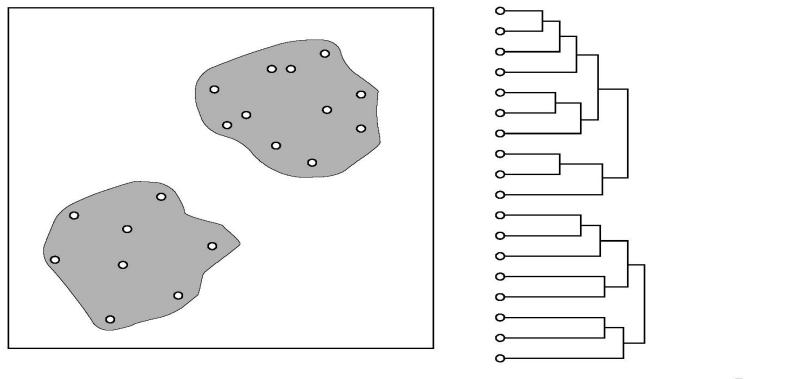
-----→ Distanz

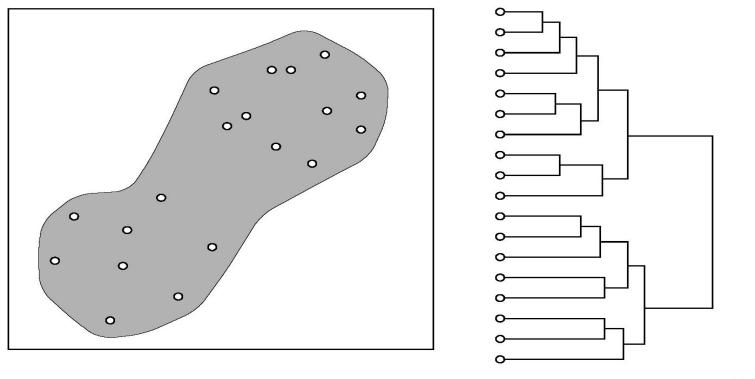




------ Distanz







Cluster Distance

$$d_{\mathcal{C}}(C,C') = \min_{\substack{u \in C \\ v \in C'}} d(u,v)$$

Single-Link (Nearest-Neighbor)

$$d_{\mathcal{C}}(C,C') = \max_{\substack{u \in C \\ v \in C'}} d(u,v)$$

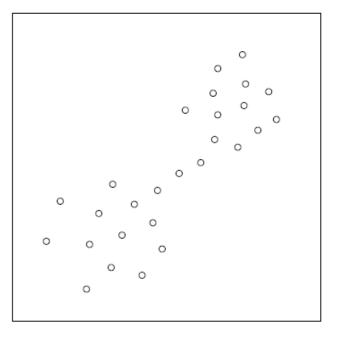
Complete-Link (Furthest-Neighbor)

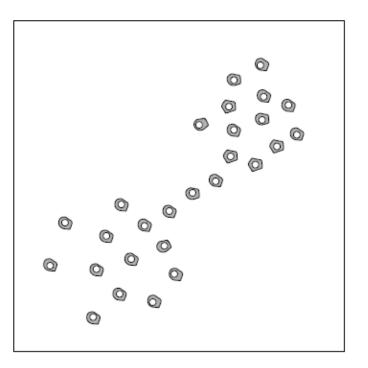
$$d_{\mathcal{C}}(C,C') = \frac{1}{|C|\cdot|C'|} \sum_{\substack{u\in C\\v\in C'}} d(u,v)$$

