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Abstract. Cataract surgeries are frequently performed to correct a lens
opacification of the human eye, which usually appears in the course of
aging. These surgeries are conducted with the help of a microscope and
are typically recorded on video for later inspection and educational pur-
poses. However, post-hoc visual analysis of video recordings is cumber-
some and time-consuming for surgeons if there is no navigation support,
such as bookmarks to specific operation phases. To prepare the way for
an automatic detection of operation phases in cataract surgery videos,
we investigate the effectiveness of a deep convolutional neural network
(CNN) to automatically assign video frames to operation phases, which
can be regarded as a single-label multi-class classification problem. In ab-
sence of public datasets of cataract surgery videos, we provide a dataset
of 21 videos of standardized cataract surgeries and use it to train and
evaluate our CNN classifier. Experimental results display a mean F1-
score of about 68% for frame-based operation phase classification, which
can be further improved to 75% when considering temporal information
of video frames in the CNN architecture.

Keywords: medical multimedia, deep learning, video analysis, surgical
workflow analysis

1 Introduction

Cataract is known as clouding of the eye’s lens, a defect that often occurs in the
course of aging. It affects the human visual system and has a tremendous neg-
ative impact on the patient’s quality of life. This condition can be treated with
a surgical procedure during which the natural lens is removed and an artificial
lens is implanted, which usually results in a noticeable improvement of vision.
Cataract surgery is by far the most frequently performed surgical procedure in
the medical specialty of ophthalmology and one of the most frequently performed
procedures across all specialties world-wide. It therefore follows broadly accepted
common rules and can be called a quasi-standardized procedure. Cataract surgery



is usually performed in local anesthesia within 5 to 10 minutes, unless compli-
cations occur. High-volume surgeons usually operate several cataract surgeries
within a single day. The surgeon looks at the patient’s eye through an optical
microscope for appropriate visualization and magnification. Furthermore, sur-
gical microscopes usually have an additional optical system with a mounted
camera to acquire a video signal. This video stream is displayed on a monitor
and can also be recorded on a digital medium.

The facts that (1) a video signal is inherently available without any additional
effort, (2) the course of action is well standardized, and (3) the procedure is fre-
quently performed, make this specific domain an interesting subject of medical
multimedia research. One of the fundamental problems in this field is automatic
understanding of the surgical workflow and, in particular, temporal segmentation
of a video into surgical phases. Such an automatic segmentation can greatly sup-
port surgeons in coping with their potentially huge video archives. It may even
open the door for a comprehensive video documentation, which is not widely
used yet due to the lack of video organization and navigation support. Beyond
that, real-time processing methods may even support surgeons during the pro-
cedure in order to recognize or prevent adverse events. Such situations could be
identified by detecting deviations from the surgical process model, causing the
system to immediately alert the surgeon and provide context-sensitive assistance.

In this paper, we address the problem of differentiating between surgical
phases in cataract surgery videos with a frame-based classification approach.
Each video frame is classified separately as belonging to one of multiple op-
eration phases. The task can therefore be considered as a multi-class single-
label classification problem. The proposed frame-based classifier may be used to
build an automatic operation phase detection system in future work. As underly-
ing classification framework we use deep convolutional neural networks (CNN),
which have proven to be very expedient for similar tasks with other types of
surgery videos [5], but—to the best of our knowledge—have not been applied
to ophthalmic surgery videos before. In addition to applying a CNN to a raw
dataset of cataract surgery videos, we propose and evaluate two data prepro-
cessing methods that aim at improving classification performance: (1) training
data purification and balancing, and (2) adding temporal information of video
frames. Since public datasets of cataract surgery videos are not yet available, we
created such a dataset with ground-truth annotations to evaluate our proposed
approach and provide it for public use by the scientific community.

