CONCEPT-BASED AND MULTIMODAL METHODS FOR MEDICAL CASE RETRIEVAL

SUPPLEMENT
PhD Defense
Mario Taschwer
May 17, 2017
1. Introduction
 - Medical Case Retrieval (MCR)
 - Problem Statement
 - Contributions
2. Processing Compound Figures
3. Biomedical Concept Mapping
4. Using Concepts for textual MCR
5. Multimodal MCR
6. Further Work
Medical Case Retrieval (MCR)

- Major component of medical decision support systems based on case-based reasoning
- Solution may help to generate datasets for medical education and research
Problem Statement

- **State of the art for MCR on general datasets:**
 - Best systems employ purely textual techniques
- **Main research problem:**
 - How to improve MCR methods using textual and visual information?
- **Hypothesis:**
 - Biomedical concepts may help – with techniques:
 - Query or document expansion for text retrieval
 - Concept-based retrieval
 - Fusion of text and concept-based retrieval
CONTRIBUTIONS OF PhD THESIS

• Novel automatic methods for compound figure classification and separation
• Evaluation of concept mapping techniques:
 ▪ New and existing methods of mapping text or images to biomedical concepts
• Comparison of query and document expansion by biomedical concepts for textual MCR
• Novel framework combining text and concept-based retrieval, improving over state of the art
1. Introduction

2. Processing Compound Figures
 - Classification
 - Separation
 - Combined evaluation

3. Biomedical Concept Mapping

4. Using Concepts for textual MCR

5. Multimodal MCR

6. Further Work
COMPOUND FIGURES

Subfigures of article images are separated by:

- edges
- or
- whitespace

- Compound figure classification (CFC)
- Automatic separation (CFS)
- Chained CFC and CFS
Compound Figure Classifier

Is a given image a compound figure?

- **Proposed features:** spatial profiles of projections
 - Projected values: intensity statistics, Hough transform
- **Machine learning:** logistic regression, SVM
- **Evaluation** on ~10,000 images: 76.9% accuracy
 - Inferior to state of the art (82.8%)
 - But more efficient: 12.3 images per second (MATLAB)
Compound Figure Separation

- Accuracy on ~3400 images: 84.9%
 - better than best known semi-automatic result (84.6%)
CFC-CFS Chain

- Chain accuracy on ~6800 images:
 - Without CFC: 85.1%
 - With "best" CFC: 87.3% (low false negative rate)
 - With ideal CFC: 92.5%
OUTLINE 3

1. Introduction
2. Processing Compound Figures
3. Biomedical Concept Mapping
 - Medical Subject Headings (MeSH)
 - Text-to-Concept Mapping
 - Image-to-Concept Mapping
4. Using Concepts for textual MCR
5. Multimodal MCR
6. Further Work
Medical Subject Headings

- Thesaurus of biomedical concepts:
 - ~27k primary terms, ~161k synonyms
 - “More general than” relations between primary terms impose 16 tree structures (maximal depth 11)
- Used to index biomedical publications
 - MeSH annotations created by domain experts

<table>
<thead>
<tr>
<th>Primary MeSH Term</th>
<th>Node Identifier</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion, Spontaneous</td>
<td>C13.703.039</td>
<td>2</td>
</tr>
<tr>
<td>Pregnancy Complications</td>
<td>C13.703</td>
<td>1</td>
</tr>
<tr>
<td>Female Urogenital Diseases and Pregnancy Complications</td>
<td>C13</td>
<td>0</td>
</tr>
</tbody>
</table>
TEXT-TO-CONCEPT MAPPING 1

• Existing systems:
 - MetaMap, Open Biomedical Annotator: slow
 - Whatizit MeshUp: kNN classifier, short text input only

• Novel, more efficient string matching approach:
 - based on inverted index of MeSH terms
 - finds (partial) occurrences of MeSH terms in single pass through text document

• Effectiveness evaluated for two objectives:
 - classification: reproducing manual MeSH annotations
 - concept-based retrieval on MCR dataset (~75k docs)
Text-to-Concept Mapping 2

Text classification of 1000 documents (title, abstract)

Efficiency:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetaMap</td>
<td>4,30</td>
</tr>
<tr>
<td>BinDist</td>
<td>0,01</td>
</tr>
<tr>
<td>OBA</td>
<td>11,8</td>
</tr>
<tr>
<td>MeshUp</td>
<td>N/A</td>
</tr>
</tbody>
</table>

String matching

- MetaMap
- BinDist
- OBA

kNN classifier

- MeshUp

Graph showing efficiency of various algorithms.
TEXT-TO-CONCEPT MAPPING 3

Concept-based retrieval on MCR dataset

MGT: “ideal” concept mapping using ground-truth MeSH terms

35 queries
75k docs
BinDist index

3 Algorithms used for query mapping
Image-to-Concept Mapping

M1: visual kNN

M2: concept-based kNN + visual reranking

M3: concept-based kNN (no visual information)

Collects MeSH terms from image index (figure captions, CEDD features, 300k images)

Concept-based retrieval on MCR dataset (35 queries, 75k docs BinDist index)
OUTLINE 4

1. Introduction
2. Processing Compound Figures
3. Biomedical Concept Mapping
4. Using Concepts for textual MCR
 ▪ Query Expansion
 ▪ Document Expansion
5. Multimodal MCR
6. Further Work
Query / Document Expansion 1

