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Abstract

Content-based analysis and retrieval of digital images found in scientific arti-
cles is often hindered by images consisting of multiple subfigures (compound
figures). We address this problem by proposing a method (ComFig) to auto-
matically classify and separate compound figures, which consists of two main
steps: (i) a supervised compound figure classifier (ComFig classifier) discrimi-
nates between compound and non-compound figures using task-specific image
features; and (ii) an image processing algorithm is applied to predicted com-
pound images to perform compound figure separation (ComFig separation).
The proposed ComFig classifier is shown to achieve state-of-the-art classifica-
tion performance on a published dataset. Our ComFig separation algorithm
shows superior separation accuracy on two different datasets compared to
other known automatic approaches. Finally, we propose a method to evaluate
the effectiveness of the ComFig chain combining classifier and separation algo-
rithm, and use it to optimize the misclassification loss of the ComFig classifier
for maximal effectiveness in the chain.

Keywords multipanel figure separation · document image understanding

1 Introduction

The work described in this paper is motivated by the realization that articles in
scientific publications contain a substantial amount of figures consisting of two
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(a) (b)

Fig. 1 Sample compound images (of the ImageCLEF 2015 CFS dataset [11]) suitable for
two different separator detection algorithms. Subfigures are separated by (a) whitespace and
(b) edges, respectively. Dashed lines represent the expected output of CFS.

or more subfigures, which could be treated as separate images for the purpose
of automatic content-based analysis or indexing for retrieval. Figure 1 shows
two examples of such compound figures found in a dataset of article images
of the biomedical literature. Based on published datasets drawn from open
access biomedical literature, it has been estimated that between 40% and 60%
of figures occurring in articles are compound figures [1,8,10].

In this paper we address the problem of automatically recognizing and
separating compound figures in a collection of article images by breaking it
into two subproblems: compound figure classification (CFC) and compound
figure separation (CFS). CFC is a binary classification problem that aims at
discriminating between compound and non-compound figures given an article
image. CFS is the problem of determining the bounding boxes of all subfigures
of a given compound figure. Algorithms solving the CFC and CFS problems
are naturally combined into a CFC-CFS process chain that receives arbitrary
article images as input and delivers bounding boxes of subfigures (or of single
figures) at the output. Images classified as compound by the CFC algorithm
are further processed by CFS, whereas for images predicted as non-compound
by the CFC a bounding box covering the entire image is produced.

For CFC, we propose several global image features designed to capture
the existence of edges or whitespace that could potentially separate subfigures
and use them with well-known supervised machine learning algorithms. For
CFS, we designed an image processing algorithm comprising distinct modules
for detecting two types of separators between subfigures: (1) homogeneous
rectangular areas of whitespace spanning the entire image width or height,
which we call separator bands (shown in Fig. 1(a)); and (2) separator edges
spanning the entire image width or height, which may arise from borders drawn
around subfigures or from adjacent subfigures “stitched together” as shown in
Fig. 1(b).

The proposed CFS algorithm internally uses a separate binary classifier (in-
dependent from CFC) to decide which of the two separator detection modules
to apply to a given compound image. Based on the observation that com-
pound images containing graphical illustrations (such as diagrams and charts)
often contain separator bands, whereas most subfigures in other compound
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images show rectangular border edges, we train the internal CFS classifier to
discriminate between graphical illustrations and other article images and call
it illustration classifier.

This paper is based on previous work [26,27] and provides the following
additional research contributions:

1. It proposes novel image features for compound figure classification, which
can be efficiently extracted and achieve state-of-the-art CFC performance
using well-known classifier algorithms.

2. It demonstrates that the proposed CFS algorithm outperforms state-of-
the-art automatic and semi-automatic CFS approaches on two recently
published biomedical datasets.

3. It establishes a method to evaluate CFC-CFS chain effectiveness, which
is applied to investigate the effect of various CFC implementations in the
chain.

To facilitate reference and comparison with other approaches in future
work, we name the proposed approach for compound figure classification and
separation as ComFig and refer to its components as ComFig classifier, Com-
Fig separation, and ComFig chain.

1.1 Motivation and Context

From a problem-oriented point of view, research on automatic compound figure
separation is motivated by the fact that compound figures hamper content-
based analysis and indexing of article images for retrieval, because global image
features extracted from a compound image are a mixture (often an average) of
the same features extracted from the subfigures only, leading to reduced dis-
criminative power of these features on compound images. The situation may be
slightly better for local image features, which capture the existence of certain
texture or shape patterns in small image regions, but the predominant way of
aggregating local features of an image in a Bag of Visual Words representa-
tion [23] still suffers from the additive effect of including local features from
all subfigures. Moreover, subfigures of a given compound image usually convey
different semantic information that may be relevant for retrieval, although the
compound figure establishes a common semantic context for subfigures.

From a historical perspective, the research community showed little inter-
est in the CFC and CFS problems until ImageCLEF 2013, where a CFS task
was introduced as one of the challenges in the biomedical domain [10]. Task
organizers provided training and test datasets, and evaluated CFS results sub-
mitted by participants for the test dataset. It is presumably this provisioning
of datasets and of a CFS evaluation method that stimulated research on CFC
and CFS problems in recent years. Since we are not aware of any CFC and CFS
datasets available to the research community other than the ones described in
Section 3.1, our experiments are limited to the biomedical domain, although
our proposed algorithms should be applicable to other scientific domains as
well.
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1.2 Related Work

There is little work about the CFC problem in the literature, but research
interest may grow due to a CFC task introduced recently at ImageCLEF 2015
[11]. From the two participating groups of this task, Pelka and Friedrich [18]
achieved best results (an accuracy of 85.4%) using both textual and visual
features with a random forest classifier. Textual features were extracted from
image captions, and visual features were derived from detected separator bands
and a bag-of-keypoints representation of dense-sampled SIFT keypoints. Their
submitted variant using visual features only resulted in 72.5% accuracy. Wang
et al. [28], the other participating group in the ImageCLEF 2015 CFC task,
achieved 82.8% accuracy using visual features only. They used an unsupervised
approach consisting of connected component analysis followed by separator
band detection. A separate evaluation run using connected component analysis
only resulted in 82.5% accuracy, so separator band detection had an almost
negligible effect in the combined approach.

Prior to ImageCLEF 2015, Yuan and Ang [29] proposed a 3-class classifier
discriminating between photographs, non-photographs, and compound images
containing both photographs and non-photographs. The classifier was used in
a process chain for CFS, but it is not clear whether the classifier output should
affect CFS operation. Experiments did not include classifier evaluation.

An established research field whose techniques could potentially be useful
for CFC is document image classification [7]. Although it deals with digital
images of entire document pages (containing mostly text), some of the pro-
posed methods – such as block segmentation and physical layout analysis –
may also help CFC. However, there is no evidence of such utilization in the
literature yet.

The success of deep learning techniques [2] or other advanced methods of
representation learning [3] in image classification tasks during the last decade
[15,25] suggest that they could also be applied to the CFC problem. However,
we believe that available CFC training sets are still too small to obtain effective
classifiers from deep learning methods, and we hope that recently proposed
“simple” CFC methods (including ours) will help build larger training sets for
advanced machine learning techniques.

Regarding the CFS problem, most existing approaches focus on the detec-
tion of separator bands [1,8,13,29] and hence fail for compound images where
subimages are stitched together without separator bands (see Fig. 1(b)). Apos-
tolova et al. [1] propose to solve the CFS problem using not only visual in-
formation contained in article images, but also textual information contained
in images (extracted using OCR techniques) and in image captions. Since our
proposed CFS algorithm does not use textual information, we compare it to
their visual CFS algorithm (described as image panel segmentation), which
is part of a five-stage process chain and includes image markup removal. Im-
age markup consists of text labels embedded in compound images that may
be located in separator bands, exacerbating separator detection. Their CFS
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method [1] has recently been used in an approach to document image classifi-
cation and retrieval by Simpson et al. [22].

Chhatkuli et al. [8] employ several image preprocessing techniques – in-
cluding binarization, border cropping, and image markup removal – prior to
detecting separator bands. Separator band detection is done recursively in hor-
izontal direction first, followed by recursive detection of vertical separators,
which may lead to limited separation of irregular subfigure structures. Sepa-
rator candidates are filtered by a complex rule-based analysis step. Evaluation
is performed using a self-constructed dataset and evaluation method based on
separator locations, making a comparison with our approach infeasible.