Although acquiring videos from cataract surgeries and performing frame clas-
sification might seem to be a straightforward task, we encountered numerous
challenges. They mainly relate to the strong domain specificity of ophthalmic
videos, which require thorough analysis and adaptations of established tech-
niques. For example, the visual appearance can vary considerably due to differ-
ent individual preferences of surgeons regarding positioning of the microscope
in terms of angle, zoom level, and light configuration. These settings can also
change during a procedure. Moreover, the video camera that is mounted at the
secondary optics is independent of the main optics and therefore needs to be



adapted separately by an assistant in case the surgeon changes settings. If this is
not done properly, the video quality can be considerably impaired. Another ma-
jor challenge in this domain is the necessity to incorporate highly skilled domain
experts, i.e. experienced surgeons. Their knowledge about the specific character-
istics and semantics of the videos is essential. However, as they only can spare a
limited amount of time, it is crucial to provide appropriate annotation tools to
extract their expert knowledge as efficiently as possible.

The contributions of this paper are: (1) We propose to apply convolutional
neural networks (CNN) to frame-based operation phase classification of cataract
surgery videos and obtain promising results; (2) we show that classification per-
formance of our approach can be further improved by (a) dataset purification
and balancing and (b) adding temporal information of video frames as input to
the CNN; (3) we provide a novel public dataset containing video recordings of
21 cataract surgeries and corresponding ground-truth annotations in terms of
operation phase boundaries.

2 Related Work

We focus on related work concerning image understanding techniques applied
to recorded videos of surgeries. Video recordings in the medical domain can
primarily be found in the context of endoscopic or microscopic surgery. Litera-
ture in this field is mostly concerned with classification of instruments, actions,
anatomy, and surgical workflow.

Early methods focus on hand-crafted features and similarity measures to
detect and recognize instruments used in endoscopy. Speidel et al. [9] used images
captured by a stereo endoscope and segment the potential shaft region based on
saturation, brightness and amount of reddish color. The tip of the instrument
is segmented with the help of a Bayesian classifier, before the instrument is
recognized based on the normalized contour and distances to 3D representations
of each instrument.

A bag-of-visual-words representation of SIFT-, SURF-, and ORB-features
was used to train a support vector machine (SVM) for recognizing instruments
and operation phases in cholecystectomy surgeries (i.e. removal of the gallblad-
der) [6,7]. The authors improved their approach by segmenting the image area
into parts where an instrument might show up and parts that only show tissue.
For classification only the potential instrument area was used.

Petscharnig et al. [4] proposed the use of transfer learning based on the
AlexNet CNN architecture for frame-based classification of actions and anatomy
in gynecologic surgery videos. In follow-up work [5] they showed that a GoogLeNet
CNN model trained from scratch outperformed their AlexNet-model as well as
an SVM classifier using off-the-shelf AlexNet features. Their best performing
network achieved an F1-score of 85%.

Twinanda et al. [11] trained a CNN called EndoNet based on the AlexNet
architecture for the classification of operation phases of cholecystectomy surg-
eries. The authors concatenated the FC7 layer of the AlexNet architecture with



the subsequent output layer to a new fully connected layer. A refinement of
classifications was achieved using a hierarchical hidden Markov model.

In the field of cataract surgeries, Lalys et al. [3] used visual information such
as histograms, texture, and shape for the classification of surgical tasks using
an SVM. The classified images were aligned to already annotated recordings
using a hidden Markov model and dynamic time warping. Charriere et al. [1]
used a Bayesian network and two conditional random fields for classification of
operation phases in cataract surgery videos.

Quellec et al. [8] introduced a method that divides cataract surgeries into
ten phases. Each phase is divided into an action phase—where the surgical task
is performed—and an idle phase—where almost nothing happens in the oper-
ation area, because the next step is prepared out of the microscope’s sight or
instruments are exchanged. Recorded videos were used to learn the differences
between action phases and idle phases. A conditional random field was used to
align phases of new videos to existing ones.

Previous multimedia research in the domain of cataract surgeries used the
strict sequential order of the surgical workflow to detect phase transitions and
did not yet employ CNNs. In contrast, our work addresses the classification of
single frames of cataract surgery videos using newly trained CNNs. The major
advantage of this approach is that it can be easily extended to additional classes
pertaining to optional operation phases, out-of-order phases, or complications.

