

CONCEPT-BASED AND MULTIMODAL METHODS FOR MEDICAL CASE RETRIEVAL

SUPPLEMENT PhD Defense Mario Taschwer May 17, 2017

OUTLINE 1

1. Introduction

- Medical Case Retrieval (MCR)
- Problem Statement
- Contributions
- 2. Processing Compound Figures
- 3. Biomedical Concept Mapping
- 4. Using Concepts for textual MCR
- 5. Multimodal MCR
- 6. Further Work

MEDICAL CASE RETRIEVAL (MCR)

Problem statement

Patient's symptoms

Medical publications / health records

- Major component of medical decision support systems based on case-based reasoning
- Solution may help to generate datasets for medical education and research

PROBLEM STATEMENT

- State of the art for MCR on general datasets:
 - Best systems employ purely textual techniques
- Main research problem:
 - How to improve MCR methods using textual and visual information?
- Hypothesis:
 - Biomedical concepts may help with techniques:
 - Query or document expansion for text retrieval
 - Concept-based retrieval
 - Fusion of text and concept-based retrieval

CONTRIBUTIONS OF PHD THESIS

- Novel automatic methods for compound figure classification and separation
- Evaluation of concept mapping techniques:
 - New and existing methods of mapping text or images to biomedical concepts
- Comparison of query and document expansion by biomedical concepts for textual MCR
- Novel framework combining text and conceptbased retrieval, improving over state of the art

OUTLINE 2

- 1. Introduction
- 2. Processing Compound Figures
 - Classification
 - Separation
 - Combined evaluation
- 3. Biomedical Concept Mapping
- 4. Using Concepts for textual MCR
- 5. Multimodal MCR
- 6. Further Work

COMPOUND FIGURES

Subfigures of article images are separated by:

edges or whitespace

- Compound figure classification (CFC)
- Automatic separation (CFS)
- Chained CFC and CFS

COMPOUND FIGURE CLASSIFIER

Is a given image a compound figure?

- Proposed features: spatial profiles of projections
 - Projected values: intensity statistics, Hough transform
- Machine learning: logistic regression, SVM
- Evaluation on ~10,000 images: 76.9% accuracy
 - inferior to state of the art (82.8%)
 - but more efficient: 12.3 images per second (MATLAB)

COMPOUND FIGURE SEPARATION

better than best known semi-automatic result (84.6%)

CFC-CFS CHAIN

- Chain accuracy on ~6800 images:
 - Without CFC: 85.1%
 - With "best" CFC: 87.3% (low false negative rate)
 - With ideal CFC: 92.5%

OUTLINE 3

- 1. Introduction
- 2. Processing Compound Figures
- 3. Biomedical Concept Mapping
 - Medical Subject Headings (MeSH)
 - Text-to-Concept Mapping
 - Image-to-Concept Mapping
- 4. Using Concepts for textual MCR
- 5. Multimodal MCR
- 6. Further Work

MEDICAL SUBJECT HEADINGS

- Thesaurus of biomedical concepts:
 - ~27k primary terms, ~161k synonyms
 - "More general than" relations between primary terms impose 16 tree structures (maximal depth 11)
- Used to index biomedical publications
 - MeSH annotations created by domain experts

Primary MeSH Term	Node Identifier	Specialty
Abortion, Spontaneous	C13.703.039	2
Pregnancy Complications	C13.703	1
Female Urogenital Diseases	C13	0
and Pregnancy Complications		

Mario	Taschwar
IVIALIO	Tascriver

TEXT-TO-CONCEPT MAPPING 1

- Existing systems:
 - MetaMap, Open Biomedical Annotator: slow
 - Whatizit MeshUp: kNN classifier, short text input only
- Novel, more efficient string matching approach:
 - based on inverted index of MeSH terms
 - finds (partial) occurrences of MeSH terms in single pass through text document
- Effectiveness evaluated for two objectives:
 - classification: reproducing manual MeSH annotations
 - concept-based retrieval on MCR dataset (~75k docs)

TEXT-TO-CONCEPT MAPPING 2

Text classification of 1000 documents (title, abstract)

Mario Taschwer

PhD Medical Case Retrieval

TEXT-TO-CONCEPT MAPPING 3

Concept-based retrieval on MCR dataset

MGT: "ideal" concept mapping using ground-truth MeSH terms

IMAGE-TO-CONCEPT MAPPING

M1: visual kNN M2: concept-based kNN + visual reranking M3: concept-based kNN (no visual information)

Collects MeSH terms from image index (figure captions, CEDD features, 300k images)

Concept-based retrieval on MCR dataset (35 queries, 75k docs BinDist index)

Mario Taschwer

OUTLINE 4

- 1. Introduction
- 2. Processing Compound Figures
- 3. Biomedical Concept Mapping
- 4. Using Concepts for textual MCR
 - Query Expansion
 - Document Expansion
- 5. Multimodal MCR
- 6. Further Work

QUERY / DOCUMENT EXPANSION 1

- Query expansion:
 - Expand textual query with additional relevant terms:
 - MeSH terms resulting from concept mapping
 - Discriminative terms from pseudo-relevant documents (pseudo-relevance feedback)
 - Perform text retrieval with expanded query
- Document expansion:
 - Expand full text of documents with relevant MeSH terms prior to indexing

QUERY / DOCUMENT EXPANSION 2

- F full text
- MeSH query expansion (BinDist) Μ
- best result at ImageCLEF 2013 B13