Kitanovski et al. [13] participated in the ImageCLEF 2013 CFS task using
an apparently simple approach based on separator band detection. They do
not provide details and achieved an accuracy of 69%.

Yuan and Ang [29] build upon the approach of Murphy et al. [17] and
of Qian and Murphy [19] and use a sliding window to compute intensity his-
tograms of horizontal and vertical bands to detect (white) separator bands.
Additionally, they used an edge-based approach involving Hough transform
to separate overlayed zoom-in views from background figures, a case that is
not considered in this work. They evaluated their CFS method on two self-
constructed small datasets of about 180 compound figures each, but did not
provide enough details to make their evaluation method reproducible.

A different approach to CFS is based on connected component analysis
of binarized images, which, however, is susceptible to over-segmentation, in
particular for subfigures containing diagrams or charts. Shatkay et al. [21]
used such a technique for CFS in the context of document classification, but
did not evaluate CFS effectiveness separately. The CFC approach proposed
by Wang et al. [28] determines subfigures using connected component analysis
that could probably also be used in a CFS algorithm.

The approach of NLM (U.S. National Library of Medicine) [20] and our
previous approach [26], both submitted to the ImageCLEF 2015 [11] CFS
task, independently proposed to address compound images without separator
bands by processing edge detection results. Besides algorithmic differences
in edge-based separator detection, our approach incorporates a classifier to
automatically select edge- or band-based separator detection, whereas NLM’s
approach uses manual image classification for evaluation.1

1.3 Structure of the Paper

The proposed methods to address the CFC and CFS problems are described in
Section 2, including a way to improve the effectiveness of the CFC-CFS process
chain (Section 2.3). Section 3 explains the experimental setup to evaluate our
approach and, in particular, describes the datasets (Section 3.1) and evaluation
methods (Section 3.2) used. Evaluation results are presented and discussed in

1 We therefore call NLM’s approach [20] semi-automatic, although an automatic classifier
could be easily integrated.
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the same section, separately for CFC (Section 3.3), CFS (Section 3.4), and
the CFC-CFS process chain (Section 3.5). Section 4 concludes the paper and
makes some suggestions for future work.

2 Methods

In the following two subsections, we describe the proposed ComFig approach
to address the CFC and CFS problems, respectively. A technique to improve
the effectiveness of the CFC-CFS process chain, given an imperfect CFC im-
plementation, will be described in Section 2.3.

2.1 Compound Figure Classifier

Recognizing compound figures in a dataset of article images can be viewed as a
binary classification problem. We address this problem by using hand-crafted
image features and classical machine learning algorithms, because we consider
the available training datasets as being too small for deep learning techniques
(see Section 1.2), and we expect that the effect of limited classification accuracy
on the CFC-CFS process chain can be partly compensated by biasing the
classifier towards the compound class (see Section 2.3).

For CFC, we propose to use three types of image features determined
separately for vertical and horizontal directions of a grayscale image whose
pixel values have been normalized to the range [0, 1]. Each feature type is
computed by aggregating each pixel line in direction D (vertical or horizontal)
to a single real number, resulting in a single projection vector representing
the image along direction D′ orthogonal to D. The spatial distribution of
values in the projection vector is then captured by a spatial profile vector of
fixed length. The final feature vector is formed by concatenating the horizontal
profile vectors of the three feature types, followed by the corresponding vertical
profile vectors.

The three feature types differ in how the projection vector is calculated:
(1) mean gray values along pixel lines, (2) variance of gray values along pixel
lines, and (3) one-dimensional Hough transform, which counts the number of
edge points aligned in direction D in a binary edge map of the input image.
The binary edge map is produced by applying a gradient threshold on edges
in direction D detected by the Sobel operator. Hough transform values are
then normalized to the range [0, 1] using the image dimension in direction
D (width or height). Some of the spatial profile methods applied afterwards
require quantization of projection vectors, which is performed differently for
the three feature types, using quantization parameters (positive integers) p, q,
and h:

– Mean projection values are quantized into p bins dividing [0, 1] into p subin-
tervals with lower bounds 1−2i−p for i = 1, 2, . . . , p. The logarithmic scale
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for quantization should help to discriminate between high values (white
separator bands) and others.

– Variance projection values are quantized into q bins dividing [0, 1] into q
subintervals with upper bounds 2i−q for i = 1, 2, . . . , q. The logarithmic
scale for quantization should help to discriminate between low-variance
pixel lines (subfigure separators) and others.

– Normalized Hough transform values are quantized into h bins dividing
[0, 1] into h subintervals with lower bounds 1 − 2i−h for i = 1, 2, . . . , h.
The logarithmic scale for quantization should help to discriminate between
Hough peaks (subfigure separators) and others.

We consider six spatial profile methods to produce profile vectors from
projection vectors. Five of them require quantization of projection vectors and
divide the vector of dimensionality N into k spatial bins of bN/kc or bN/kc+1
adjacent positions. An additional profile method tries to capture the spatial
structure of the projection vector using its Fast Fourier Transform (FFT).

– Profile 1: A spatial bin is represented by the full normalized histogram of
quantized projection values, resulting in p, q, or h values per spatial bin.

– Profile 2: A spatial bin is represented by the quantized projection value
that occurs most often (the mode). This value is then normalized to the
range [0, 1].

– Profile 3: A spatial bin is represented by the relative frequency of the largest
quantized projection value, resulting in a single number in the range [0, 1].

– Profile 4: A spatial bin is represented by its maximum quantized projection
value, normalized to the range [0, 1].

– Profile 5: A spatial bin is represented by its average quantized projection
value, normalized to the range [0, 1].

– Profile 6: The absolute values of the first k low-frequency FFT coefficients
of the projection vector are normalized by 1/N , such that resulting values
are constrained to the range [0, 1].

The dimensionality of feature vectors depends on parameters k, p, q, h, and
on the profile method used for each of the three feature types, as presented in
Table 1. We denote a certain feature set by three numbers xyz representing
the spatial profile numbers of mean projection (x), variance projection (y),
and Hough Transform (z). A value of zero (e.g. x = 0) means that the corre-
sponding component of the feature vector has been dropped. For example, the
feature set 034 denotes a feature vector formed by concatenation of horizontal
profiles of variance projection and Hough Transform, followed by correspond-
ing vertical profiles. Both profile methods (3 and 4) represent a spatial bin
by a single number, resulting in k numbers per profile vector, 2k numbers for
both horizontal profiles, and 4k numbers for the final feature vector.

When comparing the proposed image features with features used in existing
CFC approaches (see Section 1.2), only the border profiles proposed by Pelka
and Friedrich [18] and the peak region detection scheme proposed by Wang et
al. [28] have similarities with our approach. Border profiles count the number
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Table 1 Dimensionality of various feature sets used for ComFig classification. k denotes
the number of spatial bins used to compute profile vectors. p, q, and h are quantization
parameters. The right-most column gives the dimensionality for parameter settings k = 16,
p = 5, q = 8, h = 3.

Feature Set Dimensionality Example
111 2 ∗ k ∗ (p + q + h) 512
222 6 ∗ k 96
333 6 ∗ k 96
444 6 ∗ k 96
555 6 ∗ k 96
666 6 ∗ k 96
011 2 ∗ k ∗ (q + h) 352
034 4 ∗ k 64
134 2 ∗ k ∗ (p + 2) 224
434 6 ∗ k 96

of white (or black) pixels along vertical or horizontal lines after the image has
been resized to 256× 256 pixels, whereas our proposed projection vectors are
computed by mean or variance of gray values along vertical or horizontal lines
in the original image. Peak regions are detected by projecting vertical or hori-
zontal lines to the minimum gray value along the line, which is again different
from our approach. To the best of our knowledge, the proposed methods for
quantization of projection vectors and construction of spatial profiles have not
appeared in related literature before.

As classifier algorithms we use logistic regression, a linear support vector
machine (SVM), and a non-linear SVM with a radial basis function kernel.

2.2 Compound Figure Separation

The proposed ComFig separation approach is a recursive algorithm (see Al-
gorithm 1) consisting of the following main components, which are depicted
using a flowchart convention in Fig. 2: (1) an illustration classifier, which per-
forms a binary classification of the compound image as either illustration or
non-illustration; (2) a border band removal block, which returns the bounding
box of an image; (3) a separator line detection module, which can be based on
either edges or bands, depending on the output of the illustration classifier;
(4) a subfigure separation block, which performs either vertical or horizontal
separation; and (5) the recursive application of the algorithm to each subfigure
image, indicated by the recursion arrow in Fig. 2.