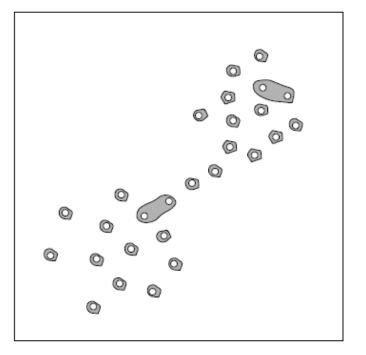
(Group-)Average-Link

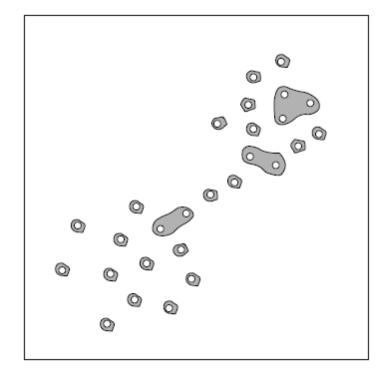
$$d_{\mathcal{C}}(C, C') = \sqrt{\frac{2 \cdot |C| \cdot |C'|}{|C| + |C'|}} \cdot ||\bar{u} - \bar{v}||$$

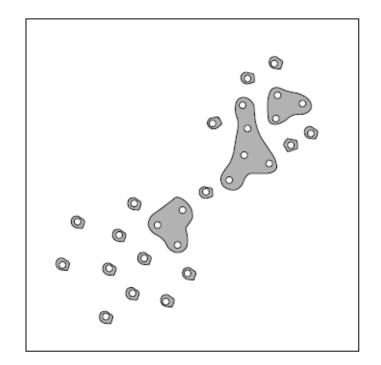
Ward (Varianz)