• Query expansion:
 ▪ Expand textual query with additional relevant terms:
 • MeSH terms resulting from concept mapping
 • Discriminative terms from pseudo-relevant documents (pseudo-relevance feedback)
 ▪ Perform text retrieval with expanded query

• Document expansion:
 ▪ Expand full text of documents with relevant MeSH terms prior to indexing
Text retrieval on MCR dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F+</td>
<td>0.16</td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
</tr>
<tr>
<td>M</td>
<td>0.18</td>
</tr>
<tr>
<td>M+</td>
<td>0.19</td>
</tr>
<tr>
<td>Fr</td>
<td>0.20</td>
</tr>
<tr>
<td>Fr+</td>
<td>0.21</td>
</tr>
<tr>
<td>Mr</td>
<td>0.22</td>
</tr>
<tr>
<td>B13</td>
<td>0.23</td>
</tr>
<tr>
<td>Mr+</td>
<td>0.24</td>
</tr>
</tbody>
</table>

- F: full text
- M: MeSH query expansion (BinDist)
- B13: best result at ImageCLEF 2013
- MeSH document expansion
- Pseudo-relevance feedback
1. Introduction
2. Processing Compound Figures
3. Biomedical Concept Mapping
4. Using Concepts for textual MCR
5. Multimodal MCR
 - Framework for Text- and Concept-Based Retrieval
 - Fusion Methods
 - Results
6. Further Work
RETRIEVAL FRAMEWORK

- **indexing**
 - build text index
 - text index
 - medical text concept classifier
 - medical image concept classifier
 - Biomedical concepts
 - MCR dataset
 - build concept index
 - concept index

- **retrieval**
 - case query
 - query text
 - query images
 - detect concepts
 - text retrieval
 - expanded query
 - detect concepts
 - query concepts
 - textual query expansion
 - concept selection
 - query expansion
 - pseudo-relevance feedback
 - ranked document list
 - rank/score fusion
 - result list
 - concept-based retrieval
FUSION METHODS

• Fuse result lists of retrieval methods A and B

• Linear fusion: \[s = \beta \cdot s_A + (1 - \beta) \cdot s_B \]
 ▪ Combine retrieval scores with fixed weight \(\beta \)
 ▪ \(s_A, s_B \): logistic score normalization from rank positions

• Query-adaptive fusion (QAF):
 ▪ For each query \(q \), choose weight \(\beta \) depending on \(q \)
 ▪ E.g. by estimating performance of A and B for \(q \)
 \[\beta = \frac{p_A^2}{p_A^2 + p_B^2} \]
 ▪ “Ideal” QAF: use an oracle returning true average precision for \(p_A \) and \(p_B \)
LINEAR FUSION

T: text retrieval with query and document expansion (weight β)
C: concept-based retrieval (textual kNN concept mapping)
C+: concept-based retrieval with ground-truth MeSH terms
FUSION RESULTS

L: linear fusion with optimized weight
Q: ideal query-adaptive fusion
F: fulltext retrieval
OUTLINE 6

1. Introduction
2. Processing Compound Figures
3. Biomedical Concept Mapping
4. Using Concepts for textual MCR
5. Multimodal MCR
6. Limitations and Further Work
Limitations of MCR Dataset 1

Retrieved judged documents per query

- C
- T
- L(T,C)
- Q(T,C)
- C+
- L(T,C+)
- Q(T,C+)
LIMITATIONS OF MCR DATASET 2

Distribution of relevant judged documents per query
LIMITATIONS OF MCR DATASET 3

- Ground-truth MeSH annotations:
 - Only 77% of documents (~57k) are annotated
 - MeSH annotations tend to be incomplete and biased by domain of expertise of human annotators
 - No MeSH annotations of images in MCR dataset

- Additional relevance judgments and MeSH annotations are needed for future work
FURTHER WORK 1

• Image preprocessing:
 - Classification and filtering of diagnostic images
 - Classify modalities of diagnostic images:
 e.g. ultrasound, MRI, CT, X-ray
 - Classification of body parts represented in diagnostic images (IRMA code)
 - Apply deep learning techniques to these problems
Further Work 2

• Concept mapping:
 - Extended evaluation of string matching and image-to-concept mapping algorithms
 - Utilize other biomedical vocabularies and ontologies
 - Evaluate concept mapping by multi-view learning
 - Perform a study of manual MeSH annotations
 - Acquire an MCR dataset with more complete ground-truth MeSH annotations and relevance judgments
 - Apply deep learning to concept mapping (recent advances in image caption generation)
FURTHER WORK 3

- Text-based retrieval:
 - Utilize document structure
 (title, abstract, image captions)
 - Apply more sophisticated query expansion methods
 - Use external text corpora
 - Apply text categorization methods based on machine learning
FURTHER WORK 4

• Practical query-adaptive fusion:
 ▪ Estimate query performance of component systems from their ranking scores
 ▪ Consider other performance weighting schemes or fusion strategies

• Retrieval in multi-view latent space:
 ▪ Latent space created by subspace learning techniques may be used for direct retrieval
 ▪ Assumption: nearby points in latent space represent semantically similar cases
Further Work 5

• Learning from medical expert users:
 ▪ Use relevance feedback for short-term or long-term learning
 ▪ Apply transductive (semi-supervised) techniques for long-term learning, e.g. manifold-ranking
 ▪ Consider active learning approaches to cope with the small sample size problem for long-term learning
Publications 1