The illustration classifier is responsible for deciding which of two separator
line detection modules to apply: (i) the band-based algorithm, aimed at detect-
ing separator bands between subfigures, which is used when the compound
image is classified as an illustration image; or (ii) the edge-based separator de-
tection algorithm, which applies edge detection and Hough transform to locate
candidate separator edges, for the cases where the compound image is classi-
fied as a non-illustration image. The assumption behind algorithm selection
is that non-illustration compound images contain visible vertical or horizontal
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edges separating subfigures, making them more suitable for edge-based sepa-
rator detection. It should be noted that this assumption is still valid in the
case of non-illustration compound images with separator bands where sub-
figures have a visible rectangular border. The illustration classifier, the main
recursive algorithm, and the two separator detection modules are described in
more detail in the remainder of this section.

Function BB = ComFigSeparation(F)
Input: compound figure F (matrix of gray values)
Output: list BB of subfigure bounding boxes

ILL = IllustrationClassifier(F); // returns True if F is illustration

BB = ComFigRecursive(F, ILL);
return

end

Function BB = ComFigRecursive(F, ILL)
Input: compound figure F, output ILL of illustration classifier
Output: list BB of subfigure bounding boxes

BB = empty list;
B = RemoveBorderBand(F); // returns bounding box

if B is too small then return;
FB = Crop(F, B); // crops F to bounding box B

if ILL is true then
// returns list of horizontal separator lines

HL = BandBasedSeparatorLines(FB);
// vertical separator lines

// FBT denotes the transpose of matrix FB

VL = BandBasedSeparatorLines(FBT );

else
HL = EdgeBasedSeparatorLines(FB);

VL = EdgeBasedSeparatorLines(FBT );

end
if HL is empty and VL is empty then

add B to BB; // return single bounding box B

return
end
// select direction of separation

L = SelectHorV(HL, VL); // returns HL or VL

SB = Separate(FB, L); // returns list of subfigure bounding boxes

// apply algorithm to all subfigures recursively

foreach B in SB do
SF = Crop(FB, B);
SBB = ComFigRecursive(SF, ILL);
if SBB is not empty then append SBB to BB;

end
return

end
Algorithm 1: Proposed ComFig separation algorithm.
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Fig. 2 Flowchart corresponding to Algorithm 1. Numbers denote the main algorithmic
steps described in the beginning of Section 2.2.

2.2.1 Illustration Classifier

The illustration classifier’s task is to decide which separator detection algo-
rithm to apply to a compound image given as an input. If the input image is
predicted (with probability greater than decision threshold) to be a graph-
ical illustration, the band-based separator detection is applied; otherwise, the
edge-based separator method is employed. This decision is made only once for
each compound image, i.e., all recursive invocations of Algorithm 1 use the
same separator detection method, either band- or edge-based.

The encouraging results obtained in early experiments for measuring CFS
effectiveness have motivated the use of four sets of global image features as
classifier input: (1) simple2 is a two-dimensional feature consisting of image
entropy, estimated using a 256-bin histogram, and mean intensity; (2) simple11
extends simple2 by 9 quantiles of the intensity distribution; (3) CEDD is the
widely used color and edge directivity descriptor [6] (144-dimensional); and (4)
CEDD simple11 is the concatenation of CEDD and simple11 features (155-
dimensional). These features are computed after the images undergo gray-level
conversion.

The selected machine learning algorithms were: (i) support vector machines
(SVM) with radial basis function kernel (RBF); and (ii) logistic regression.
Despite the fact that logistic regression usually shows inferior classification
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accuracy than kernel SVM (due to logistic regression’s linear decision bound-
ary), it is nonetheless a useful algorithm to consider in the context of ComFig,
thanks to logistic regression’s ability to provide prediction probabilities, which
can be used to tune the selection of separator detection algorithms using the
decision threshold parameter.

Owing to the general principle of supervised machine learning, we do not
attempt to define explicitly which image characteristics distinguish an illustra-
tion from a non-illustration image. The difference is rather implicitly defined
by the set of pre-classified examples used to train the illustration classifier
(see Section 3.1). However, image features simple2 and simple11 have been
designed based on the assumption that the intensity distributions of illustra-
tions generally exhibit a lower entropy and higher mean value than that of
non-illustration images.

To emphasize the difference between illustration classifier and CFC, we
note that they serve different purposes: the illustration classifier discriminates
between illustration and non-illustration images, whereas CFC distinguishes
between compound and non-compound images. Image features used for these
different classifiers should therefore capture different image characteristics and,
hence, were designed independently.

2.2.2 Recursive Algorithm

Every compound figure image is converted to 8-bit grayscale before being
used as input image to the main algorithm (Algorithm 1 and Fig. 2). The
border band removal block detects a rectangular bounding box surrounded by
a maximal homogeneous image region adjacent to image borders (this region
is referred to as the border band). If the resulting bounding box is empty or
smaller than elim area or if maximal recursion depth has been reached, an
empty bounding box is returned and the recursion terminates. The separator
line detection module is invoked separately for horizontal and vertical direc-
tions and returns a list of corresponding separator lines or an empty list, if the
respective image dimension (width or height) is smaller than mindim or if no
separator lines are found. If the returned lists for both directions are empty,
recursion is terminated and the bounding box of the current image (without
border bands) is returned. The decision about vertical or horizontal separation
(SelectHorV) is made based on the regularity of separator distances: locations
of separator lines and borders are normalized to the range [0,1], and the direc-
tion (vertical or horizontal) yielding the lower variance of adjacent distances
is chosen. Naturally, if one of both lists of separator lines is empty, such deci-
sion is trivial. Finally, the current figure image is divided into subimages along
the chosen separation lines, and the algorithm is applied recursively to each
subimage.
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2.2.3 Edge-based Separator Detection

The edge-based separator line detection algorithm is responsible for detecting
full-length horizontal edges in a grayscale image. It consists of the following
processing steps presented in Algorithm 2: (1) unidirectional edge detection,
(2) peak selection in one-dimensional Hough transform, and (3) consolidation
and filtering of candidate edges.

Function HL = EdgeBasedSeparatorLines(F)
Input: compound figure F (matrix of gray values)
Output: list HL of horizontal separator lines

add high-contrast border to F;
EM = SobelEdgeMap(F); // returns binary edge map

HT = HoughTransform1D(EM);
// returns list of candidate separator positions

P = SelectHoughPeaks(HT);
// returns list of candidate separator edges

E = ConsolidateEdges(EM, P);
// discards edges that are too short or too close to borders

HL = FilterEdges(E);
return

end
Algorithm 2: Edge-based separator line detection.

Edge detection is implemented using a one-dimensional Sobel filter and
subsequent thresholding (edge sobelthresh) to produce a binary edge map.
The resulting edge map is then used as an input to a one-dimensional Hough
transform algorithm, which counts the number of edge points aligned on each
horizontal line: the peaks correspond to the longest edges, and their locations,
identify candidate separator edges. To cause borders to appear as strong Hough
peaks, we add an artificial high-contrast border to the image prior to edge
detection.

Peaks are identified by an adaptive threshold t that depends on the recur-
sion depth k (zero-based), the maximal value m of the current Hough trans-
form, and the fill ratio f of the binary edge map (fraction of non-zero pixels,
0 ≤ f ≤ 1), see (Eq. 1). α and β are internal parameters (edge houghratio min

and edge houghratio base).

h = α ∗ βk , t = m ∗
(
h+ (1− h) ∗

√
f
)
. (1)

These formulas were derived to handle noise in the Hough transform results
and ensure the relevance of the edges produced at the output. They were
motivated by the observation that Hough peaks become less pronounced as
image size decreases (implied by increasing recursion depth) and as the fill
ratio f increases (more edge points increase the probability that they are
aligned by chance). Equation (1) ensures a higher threshold in those cases.
Moreover, as recursion depth k increases, the algorithm detects only more
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pronounced separator edges, which is consistent with the fact that further
figure subdivisions become less likely.