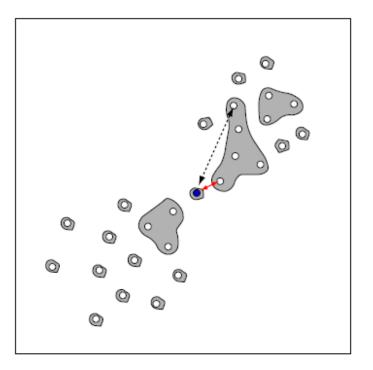


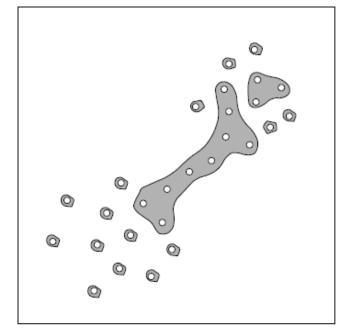


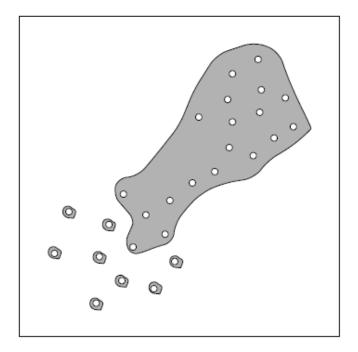


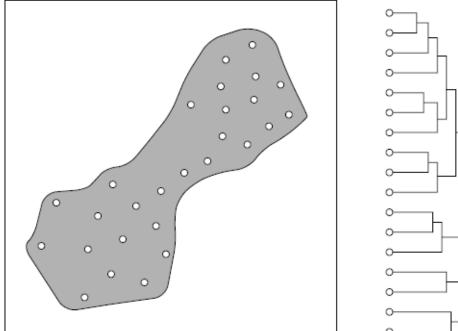


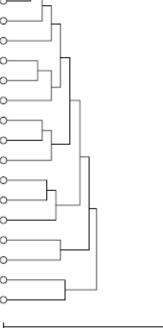




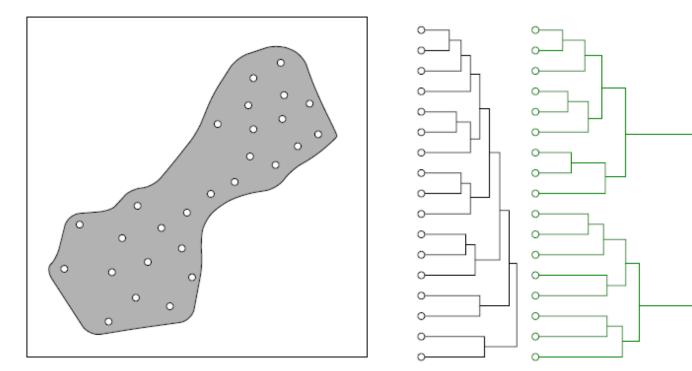




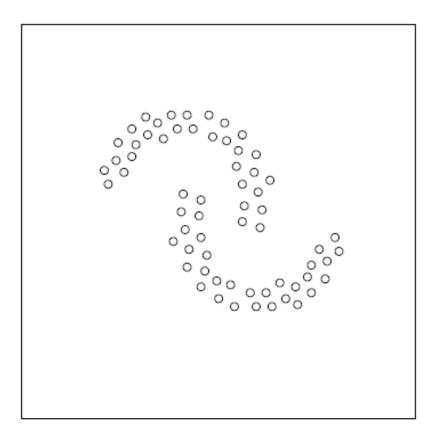


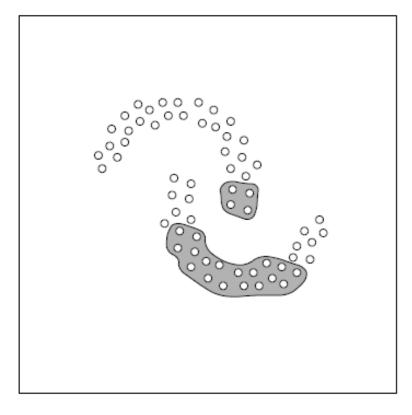


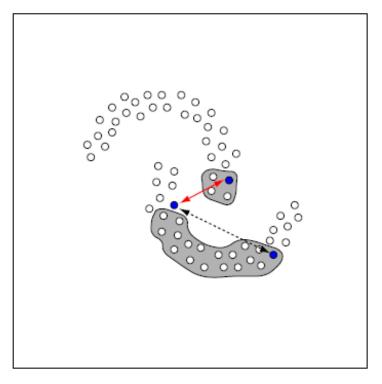
→ Distanz

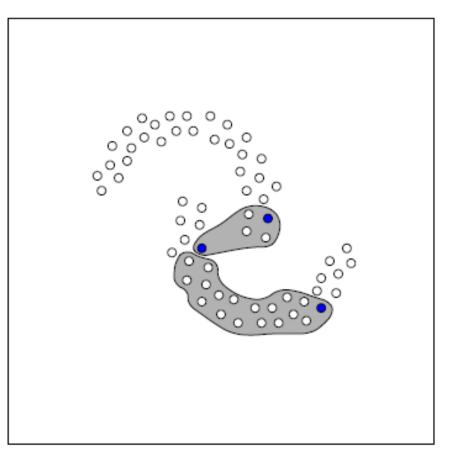


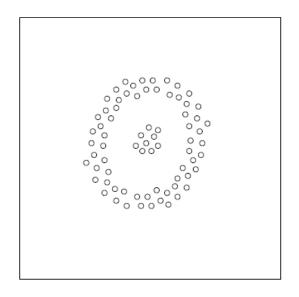
------→ Distanz

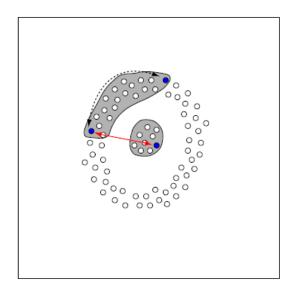


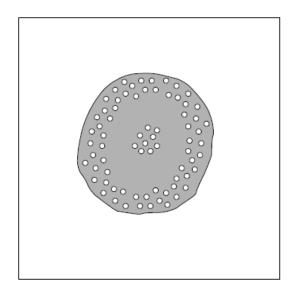


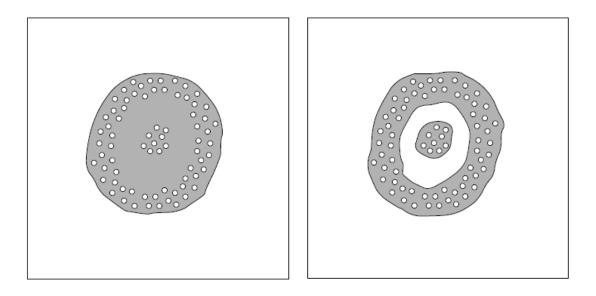












Hierarchical Clustering: Comparison

	Single Link	Complete Link	Average Link	Ward
# clusters	small	high	medium	medium
cluster type	stretched	small	compact	spherical
chaining tendency	high	low	low	low
outlier detection	high	very low	low	low