3 Cataract Surgery Dataset

Cataract surgery can be divided in eleven phases, which are: 1. Incision, 2. Vis-
cous agent injection I, 3. Rhexis, 4. Hydrodissection, 5. Phacoemulsification,
6. Irrigation and aspiration, 7. Capsule polishing, 8. Viscous agent injection II,
9. Lens implant setting-up, 10. Viscous agent removal, 11. Tonifying and antibi-
otics. This is the standardized sequence of a cataract surgery without complica-
tions. Still, it can happen that some steps are repeated. E.g. incisions (done in
the first phase) need to be widened for the implantation of the artificial lens. It
can also be necessary to moisten the operation area in some cases. Representative
keyframes of the standardized phases are shown in Figure 1.

The dataset, which we use for training and evaluation of CNN models, has
been kindly provided by the ophthalmologic department of our medical part-
ner. It consists of 21 single video recordings of cataract surgeries performed by
four different surgeons and following closely the standardized surgical procedure.
Videos containing optional phases (e.g. “moistening” to moisturize dry eyes, or
“blue vision” to facilitate the Rhexis phase and avoid complications) are not
considered in this work.

The videos are recorded using MPEG-2 with a resolution of 720 × 576 pixels.
The bitrate is about 6 Mb/s with a framerate of 25 frames per second. The
average length of a recording of a cataract surgery is 6 minutes and 52 seconds
with a standard deviation of 2 minutes and 38 seconds. The videos contain also
irrelevant parts before the first phase and after the last phase. This is due to
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Fig. 1. Example images for each phase of a cataract surgery

Table 1. Distribution of video frames in the cataract surgery video dataset

Nr. Phase
absolute number

of frames
relative number

of frames (in percent)

1. Incision 8,896 4.19
2. Viscous agent injection I 5,303 2.50
3. Rhexis 16,602 7.81
4. Hydrodissection 11,998 5.65
5. Phacoemulsification 67,293 31.67
6. Irrigation and aspiration 28,704 13.51
7. Capsule polishing 9,654 4.54
8. Viscous agent injection II 4,953 2.33
9. Lens implant setting-up 13,868 6.53

10. Viscous agent removal 32,888 15.48
11. Tonifying and antibiotics 12,328 5.80

Total: 212,487 100.0

the fact that the recording is started some seconds before the surgery starts and
stopped a few seconds after the operation has ended. These parts of the videos
are not used for training and evaluation of our CNN models. All phases including
the transitions have been annotated by a surgeon according to the standardized
workflow model of cataract surgeries.



Table 1 shows the distribution of video frames per operation phase in the
cataract surgery video dataset, which is extremely unbalanced due to different
durations of operation phases. The longest phase (phase 5) takes approximately
one third of the surgery’s duration, whereas phases 2 and 8 represent the shortest
phases. Since phases 2 and 8 are identical with respect to both visual appearance
and semantics (viscous agent injection), they are treated as a single class for
classification purposes. The numbers of frames in the merged phases 2 and 8
sum up to roughly 5% of all video frames. The smallest class is then represented
by phase 1 (4.19%).

Figure 1 shows example images from each phase. Typically, the pupil is wide
opened and the iris is very small. The lens can appear in a reddish color, if light is
reflected directly from the choroid or rather gray in case of very dense cataract
or a vitreous hemorrhage. The position of the lens is not always centralized,
which may affect analysis methods in a negative manner. Instruments appear
typically from the left or from the right or from both sides. A cataract surgery
uses a small set of instruments. Moreover, most of the instruments are used for
a specific action and they are therefore characteristic for a phase.

Every phase consists of alternating action and idle periods. This fact has
been exploited by Quellec et al. [8] to segment a cataract surgery video based on
the occurrence of idle phases. The surgeon uses the instrument(s) belonging to a
certain phase in the action period. The instrument can still be visible in the idle
period. It can also be changed to the instrument that belongs to the next phase
during this idle period. In that case no instrument is visible. This behavior can
not be handled directly by a CNN architecture. However, the appearance of an
eye changes during a cataract surgery with respect to texture and color, which
can be modeled by a CNN.