Hough peak selection also includes a regularity criterion, similar to the one
used for deciding about vertical or horizontal separation (see Section 2.2.2):
the list of candidate peaks is sorted by their Hough values in descending or-
der, and candidates are removed from the end of the list until the variance
of normalized edge distances of remaining candidates falls below a thresh-
old (edge maxdistvar). Candidate edges resulting from Hough peak selec-
tion are then consolidated by filling small gaps (of maximal length given
by edge gapratio) between edge line segments (of minimal length given by
edge lenratio). Finally, edges that are too short in comparison to image
height or width (threshold edge minseplength), or too close to borders (thresh-
old edge minborderdist) are discarded.

2.2.4 Band-based Separator Detection

The goal of the band-based horizontal separator detection algorithm (Algo-
rithm 3) is to locate homogeneous rectangular areas covering the full width
of the image, which we call separator bands. Since this algorithm is intended
primarily for grayscale illustration images with light background, it is safe to
assume that separator bands are white or light gray. The algorithm consists
of four steps: (1) image binarization, (2) computation of mean projections, (3)
identification and (4) filtering of candidate separator bands.

Function HL = BandBasedSeparatorLines(F)
Input: compound figure F (matrix of gray values)
Output: list HL of horizontal separator lines

BW = BinarizeImage(F); // returns black-and-white image

MP = MeanProjection(BW); // vector of horizontal mean projections

L = DetectBands(MP); // returns list of horizontal lines

// filter lines by regularity of distances and closeness to border

HL = FilterLines(L);
return

end
Algorithm 3: Band-based separator line detection.

The first step consists of image binarization, using the mean intensity
value as a threshold. We then compute mean horizontal projections, i.e., the
mean value of each horizontal line of pixels: the resulting mean value will
be 1 (white) if and only if the corresponding line contains only white pixels.
Candidate separator bands are then determined by identifying maximal runs
of ones in the vector of mean values that respect a minimal width thresh-
old (band minsepwidth). They are subsequently filtered using a regularity
criterion similar to Hough peak selection (see Section 2.2.3), this time using
distance variance threshold band maxdistvar. Finally, selected bands that are
close to the image border (threshold band minborderdist) are discarded, and
the center lines of remaining bands are returned as separator lines.
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Fig. 3 Process chain consisting of compound figure classifier (CFC) and compound figure
separation (CFS).

2.3 Chained Classification and Separation

Processing compound figures in a collection of scientific articles is expected
to happen in a two-stage process as illustrated in Fig. 3: (1) all article im-
ages are classified as compound or non-compound by applying a compound
figure classifier (CFC); (2) the predicted compound images are then processed
by a compound figure separation (CFS) algorithm to obtain subfigures. The
resulting set of subfigures and predicted non-compound figures can then be
used for further application-specific processing (e.g. content-based indexing
for retrieval). We are therefore interested in evaluating and improving the
effectiveness of the CFC-CFS process chain, i.e. the quality of obtained subfig-
ures and non-compound figures with respect to a gold standard and evaluation
procedure (see Section 3.2).

Our proposed method for evaluating the effectiveness of the CFC-CFS
chain will be described in Section 3.2. A guiding principle for improving the
CFC-CFS chain is derived from consideration of the loss of effectiveness caused
by different types of CFC errors: false negatives (compound figures classified as
non-compound) may result in a larger loss than the same number of false pos-
itives (non-compound figures classified as compound), because false negatives
are not processed by CFS and hence all contribute to the loss of effectiveness.
On the other hand, there is a chance that false positives are not divided into
subfigures by CFS (because it does not detect separation lines), and such in-
stances of false positives will not degrade effectiveness of the CFC-CFS chain.
Effectiveness can therefore be optimized on a validation set by biasing CFC
decisions towards the compound class. However, this is easy to achieve only
for CFC algorithms that deliver predicted class probabilities, like logistic re-
gression, but not for SVM.

The different importance of misclassifications of a binary classifier depend-
ing on true classes can be expressed by a 2 × 2 misclassification loss matrix
(Eq. (2)) [4]. Rows correspond to true classes and columns to predicted classes,
where in the case of CFC the first row or column is assigned to class non-
compound (C0) and the second row or column to class compound (C1). The
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entries of loss matrix (Eq. (2)) denote the fact that misclassification of true
compound figures incurs a loss that is by a factor of α larger than that of
misclassification of true non-compound figures (if α > 1). If the classifier is
able to predict class probabilities p(Ck|x) for a given image x, the decision of
the classifier can be optimized with respect to expected misclassification loss
Ek(x) (Eq. (3)): image x is assigned to class Ck that minimizes Ek(x) (k = 0
or k = 1). For the special form of loss matrix given in (Eq. (2)), this criterion
reduces to a simple threshold on class probability p(C1|x): image x is assigned
to class C1 if and only if Eq. (4) holds. The parameter α can be selected by
optimizing effectiveness of the CFC-CFS process chain on a validation set.

L =

(
0 1
α 0

)
(2)

Ek(x) =
∑
i

Lik p(Ci|x) (3)

p(C1|x) ≥ 1

1 + α
(4)

3 Experiments and Results

We evaluate the proposed ComFig classifier, separation, and chain approaches
on separate datasets, which are described in Section 3.1. As there is no agree-
ment on a standard evaluation protocol for CFS in the research community
yet, we use two different evaluation procedures, described in Section 3.2. Ad-
ditionally, we propose to slightly extend existing CFS evaluation protocols in
order to apply them to CFC-CFS chains. Evaluation results for ComFig clas-
sifier, separation, and chain are presented and discussed in Sections 3.3, 3.4,
and 3.5, respectively.

3.1 Datasets

We used several datasets to train and evaluate the different components of
our approach in our experiments. All of them were derived from the dataset of
about 75,000 biomedical articles used for ImageCLEF medical tasks since 2012
[12]. Those articles were retrieved from PubMed Central2 by selecting open
access journals that allow for free redistribution of data. The articles of the
ImageCLEF dataset contain about 300,000 images of unconstrained modal-
ities (biomedical images, diagrams, charts, photographs, etc.) and subfigure
structure (compound and non-compound images).

A subset of about 21,000 images used for the ImageCLEF 2015 medical
tasks [11] formed the basis for most datasets used in our experiments, namely

2 http://www.ncbi.nlm.nih.gov/pmc/

http://www.ncbi.nlm.nih.gov/pmc/
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Table 2 Datasets used in our experiments. CFC = compound figure classification, CFS =
compound figure separation, MC = modality classification; CO = compound, ILL = illus-
tration.

Dataset
Training Test

Images Annotations Images Annotations
ImageCLEF CFC 10387 6121 CO (59%) 10434 6144 CO (59%)
ImageCLEF CFS 3403 14531 subfigures 3381 12789 subfigures
NLM CFS 380 1656 subfigures
ImageCLEF MC first 1071 607 ILL (57%) 497 261 ILL (53%)
ImageCLEF MC majority 895 514 ILL (57%) 428 243 ILL (57%)
ImageCLEF MC unanimous 867 508 ILL (59%) 398 226 ILL (57%)
ImageCLEF MC greedy 1071 712 ILL (66%) 497 325 ILL (65%)
CFC-CFS 6806 17934 subfigures 6752 16154 subfigures

all datasets labeled ImageCLEF in Table 2. The CFC training dataset pro-
vided by ImageCLEF task organizers contained some erroneous samples (23
images had contradicting annotations), which have been removed from the
training set. Table 2 refers to the cleaned CFC training set only. The CFC
dataset consists of 59% compound images (CO), both in training and test
subsets, providing reasonable conditions for training and evaluating a binary
classifier. A similar split of classes is present in the modality classification
(MC) datasets, which are used to train and evaluate the binary classifier for
illustrations (ILL) (see Section 2.2.1).

The MC datasets were derived from the dataset of the ImageCLEF 2015
multi-label image classification task [11]. The images are provided with one
or more labels of 29 classes (organized in a class hierarchy), which have been
mapped to two meta classes: the illustration meta class comprises all “gen-
eral biomedical illustration” classes except for chromatography images, screen-
shots, and non-clinical photos. These classes and all classes of diagnostic im-
ages have been assigned to the non-illustration meta class. About 36% of the
images in the training set are labeled with multiple classes, corresponding to
compound images. Training and evaluation of the illustration classifier (Sec-
tion 2.2.1) requires mapping the set of labels of a given image to a single meta
class. We implemented four mapping strategies that first assign each image
label to the illustration or non-illustration meta class, and then operate dif-
ferently on the list L of meta labels associated with a given image: (1) the
first strategy simply assigns the first meta label of L to the image; (2) the
majority strategy selects the meta label occurring most often in L, dropping
the image from the dataset if both meta labels occur equally often; (3) the
unanimous strategy only assigns a meta label to the image if all meta labels
in L are equal, otherwise the image is dropped from the dataset; and (4) the
greedy strategy maps an image to the illustration label if L contains at least
one such meta label, otherwise the image is assigned the non-illustration label.
Note that majority and unanimous strategies discarded up to 20% of images
in the original dataset. Whereas majority and unanimous mapping strategies
are expected to improve classification accuracy, the greedy strategy aims at
increasing CFS effectiveness based on the assumption that a compound image
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containing an illustration subfigure is more likely to have separator bands than
separator edges.