- MeSH document expansion +
- pseudo-relevance feedback r

OUTLINE 5

- 1. Introduction
- 2. Processing Compound Figures
- 3. Biomedical Concept Mapping
- 4. Using Concepts for textual MCR
- 5. Multimodal MCR
 - Framework for Text- and Concept-Based Retrieval
 - Fusion Methods
 - Results
- 6. Further Work

RETRIEVAL FRAMEWORK

Mario Taschwer

FUSION METHODS

- Fuse result lists of retrieval methods A and B
- Linear fusion: $s = \beta * s_A + (1 \beta) * s_B$
 - Combine retrieval scores with fixed weight β
 - s_A, s_B: logistic score normalization from rank positions
- Query-adaptive fusion (QAF):
 - For each query q, choose weight β depending on q
 - E.g. by estimating performance of A and B for q $\beta = p_A^2 / (p_A^2 + p_B^2)$
 - "Ideal" QAF: use an oracle returning true average precision for p_A and p_B

LINEAR FUSION

T: text retrieval with query and document expansion (weight β)
 C: concept-based retrieval (textual kNN concept mapping)
 C+: concept-based retrieval with ground-truth MeSH terms

-L(T.C) -L(T.C+)

FUSION RESULTS

L: linear fusion with optimized weight Q: ideal query-adaptive fusion

F: fulltext retrieval

■P@10 ■MAP

OUTLINE 6

- 1. Introduction
- 2. Processing Compound Figures
- 3. Biomedical Concept Mapping
- 4. Using Concepts for textual MCR
- 5. Multimodal MCR
- 6. Limitations and Further Work

LIMITATIONS OF MCR DATASET 1

LIMITATIONS OF MCR DATASET 2

Distribution of relevant judged documents per query

LIMITATIONS OF MCR DATASET 3

- Ground-truth MeSH annotations:
 - Only 77% of documents (~57k) are annotated
 - MeSH annotations tend to be incomplete and biased by domain of expertise of human annotators
 - No MeSH annotations of images in MCR dataset
- Additional relevance judgments and MeSH annotations are needed for future work

- Image preprocessing:
 - Classification and filtering of diagnostic images
 - Classify modalities of diagnostic images:

e.g. ultrasound, MRI, CT, X-ray

- Classification of body parts represented in diagnostic images (IRMA code)
- Apply deep learning techniques to these problems

- Concept mapping:
 - Extended evaluation of string matching and image-to-concept mapping algorithms
 - Utilize other biomedical vocabularies and ontologies
 - Evaluate concept mapping by multi-view learning
 - Perform a study of manual MeSH annotations
 - Acquire an MCR dataset with more complete groundtruth MeSH annotations and relevance judgments
 - Apply deep learning to concept mapping (recent advances in image caption generation)

- Text-based retrieval:
 - Utilize document structure
 (title, abstract, image captions)
 - Apply more sophisticated query expansion methods
 - Use external text corpora
 - Apply text categorization methods based on machine learning

- Practical query-adaptive fusion:
 - Estimate query performance of component systems from their ranking scores
 - Consider other performance weighting schemes or fusion strategies
- Retrieval in multi-view latent space:
 - Latent space created by subspace learning techniques may be used for direct retrieval
 - Assumption: nearby points in latent space represent semantically similar cases

- Learning from medical expert users:
 - Use relevance feedback for short-term or long-term learning
 - Apply transductive (semi-supervised) techniques for long-term learning, e.g. manifold-ranking
 - Consider active learning approaches to cope with the small sample size problem for long-term learning

PUBLICATIONS 1

- Mario Taschwer and Oge Marques. "Automatic separation of compound figures in scientific articles". In: *Multimedia Tools and Applications* (2016), pp. 1–30. ISSN: 1573-7721. DOI: 10.1007/s11042-016-4237-x.
- [2] Mario Taschwer and Oge Marques. "Compound Figure Separation Combining Edge and Band Separator Detection". In: *MultiMedia Modeling*.
 Ed. by Qi Tian et al. Vol. 9516. Lecture Notes in Computer Science. Springer International Publishing, 2016, pp. 162–173. ISBN: 978-3-319-27670-0. DOI: 10.1007/978-3-319-27671-7_14.
- [3] Mario Taschwer and Oge Marques. "AAUITEC at ImageCLEF 2015: Compound Figure Separation". In: *CLEF 2015 Working Notes*. Vol. 1391. CEUR Workshop Proceedings, ISSN 1613-0073. Toulouse, France, Sept. 2015. URL: http://ceur-ws.org/Vol-1391/25-CR.pdf.

PUBLICATIONS 2

- [4] Mario Taschwer. "Medical Case Retrieval". In: Proceedings of the 22nd ACM International Conference on Multimedia. MM '14. Orlando, Florida, USA: ACM, 2014, pp. 639–642. ISBN: 978-1-4503-3063-3. DOI: 10.1145/ 2647868.2654856.
- [5] Mario Taschwer. Textual methods for medical case retrieval. Tech. rep. TR/ITEC/14/2.01. Institute of Information Technology (ITEC), AAU Klagenfurt, Austria, May 2014. URL: http://www.itec.aau.at/bib/ files/textual-mcr.pdf.
- [6] Mario Taschwer. "Text-Based Medical Case Retrieval Using MeSH Ontology". In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes. Ed. by Pamela Forner, Roberto Navigli, and Dan Tufis. Valencia, Spain: CLEF Initiative, Sept. 2013, p. 5. ISBN: 978-88-904810-5-5. URL: http://ceur-ws.org/Vol-1179/CLEF2013wn-ImageCLEF-Taschwer2013.pdf.