

CONCEPT-BASED AND MULTIMODAL METHODS FOR MEDICAL CASE RETRIEVAL

PhD Defense Mario Taschwer May 17, 2017

- 1. Introduction
 - Medical Case Retrieval (MCR)
 - Problem Statement
 - Contributions
- 2. Biomedical Concept Mapping
- 3. Multimodal MCR
- 4. Further Work
- 5. Conclusion

MEDICAL CASE RETRIEVAL (MCR)

- Major component of medical decision support systems based on case-based reasoning
- Solution may help to generate datasets for medical education and research

PROBLEM STATEMENT

- State of the art for MCR on general datasets:
 - Best systems employ purely textual techniques
- Main research problem:
 - How to improve MCR methods using textual and visual information?
- Hypothesis:
 - Biomedical concepts may help with techniques:
 - Query or document expansion for text retrieval
 - Concept-based retrieval
 - Fusion of text and concept-based retrieval

CONTRIBUTIONS OF PHD THESIS

- Novel automatic methods for compound figure classification and separation
- Evaluation of concept mapping techniques:
 - New and existing methods of mapping text or images to biomedical concepts
- Comparison of query and document expansion by biomedical concepts for text-based MCR
- Novel framework combining text and conceptbased retrieval, improving over state of the art

CONTRIBUTIONS OF PHD THESIS

- Novel automatic methods for compound figure classification and separation
- Evaluation of concept mapping techniques:
 - New and existing methods of mapping text or images to biomedical concepts
- Comparison of query and document expansion by biomedical concepts for text-based MCR
- Novel framework combining text and conceptbased retrieval, improving over state of the art

- 1. Introduction
- 2. Biomedical Concept Mapping
 - Medical Subject Headings (MeSH)
 - Text-to-Concept Mapping
- 3. Multimodal MCR
- 4. Further Work
- 5. Conclusion

8

MEDICAL SUBJECT HEADINGS

- Controlled vocabulary of biomedical concepts:
 - ~27k primary terms, ~161k synonyms
 - "More general than" relations between primary terms impose 16 tree structures (maximal depth 11)
- Used to annotate biomedical publications

Primary MeSH Term	$Node\ Identifier$	Specialty
Eye Neoplasms	C04.588.364	2
Neoplasms by Site	C04.588	1
Neoplasms	C04	0
Eye Neoplasms	C11.319	1
Eye Diseases	C11	0

TEXT-TO-CONCEPT MAPPING 1

- Existing systems:
 - MetaMap, Open Biomedical Annotator: slow
 - Whatizit MeshUp: kNN classifier, short text input only
- Novel, more efficient string matching approach:
 - based on inverted index of MeSH terms
 - finds (partial) occurrences of MeSH terms in single pass through text document
- Effectiveness evaluated for two objectives:
 - classification: reproducing manual MeSH annotations
 - concept-based retrieval on MCR dataset (~75k docs)

TEXT-TO-CONCEPT MAPPING 2

Concept-based retrieval on MCR dataset MGT: "ideal" concept mapping using ground-truth MeSH terms

35 queries75k docsBinDist index

Algorithms used for query mapping

- 1. Introduction
- 2. Biomedical Concept Mapping
- 3. Multimodal MCR
 - Framework for Text- and Concept-Based Retrieval
 - Fusion Methods
 - Results
- 4. Further Work
- 5. Conclusion

RETRIEVAL FRAMEWORK

FUSION METHODS

- Fuse result lists of retrieval methods A and B
- Linear fusion: $s = \beta * s_A + (1 \beta) * s_B$
 - Combine retrieval scores with fixed weight β
 - s_A, s_B: logistic score normalization from rank positions
- Query-adaptive fusion (QAF):
 - For each query q, choose weight β depending on q
 - E.g. by estimating performance of A and B for q $\beta = p_A^2 / (p_A^2 + p_B^2)$
 - "Ideal" QAF: use an oracle returning true average precision for q, used as p_A and p_B

FUSION RESULTS ON MCR DATASET

F: fulltext retrieval (R)

T: text-based R (query expansion)

L: linear fusion

C: practical concept-based R

C+: ideal concept-based R

Q: ideal query-adaptive fusion

■P@10 ■MAP

- 1. Introduction
- 2. Biomedical Concept Mapping
- 3. Multimodal MCR
- 4. Further Work
 - Concept Mapping
 - Retrieval in Multi-View Latent Space
- 5. Conclusion

FURTHER WORK 1

- Concept mapping:
 - Apply multi-view learning
 - Textual and visual modalities can be used as views and non-linearly mapped to a shared latent space
 - Concept mapping is learned by linear projections or kNN techniques in latent space
 - Conceptual and experimental work partly done
 - Apply deep learning to concept mapping
 - Recent advances in image caption generation may provide a starting point

FURTHER WORK 2

- Retrieval in multi-view latent (MVL) space:
 - Assumption: nearby points in latent space represent semantically similar cases

CONCLUSION

- Biomedical concepts can help to improve MCR over fulltext retrieval
 - Text-based query expansion increased MAP by 45%
 - Multimodal fusion with practical concept-based retrieval added another 13%
- There is room for future improvements of concept-based and multimodal techniques
 - Ideal concept-based retrieval and fusion improved MAP by 161% w.r.t. fulltext retrieval