A research group at the U.S. National Library of Medicine (NLM) had
created a dataset to evaluate their CFS approach (and related algorithms)
[1] well before the first CFS task at ImageCLEF was issued in 2013. This
dataset contains 400 images and 1764 ground-truth subfigures and hence is
substantially smaller than the ImageCLEF CFS test dataset. Moreover, it
shares 20 images with the training set and 27 images with the test set of
the ImageCLEF CFS dataset. The reason for the non-empty intersection of
these datasets is that the NLM dataset was sampled from a set of 231,000
article images used at ImageCLEF 2011, which was extended later to the
ImageCLEF dataset mentioned at the beginning of this section. Since we used
the ImageCLEF CFS training set for parameter optimization, we removed the
20 images in the intersection from the NLM dataset for our experiments. The
resulting reduced dataset is listed in Table 2 as NLM CFS dataset.

For evaluation of the CFC-CFS process chain, we extended the ImageCLEF
CFS test dataset (3381 images) with the same number of non-compound im-
ages sampled at random from the ImageCLEF CFC test dataset. After remov-
ing five images that occurred in both portions of this dataset3, a test dataset
with 6752 images was obtained. In a similar manner, a validation set of 6806
images was constructed from ImageCLEF CFS and CFC training datasets (ap-
pearing as “training set” in the last line of Table 2). Non-compound images
of the CFC-CFS dataset were annotated with a single subfigure covering the
entire image, as explained in Section 3.2.2.

3.2 Evaluation Methods

While evaluation of classification algorithms is a well-studied problem [5,9,14,
16,24], evaluation of compound figure separation has been addressed by two
different ad-hoc procedures only [1,10]. Both evaluation procedures first deter-
mine which detected subfigures of a given compound image are correct (true
positive) with respect to ground-truth subfigures, and then compute an eval-
uation measure from the number of true positive subfigures over the dataset.
However, the way by which true positive subfigures are determined, and which
evaluation measures are calculated, differs between the two proposed evalua-
tion procedures. We formalize, describe, and compare these CFS evaluation
methods in detail in Section 3.2.1, because a unified description and compar-
ison did not appear in literature before. In Section 3.2.2 we propose to apply
CFS evaluation methods to measure the effectiveness of the ComFig chain.

3 Ideally, the intersection should be empty, because the CFS dataset should contain only
compound images. However, manual inspection of images in the intersection revealed that
both CFS and CFC datasets contain errors and that the distinction between compound and
non-compound images is not always clear.
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3.2.1 CFS Evaluation

To describe the evaluation protocols in detail, we introduce the following no-
tation. Without loss of generality, we assume that a subfigure is represented
by rectangular area R (bounding box) within an image, and denote its area
size (number of contained pixels) by |R|. For a given compound figure, let
{Gi | i ∈ I} be the set of ground-truth subfigures, and {Fj | j ∈ J} the set of
subfigures detected by the CFS algorithm that should be evaluated. Note that
the overlap area Gi ∩ Fj between subfigures is again a rectangle (or empty).
The two evaluation protocols employ different definitions of the overlap ratio
between Gi and Fj , given in Equations (5) and (6). ρGij is the overlap ratio

with respect to ground-truth subfigure Gi, ρ
F
ij calculates the ratio with respect

to detected subfigure Fj .

ρGij =
|Gi ∩ Fj |
|Gi|

(5)

ρFij =
|Gi ∩ Fj |
|Fj |

(6)

The evaluation procedure used for ImageCLEF CFS tasks [10] iterates over
ground-truth subfigures Gi and, for a given Gi, looks for a detected subfigure
Fj with maximal overlap ρFij . Fj is associated with Gi if ρFij > 2/3 and if Fj

has not already been associated with a different ground-truth subfigure. The
result is a set of one-to-one associations between ground-truth subfigures and
detected subfigures, which are regarded as true positives. Note that although
the set of associations may depend on the order of iterations over Gi, the
number C of these associations does not. Accuracy can therefore be defined
per compound figure as C/max(NG, ND), where NG and ND are the numbers
of ground-truth and detected subfigures, respectively. Accuracy on the test set
is the average of accuracy values computed for each compound figure.

The authors of the NLM CFS dataset [1] (see Section 3.1) used a differ-
ent criterion to determine true positive subfigures. A detected subfigure Fj

is considered true positive if and only if there is a ground-truth subfigure Gi

with ρGij > 0.75 and ρGkj < 0.05 for all other ground-truth subfigures Gk. That
is, subfigure Fj has a notable overlap with one ground-truth subfigure only.
Given the total number N of ground-truth subfigures in the dataset, the total
number D of detected subfigures, and the number T of detected true positive
subfigures, the usual definitions for classifier evaluation measures can be ap-
plied to obtain precision P , recall R, and F1 measure, see Eq. (7). Note that
accuracy is not well-defined in this setting, because the number of negative
results (not detected arbitrary bounding boxes) is theoretically unlimited.

P =
T

D
, R =

T

N
, F1 =

2 ∗ P ∗R
P +R

. (7)
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(a)

(b)

Fig. 4 Determination of true positive detected subfigures by (a) ImageCLEF and (b) NLM
CFS evaluation procedures.

Figure 4 illustrates two different ways of determining true positive detected
subfigures for an example compound figure, which consists of three ground-
truth subfigures: A, B, and C. We assume that a hypothetical CFS algorithm,
given this compound figure as input, produced three subfigures – indicated
as subfigures 1, 2, and 3 – at its output. In Figure 4, the resulting detected
subfigures appear on the foreground, partially overlapping the three ground-
truth subfigures in the background. The ImageCLEF and NLM evaluation
protocols for this case will result in two different assessments, as follows:

– Figure 4 (a): The ImageCLEF evaluation procedure considers only one
of subfigures 2 or 3 as true positive, depending on which of them gets
associated first with C. Note that both overlap ratios ρFC2 and ρFC3 are
100%. Subfigure 1, however, is regarded as false positive, because its overlap
ratio, according to definition (6), with any ground-truth subfigure does not
exceed 2/3. The resulting accuracy is therefore 1/3, since only one of the
three detected subfigures qualifies as true positive.

– Figure 4 (b): The NLM evaluation procedure, on the other hand, deter-
mines that all detected subfigures should be considered false positives,
because for subfigures 2 and 3 the overlap ratio, according to definition
(5), with any ground-truth subfigure is too small (i.e., less than 75%), and
subfigure 1 overlaps with two ground-truth subfigures (A and B) by at
least 5%.
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3.2.2 CFC-CFS Chain Evaluation

Since there is, to the best of our knowledge, no previous work on CFC-CFS
chains and their evaluation in the literature, we need to define an evalua-
tion method to measure the effectiveness of the ComFig chain. We propose
to apply the CFS evaluation methods described in the previous section to the
output of the ComFig chain (Section 2.3). Because CFS test datasets contain
only compound figures, but the dataset for CFC-CFS chain evaluation also in-
cludes non-compound figures (Section 3.1), we need to extend CFS evaluation
procedures by a convention to represent non-compound figures. We adopt the
obvious solution to consider non-compound figures as “compound figures with
a single subfigure” and represent each of them by a bounding box covering the
entire image. This extension needs to be implemented in three different places
of the evaluation procedure: (1) for ground-truth annotation, (2) for images
classified as non-compound by CFC, and (3) for images classified as compound
that are not divided into subfigures by CFS (because it does not detect proper
separator lines).

Unmodified CFS evaluation algorithms can then be applied to the output
of the CFC-CFS chain. Note that the ImageCLEF evaluation algorithm will
assign 100% accuracy for true non-compound images only if there is exactly one
“detected” subfigure in the CFC-CFS output, no matter what the bounding
boxes are. Similarly, the NLM evaluation algorithm will find at most one true
positive subfigure in a true non-compound image, but in this case the area
of the “detected” bounding box is relevant (it must cover at least 75% of the
entire image).