Partitional Clustering

Only one partition of the data

No structure (dendrogram)

- Usually based on an optimization criterion
 - Iterated until "optimal" results
 - Multiple starting points
 - e.g. initial clusters
- Benefits for large data sets
 - But number of clusters has to be known

Iterative Clustering Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph.

- d. Distance function for nodes in V.
- e. Minimization criterion for cluster representatives, based on d.
- k. Number of desired clusters.
- Output: r_1, \ldots, r_k . Cluster representatives.

1. t = 0

2. FOR i=1 to k DO $r_i(t)=choose(V)$ // init representatives

3. REPEAT

- 4. For i = 1 to k do $C_i = \emptyset$
- 5. FOREACH $v \in V$ DO // find nearest representative (cluster)
- 6. $x = \underset{i: i \in \{1, \dots, k\}}{\operatorname{argmin}} d(r_i(t), v), \quad C_x = C_x \cup \{v\}$
- 7. **ENDDO**
- 8. FOR i=1 to k DO $r_i(t) = minimize(e, C_i)$ // update
- 9. UNTIL $(\forall r_i : d(r_i(t), r_i(t-1)) < \varepsilon \lor t > t_{\max})$
- 10. **RETURN** $(\{r_1(t), \ldots, r_k(t)\})$

Iterative Clustering Algorithm

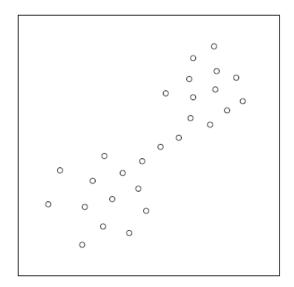
- 1. Select an initial partition of the patterns with a fixed number of clusters and cluster centers.
- 2. Assign each object to its closest cluster center and compute the new cluster centers as the centroids of the clusters. Repeat this step until convergence is achieved, i.e., until the cluster membership is stable.
- 3. Merge and split clusters based on some heuristic information, optionally repeating step 2.

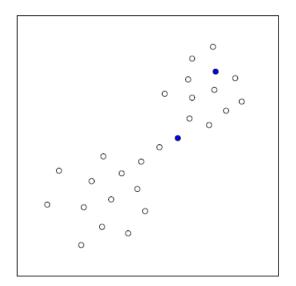
Iterative Clustering Algorithm

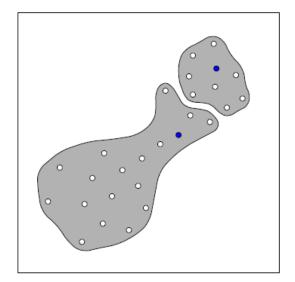
- Cluster representatives: Centroids (Medoids)
- Initial cluster representatives chosen randomly
- Optimization is based on the sum of squared error (distance to centroid)

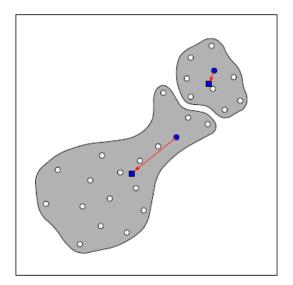
Iterative Clustering Algorithm

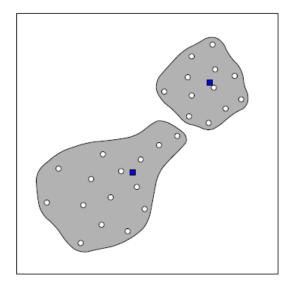
- Choose k cluster centers to coincide with k randomlychosen objects or k randomly defined points inside the hypervolume containing the objects.
- Assign each object to the closest cluster center (centroid).
- Recompute the cluster centers (centroids) using the current cluster memberships.
- If a convergence criterion is not met, go to step 2. Typical convergence criteria are: no (or minimal) reassignment of patterns to new cluster centers, or minimal decrease in squared error