3.3 Compound Figure Classifier

We used the ImageCLEF CFC dataset (Section 3.1) to train and evaluate
the various combinations of feature sets and classifier algorithms described in
Section 2.1. More specifically, we trained all three classifiers on 40 feature sets
created by instantiating the 10 feature sets listed in Table 1 for four values of
k (4, 8, 16, and 32). The quantization parameters were kept constant as p = 5,
q = 8, and h = 3, as these values gave good classification performance in
preliminary experiments. To enable a fair comparison with SVM, the logistic
regression classifier used a probability threshold of 0.5, corresponding to a
symmetric misclassification loss matrix (Eq. (2)) with α = 1.

Results of CFC experiments are presented in Table 3. From the 120 combi-
nations of classifier algorithm, feature sets, and number k of spatial bins that
were tested in experiments, we report only the best three and the worst results
– separated by a dashed line in Table 3 – for each classifier algorithm with
respect to accuracy.

Results indicate that feature set 434 achieves good classification perfor-
mance for all three tested classifier algorithms with a rather low dimensionality
of 96 (see Table 1). Feature set 134 (with 224 dimensions) with k = 16 spatial
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Table 3 Evaluation results of ComFig classifier on ImageCLEF CFC test set. From the
120 tested combinations of classifier algorithm, feature set, and number k of spatial bins,
only the best three and the worst result for each classifier algorithm are reported. LogReg
= logistic regression, SVM = support vector machine.

Classifier Feature Set k Accuracy% FP% FN%
LogReg 134 16 76.9 16.9 6.2
LogReg 434 8 76.6 18.2 5.2
LogReg 434 16 76.6 17.7 5.7
LogReg 011 4 61.3 8.5 30.2
linear SVM 134 16 76.9 14.6 8.6
linear SVM 434 8 76.8 16.6 6.7
linear SVM 434 16 76.5 15.9 7.6
linear SVM 222 4 63.9 25.9 10.2
kernel SVM 034 4 75.5 20.4 4.1
kernel SVM 444 4 75.3 20.8 3.9
kernel SVM 434 4 74.2 23.0 2.9
kernel SVM 666 32 59.0 41.0 0.0

bins showed the same accuracy (76.9%) for both linear classifiers, becoming
the best overall performer in both cases. The surprisingly low classification
performance of kernel SVM is probably due to underfitting caused by default
SVM hyperparameters; both box constraint C and standard deviation σ of
the radial basis function (RBF) kernel were kept at the default value 1.

Remarkably, the false positive rate of all well-performing classifiers in Ta-
ble 3 is systematically higher than the false negative rate. This can be ex-
plained by two possible causes: first, the training set is slightly imbalanced
(59% compound images), which may cause the classifier to decide in favor of
the compound class in uncertain cases; second, the feature sets used for CFC
produce a denser spatial distribution of non-compound images in the feature
space than for compound ones, reinforcing the imbalanced training effect. In
fact, the CFC features described in Section 2.1 have been designed to capture
the existence of separators between subfigures. If such separators do not exist,
feature values may exhibit a low variance across different images.

Compared to the best CFC run using visual-only features submitted to
ImageCLEF 2015 by Wang et al. [28], which achieved 82.8% accuracy on the
same dataset, our results are inferior by a margin of about 6%. However, as
the approach of Wang et al. essentially employs a CFS algorithm (connected
component analysis and band separator detection), we suppose that our CFC
method has significant advantages with respect to efficiency for online classi-
fication. Extraction of the 111 feature set, which is the most complex of our
proposed feature sets, took 81 milliseconds per image on average (excluding
reading the image file from disk) using a MATLAB implementation on an
Intel E8400 CPU operated at 3 GHz. This execution time corresponds to a
processing rate of 12.3 images per second.
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3.4 Compound Figure Separation

The proposed ComFig separation algorithm is evaluated mainly on the Image-
CLEF CFS dataset (Section 3.1) using the ImageCLEF evaluation procedure
(Section 3.2). The internal parameters of our CFS algorithm, including imple-
mentation options of the illustration classifier, are optimized on the training
portion of the dataset as described in Section 3.4.1, prior to evaluating CFS
performance on the test dataset. To analyze the effectiveness of the illustration
classifier for CFS, we also report results for different classifier implementation
options obtained by keeping these options constant during parameter opti-
mization.

Moreover, we consider a variant of the ComFig separation algorithm in
which the illustration classifier has been replaced by a binary random de-
cision unit, which predicts that a given input image is an illustration with
probability p. For p = 0, the CFS algorithm will always use edge-based sepa-
rator detection, and for p = 1 band-based separator detection will be applied
to every input image. The rationale for choosing p as the actual illustration
decision rate of the classifier on the test dataset is to allow a fair compari-
son between the “random decision” variant and the proposed CFS algorithm,
which should allow us to quantify the utility of the illustration classifier in our
CFS approach.

The proposed ComFig separation algorithm applies the illustration clas-
sifier once to each input image and reuses the classifier’s decision in all re-
cursive invocations of the separator detection module (see Fig. 2). To answer
the question whether applying the classifier anew for each recursive invocation
improves CFS performance, we also consider this algorithmic variant in our
experiments, depicted in Fig. 5.

To enable comparison with other CFS approaches in the literature, we fur-
ther evaluate our approach on the NLM dataset using the evaluation procedure
proposed by its authors (see Section 3.2). By using the same parameter values
obtained by optimization on the ImageCLEF training set, CFS results on the
NLM dataset provide additional information about the generalization ability
of our CFS algorithm.

3.4.1 Parameter Optimization

The ComFig separation algorithm takes 17 internal parameters listed in Ta-
ble 4. Initial parameter values were chosen manually by looking at the results
produced for a few training images. They were used during participation in
ImageCLEF 2015 [26]. For parameter optimization, the CFS algorithm was
evaluated for various parameter combinations on the ImageCLEF 2015 CFS
training dataset (3,403 compound images, 14,531 ground-truth subfigures) us-
ing the evaluation tool provided by ImageCLEF organizers. Due to the number
of parameters and the run time of a single evaluation run (about 17 minutes),
a grid-like optimization evaluating all possible parameter combinations in a
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Fig. 5 Variant of ComFig separation algorithm that applies the illustration classifier to
every detected subfigure prior to splitting it further.

certain range was not feasible. Instead, we applied a hill-climbing optimiza-
tion strategy to locate the region of a local maximum and then used grid
optimization in the neighborhood of this maximum.

More precisely, we defined up to five different values per parameter, in-
cluding the initial values, on a linear or logarithmic scale, depending on the
parameter. Then a set of parameter combinations was generated where only
one parameter was varied at a time and all other parameters were kept at
their initial values, resulting in a feasible number of parameter combinations
to evaluate (linear in the number of parameters). After measuring accuracy
on the training set, the most effective value of each parameter was chosen
as its new optimal value. For parameters whose optimal values differed from
the initial ones, the range was centered around the optimal value. Other pa-
rameters were fixed at their latest value. The procedure was repeated until
accuracy improved by no more than 5%, which happened after three itera-
tions. Finally, after sorting parameter combinations by achieved accuracy, the
five most effective parameters were chosen for grid optimization, where only
two “nearly optimal” values (including the latest optimal value) per parameter
were selected.
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Table 4 Internal parameters of ComFig separation algorithm. Initial parameter values were
used during ImageCLEF 2015 participation [26], optimal values were obtained by parameter
optimization on the ImageCLEF 2015 CFS training dataset. Parameters marked by * use
units of image width, height, or area, depending on the parameter and processing direction
(horizontal or vertical).

Parameter Initial Optimal Meaning
Main algorithm
classifier model first greedy first, majority, unanimous, or greedy

(see Section 2.2.1)
decision threshold 0.5 0.1 minimal illustration class probability

to decide in favor of band-based
separator detection

mindim 50 200 minimal image dimension (pixels) to
apply separator detection to

elim area 0 0.03 area threshold to eliminate small
bounding boxes*

Edge-based separator detection
edge maxdepth 10 10 maximal recursion depth
edge sobelthresh 0.05 0.02 threshold for Sobel edge detector
edge houghratio min 0.25 0.2 minimal ratio of Hough values for

peak selection
edge houghratio base 1.2 1.5 base of recursion depth dependency

for Hough peak selection
edge maxdistvar 0.0001 0.1 maximal variance of separator

distances for regularity criterion*
edge gapratio 0.2 0.3 gap threshold for edge filling*
edge lenratio 0.05 0.03 length threshold for edge filling*
edge minseplength 0.7 0.5 minimal separator length*
edge minborderdist 0.1 0.05 minimal distance of separators from

border*
Band-based separator detection
band maxdepth 2 4 maximal recursion depth
band minsepwidth 0.03 0.0001 minimal width of separator bands*
band maxdistvar 0.0003 0.2 maximal variance of separator

distances for regularity criterion*
band minborderdist 0.1 0.01 minimal distance of separators from

border*

The effect of parameter optimization was surprisingly strong: whereas the
initial parameter configuration achieved an accuracy of 43.5% on the train-
ing set, performance increased to 84.5% after hill-climbing optimization, and
finished at 85.5% after grid optimization.

3.4.2 Evaluation on ImageCLEF Dataset

Experimental results are shown in Table 5. For comparison, we also included
a previous version of our approach [26] that did not use optimized parame-
ters, and the best approach submitted to ImageCLEF 2015 (by NLM). We
evaluated the proposed ComFig separation algorithm with optimized param-
eters (see Section 3.4.1) and with different implementations and feature sets
for the illustration classifier, as described in Section 2.2.1. Because logistic
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Table 5 Evaluation results of ComFig separation on the ImageCLEF 2015 CFS test set.
Illustration classifiers are described in Section 2.2.1 (LogReg = logistic regression). BB
denotes the percentage of images (or decisions*) where band-based separator detection was
applied.

Algorithm Illustration Classifier BB % CFS Accuracy %
Previous [26] LogReg,simple2,first 49.4
NLM [20] manual 95.7 84.6
ComFig LogReg,simple2,first 61.6 84.2
ComFig LogReg,simple2,majority 61.1 84.1
ComFig LogReg,simple2,unanimous 61.8 84.2
ComFig LogReg,simple2,greedy 75.8 84.8
ComFig LogReg,simple11,greedy 74.1 84.9
ComFig SVM,simple2,greedy 58.6 83.5
ComFig SVM,simple11,greedy 60.3 83.5
ComFig SVM,CEDD,greedy 59.2 82.8
ComFig SVM,CEDD simple11,greedy 59.6 83.2
ComFig random,p=0.741 74.7 75.4
ComFig no classifier,p=0 0 58.0
ComFig no classifier,p=1 100 82.2
ComFigVariant LogReg,simple11,greedy 60.1* 84.0

regression using simple2 features was found to be most effective by parame-
ter optimization when trained on the greedy set, we focused on this training
set when evaluating other classifier implementations. Internal SVM parame-
ters were optimized on the entire ImageCLEF 2015 multi-label classification
test dataset (see Section 3.4.4) to maximize classification accuracy. The opti-
mized decision threshold parameter for deciding between edge-based and
band-based separator detection is effective only for logistic regression clas-
sifiers, because SVM predictions do not provide class probabilities. To con-
firm the effectiveness of the illustration classifier, we also included results for
algorithm variants where the classifier has been replaced by a random deci-
sion selecting band-based separator detection with probability p. The value
p = 0.741 corresponds to the decision rate of the most effective classifier (Lo-
gReg,simple11,greedy). p = 0 and p = 1 represent algorithms that always use
edge-based or band-based separator detection, respectively. Finally, the variant
ComFigVariant applies the illustration classifier not only once per compound
image, but also to each subimage during recursive figure separation (see Fig. 5).

When comparing our results to NLM’s approach, we note that the authors
of [20] manually classified the test set into stitched (4.3%) and non-stitched
(95.7%) images, whereas our approach uses automatic classification. Using
band-based separator detection for all test images (no classifier, p = 1) works
surprisingly well (82.2% accuracy), which can be explained by the low number
of stitched compound images in the test set. On the other hand, using edge-
based separator detection for all test images (no classifier, p = 0) results
in modest performance (58% accuracy), which we attribute to a significant
number of subfigures without rectangular borders (illustrations) in the test set.
Selecting edge-based or band-based separator detection using the illustration
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Table 6 Evaluation results of ComFig separation on the NLM CFS dataset [1]. Precision
(P), recall (R), and F1 score are computed from the total number of ground-truth (G),
detected (D), and true positive (T) subfigures.

Algorithm G D T P% R% F1%
ComFig (LogReg) 1656 1550 1314 84.8 79.4 82.0
ComFig (SVM) 1656 1584 1297 81.9 78.3 80.1
Apostolova et al. [1] 1764 1482 1276 86.1 72.3 78.6

classifier improved accuracy for all tested classifier implementations. In fact, it
turned out to be effective to bias the illustration classifier towards band-based
separator detection and apply edge-based separator detection only to high-
confidence non-illustration images. This happened in two ways: by using the
greedy training set, and by optimizing the decision threshold parameter for
the logistic regression classifier. This explains why best results were obtained
by logistic regression classifiers trained on the greedy training set.

To further analyze the effectiveness of separator detection selection, we
partitioned the CFS test dataset into two classes according to decisions of
the most effective ComFig separation variant (LogReg,simple11,greedy) and
evaluated detection results of this algorithm separately on the two partitions.
Resulting accuracy values of 85.7% on the edge-based partition and 84.6%
on the band-based partition show that the classifier was successful in jointly
optimizing detection performance for both separator detection algorithms.

Our algorithm was implemented in MATLAB and executed on a PC with
8 GB RAM and an Intel E8400 CPU running at 3 GHz. The average total
processing time per compound image was 0.3 seconds when an illustration
classifier with simple features was used, and 0.9 seconds when a classifier
with CEDD features was applied. Note that the efficiency of other known
approaches in the literature is either not documented [1] or by an order of
magnitude lower ([8] reported 2.4 seconds per image).

3.4.3 Evaluation on NLM Dataset

Table 6 shows the results of evaluating the ComFig separation algorithm on
the NLM CFS dataset (see Section 3.1) using the NLM evaluation procedure
described in Section 3.2. We used the same parameter settings as in Sec-
tion 3.4.2 to demonstrate the generalization capability of our algorithm. We
selected the most effective illustration classifiers using logistic regression and
SVM, respectively. They both use simple11 features and the greedy training
set. For convenience, we also included the results reported in [1] for a direct
comparison with our approach.4

4 The dataset reported in [1] contains 400 images with 1764 ground-truth subfigures, so
reported recall may be up to 0.4% higher if evaluated on the 398 images of the dataset
available to us.
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Table 7 Illustration classifier accuracy on ImageCLEF 2015 multi-label image classification
test dataset (497 images) for different implementation options. Features and training sets
are described in Section 2.2.1, LogReg = logistic regression.

Classifier Features Training Set Accuracy %
LogReg simple2 first 82.5
LogReg simple2 majority 86.5
LogReg simple2 unanimous 88.2
LogReg simple2 greedy 84.7
LogReg simple2 greedy 84.7
LogReg simple11 greedy 83.7
SVM simple2 greedy 84.3
SVM simple11 greedy 84.3
SVM CEDD greedy 87.1
SVM CEDD simple11 greedy 86.7

Results show that the relative performance of the ComFig separation al-
gorithm using different classifiers is consistent with evaluation results in Sec-
tion 3.4.2. The proposed algorithm could detect 10% more true positive sub-
figures than the image panel segmentation algorithm of Apostolova et al. [1],
leading to a higher recall rate. On the other hand, precision is only slightly
lower. Note that algorithm [1] has been used as a component in NLM’s CFS
approach [20] referenced in Section 3.4.2.

3.4.4 Illustration Classifier Accuracy

To investigate the correlation of illustration classifier performance and effec-
tiveness for CFS, we evaluated classification accuracy for the various classifier
implementations considered in Section 3.4.2 on the test dataset of the Image-
CLEF 2015 multi-label image classification task [11]. Labels of test images
were mapped to binary meta classes using the same procedure as described
in Section 2.2.1, resulting in 497 images for first and greedy test sets, 428 im-
ages for majority, and 398 images for unanimous test set. Evaluation results
are shown in Table 7. The decision threshold for logistic regression was set to
0.5 to provide a fair comparison with SVM. Internal parameters of SVM (box
constraint C and standard deviation σ of RBF kernel) were optimized using
two-fold cross-validation on the test set.