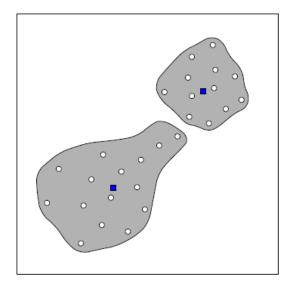


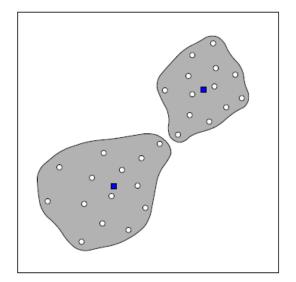


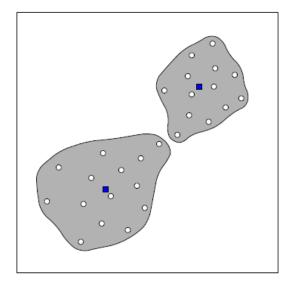












Cluster Center

$$e(\mathcal{C}) = \sum_{i=1}^k \sum_{v \in C_i} (v - r_i)^2$$

 $r_i = \bar{v}_{C_i}$

Centroid-Berechnung (k-Means)

$$e(\mathcal{C}) = \sum_{i=1}^{k} \sum_{v \in C_i} |v - r_i|$$

$$r_i \in C_i$$

Medoid-Berechnung (k-Medoid)

$$e(\mathcal{C}) = \sum_{i=1}^k \max_{v \in C_i} |v - r_i| \qquad \qquad r_i \in C_i \qquad \qquad k\text{-Center}$$

$$e(\mathcal{C}) = \sum_{i=1}^{k} \sum_{v \in V} \mu_{v_i}^2 \cdot (v - r_i)^2 \qquad r_i = \frac{\sum_{v \in V} \mu_{v_i}^2 \cdot v}{\sum_{v \in V} \mu_{v_i}^2} \qquad \qquad \text{Fuzzy-}_{k-\text{Means}}$$

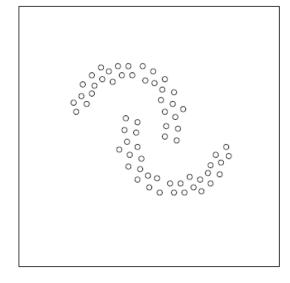
Method Comparison

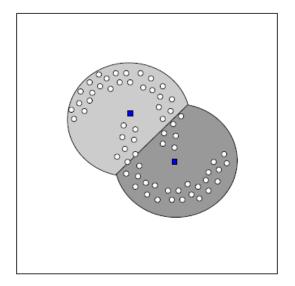
- K-Means & Fuzzy K-Means are based on interval scaled features

Cluster center is artificial

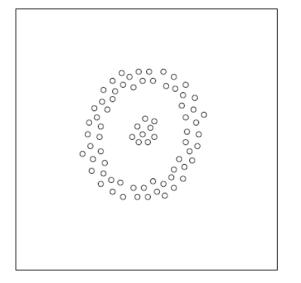
- K-Medoid & K-Center work with arbitrary distance and similarity functions
 - Cluster center is part of the objects
 - Medoid is more robust against outliers

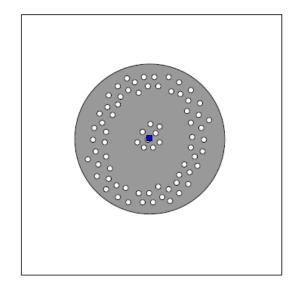
K-Means Problems





K-Means Problems





K-Means Problems