The upper part of Table 7 tells us that majority and unanimous training
sets improve classification performance, although we know from Section 3.4.2
that this does not help CFS effectiveness. From the lower part of Table 7
we note that, interestingly, SVM does not perform better on simple2 features
than logistic regression and causes only a modest improvement (around 3%) on
CEDD features (144-dimensional). This may indicate the need to select more
discriminative features for this classification task in future work, although
results of Section 3.4.2 suggest that accuracy of the illustration classifier is
not a critical factor of the proposed ComFig separation algorithm.
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3.4.5 Limitations of CFS Algorithm

Figure 6 shows some examples of test images where the ComFig separation
algorithm did not perform as expected, for different reasons. In parts (a) and
(e), the separator band detection algorithm fails due to the presence of dark
lines, around the image and/or within the compound figure (which, ironically,
was probably drawn to serve as visual separator between the subfigures). In
part (b), the edge-based separation algorithm fails due to the lack of contin-
uous horizontal or vertical separator edges. In part (c), the presence of noise
in the original image leads to an imperfect binarized version of the figure,
which consequently impacts the performance of the separator band detection
algorithm. Lastly, part (d) shows an example of over-segmentation, in which
the proposed band-based algorithm first produces many subfigures, which are
subsequently discarded for being too small.

3.4.6 Limitations of CFS Evaluation

The validity of a CFS evaluation procedure depends on both the quality of
the test dataset, including ground-truth annotations, and the meaningfulness
of the adopted performance metric. We recognized limitations in both aspects
during experiments on the ImageCLEF CFS dataset. From the 260 images of
the test set that received an accuracy of zero after being processed by our best
CFS run (see Table 5), we randomly selected 10 images and investigated the
reason for failure. For three of them our CFS algorithm produced meaningful
results, but errors in ground-truth annotations caused the ImageCLEF eval-
uation method to return accuracy 0, as illustrated for one of those images in
Fig. 7.

In the second aspect, the ImageCLEF CFS evaluation procedure exhibits
a notable instability with respect to under-segmentation: the CFS result in
Fig. 8(a) is assigned an accuracy of zero, because none of the overlap ratios
with the two ground-truth subfigures exceeds 2/3. On the other hand, for
the similar situation in Fig. 8(b) the obtained accuracy is 50%, because one
of the ground-truth subfigures covers more than 2/3 of the single detected
subfigure. Note that this problem does not occur with the NLM CFS evaluation
procedure.

3.5 ComFig Chain

We used the CFC-CFS test dataset and evaluation procedure described in
Sections 3.1 and 3.2.2, respectively, to evaluate the effectiveness of the pro-
posed ComFig chain. Results obtained using the ImageCLEF CFS evaluation
method are presented in Table 8. For each of the three CFC algorithms (logistic
regression, linear SVM, and kernel SVM) evaluated in Section 3.3, we applied
the best-performing parameter settings according to Table 3. From these clas-
sifier algorithms, only logistic regression delivers predicted class probabilities,
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Fig. 6 Sample images of the CFS test dataset [11] where the ComFig separation algorithm
failed: (a) dark figure border hinders separator band detection; (b) continuous horizontal
or vertical separator edges do not exist; (c) separator band detection is hindered by noise
after image binarization; (d) band-based over-segmentation results in many small subfigures
that are discarded; (e) illustration without separator bands. Green lines indicate subfigure
boundaries produced by ComFig separation.

which allows to tune the effectiveness of the ComFig chain by optimizing the
decision threshold (Equation (4) in Section 2.3). Optimization was performed
by evaluating CFC-CFS effectiveness on the CFC-CFS validation set for de-
cision thresholds d in the range 0.2 ≤ d ≤ 0.7 using a step size of 0.05. The
optimal value was found as d = 0.35, corresponding to weight α = 1.86 of
the misclassification loss matrix (Eq. (2)). In Table 8, we report results for
four different decision thresholds on the test set. The optimal threshold se-
lected during optimization on the validation set (indicated by *) also delivers
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(1) (2)

Fig. 7 (1) Example image of ImageCLEF CFS test dataset with imprecise ground-truth
annotations. (2) Result produced by ComFig separation, which was erroneously determined
as having accuracy 0.

(a) (b)

Fig. 8 Two similar under-segmentation cases lead to very different accuracy values accord-
ing to ImageCLEF CFS evaluation procedure, because one of the ground-truth subfigures
covers (a) less or (b) more than 2/3 of the single detected subfigure.

best performance on the test set, confirming that improved performance for
decision thresholds d < 0.5 is not caused by overfitting the validation set.

Column CR (“compound rate”) of Table 8 shows the percentage of input
images classified as compound by the different ComFig classifier implemen-
tations. Separate accuracy values on the portions of the test set classified
as compound and non-compound, respectively, indicate a natural trend: ac-
curacy increases with decreasing size of the class-specific subset. For logistic
regression, the increase of accuracy on the non-compound subset for shrink-
ing decision thresholds overcompensates the moderate loss on the compound
subset, improving total accuracy. As the decision threshold approaches zero,
however, the number of predicted non-compound images and hence their effect
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Table 8 Evaluation results of ComFig chain for different algorithms and decision thresholds
of the ComFig classifier. Decision thresholds are applicable to the logistic regression (Lo-
gReg) classifier only. The threshold marked by * was found to be optimal on the validation
set. CR is the percentage of images classified as compound. In addition to accuracy on the
total test set, accuracy values on the subsets of predicted compound (C) and non-compound
(NC) images are shown.

ComFig classifier Threshold CR%
Accuracy%

C NC Total
LogReg 0.20 84 84.7 94.7 86.4
LogReg *0.35 74 84.9 90.8 86.5
LogReg 0.50 66 85.2 86.6 85.6
LogReg 0.65 56 85.9 81.1 83.8
linear SVM – 61 85.6 82.1 84.2
kernel SVM – 74 84.4 95.6 87.3
none 0 100 85.1 – 85.1
ideal 50 84.9 100 92.5

on total accuracy becomes too small, leading to the observed local maximum
of total accuracy for decision threshold d = 0.35.

High accuracy of the ComFig chain on the subset of predicted non-compound
images can also be explained by a low false negative rate of the ComFig clas-
sifier: false negatives are true compound images classified as non-compound,
which are not sent through CFS processing and hence hurt effectiveness of
the ComFig chain. This explains the good performance of kernel SVM in Ta-
ble 8, although kernel SVM achieved inferior accuracy in CFC experiments
(Table 3). From the three tested ComFig classifier algorithms, kernel SVM
happened to have the lowest false negative rate at the cost of a high false
positive rate, leading to a similar effect as decreasing the decision threshold
for logistic regression.

From a wider perspective, however, effectiveness of CFC in the ComFig
chain is rather limited when compared to processing all images of the test
dataset with CFS only (indicated by classifier none in Table 8). In fact, Com-
Fig classifier implementations could improve ComFig chain effectiveness by
2% only, whereas an ideal CFC algorithm that reproduces ground-truth class
annotations would increase total accuracy by more than 7%.

Finally we note that all pairwise differences of total accuracy values in Ta-
ble 8, which are mean values of accuracies determined for every input image,
are statistically significant except for the difference between the first two lines
in the table (logistic regression with decision thresholds 0.2 and 0.35, respec-
tively). Significance has been tested at the 5% significance level using a paired
t-test.

4 Conclusions

In this paper we have proposed, implemented, tested, and evaluated a method
to automatically classify and separate compound figures often found in sci-
entific articles. The proposed method (named ComFig) consists of two main
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steps: (i) a supervised compound figure classifier discriminates between com-
pound and non-compound figures using task-specific image features; and (ii)
an image processing algorithm is applied to predicted compound images to
perform compound figure separation. Combined, they are referred to as the
ComFig chain, to emphasize the relationship between the two main compo-
nents called ComFig classifier and ComFig separation, respectively. The Com-
Fig classifier is shown to achieve state-of-the-art classification performance
on a published dataset, whereas the proposed ComFig separation algorithm
shows superior separation accuracy on two different datasets compared to
other known automatic approaches.

Future work might include algorithmic refinements to the ComFig separa-
tion approach to address limitations (such as those illustrated in Figure 6), as
well as implementation and testing of additional features and classification al-
gorithms for the ComFig classifier. When larger training datasets become pub-
licly available, the use of deep learning techniques (e.g., convolutional neural
networks) should also be considered.
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