The anonymized dataset including annotations is available under ftp://ftp-
itec.aau.at/pub/datasets/ovid/cat-21/.

4 Frame-Based Classification of Cataract Surgery Videos

We propose to apply a convolutional neural network (CNN) to classify frames
of cataract surgery videos with respect to the operation phase (class) the video
frame belongs to. In an effort to obtain more effective classification models, we
consider three different preprocessing techniques applied to the training dataset,
leading to different CNN models: (1) basic training dataset (no preprocessing),
(2) manually filtered (“purified”) and automatically balanced dataset, and (3)
the purified and balanced dataset with additional temporal information of each
video frame. Details of these preprocessing techniques and the corresponding
experimental setup will be described in Sections 4.1, 4.2, and 4.3, respectively.

The CNN is trained from scratch based on the GoogLeNet architecture [10].
This neural network was designed and trained for the 1000-class ImageNet Chal-
lenge (ILSVRC) and used to classify everyday images. The GoogLeNet architec-
ture has 27 layers consisting of 5 pooling layers and 22 layers with parameters
that include a modular structure involving nine inception modules, each using

ftp://ftp-itec.aau.at/pub/datasets/ovid/cat-21/
ftp://ftp-itec.aau.at/pub/datasets/ovid/cat-21/


Table 2. Full videos are randomly sampled for either training or evaluation dataset.

Nr. Phase
absolute number

of frames
relative number

of frames (in percent)
Train. Eval. Train. Eval.

1. Incision 6,642 2,254 3.78 6.09
2.+8. Viscous agent injection I + II 8,522 1,734 4.86 4.69

3. Rhexis 13,594 3,008 7.75 8.13
4. Hydrodissection 9,570 2,428 5.45 6.56
5. Phacoemulsification 54,679 12,614 31.16 34.09
6. Irrigation and aspiration 26,000 2,704 14.82 7.31
7. Capsule polishing 8,223 1,431 4.69 3.87
9. Lens implant setting-up 11,787 2,081 6.72 5.62

10. Viscous agent removal 27,498 5,390 15.67 14.57
11. Tonifying and antibiotics 8,973 3,355 5.11 9.07

Total: 175,488 36,999 100.0 100.0

1×1 convolutions for dimensionality reduction. The input of the network are
224×224×3 sized RGB images shifted by a mean image. The prediction of the
1000 classes is done using a linear layer with softmax loss. To adapt the network
architecture for prediction of ten phases of cataract surgery, we decreased the
number of output neurons to 10. Otherwise the GoogLeNet architecture remains
unchanged.

Training of CNN models is performed using the CAFFE framework [2]. The
video frames are fed into a Lightning Memory-Mapped Database (LMDB), which
is used as input for the CNN. The solver uses Adam as gradient-based optimiza-
tion method provided by CAFFE. As base learning rate we use 0.001; momen-
tum 1 and momentum 2 are set to 0.9 and 0.999, respectively. The training batch
size is set to 64 images.

4.1 Basic Cataract-Surgery-Phase CNN

For the basic cataract surgery phase CNN model we partitioned the dataset
described in Section 3 into a training and an evaluation subset. Out of the 21
videos in the dataset, 17 videos were chosen randomly for training. The remaining
four videos are used for the evaluation of the CNN model. To train this first CNN
model, we use the annotated videos of the training set as they are and split the
videos into phases according to annotations without further refinement.

Table 2 shows the distribution of video frames in the resulting training and
evaluation datasets. Phases incision, irrigation and aspiration, and tonifying
and antibiotics have a large difference in the relative number of frames between
training and evaluation datasets. This can be explained by the large variation in
the duration of these phases. For example, phase irrigation and aspiration has an
average duration of 55 seconds with a standard deviation of 40 seconds. All four
irrigation and aspiration phases occurring in videos of the evaluation dataset



Table 3. Purified training dataset of cataract surgery videos

Nr. Phase
absolute number

of frames
relative number

of frames (in percent)

1. Incision 3,279 2.49
2.+8. Viscous agent injection 3,780 2.87

3. Rhexis 11,772 8.95
4. Hydrodissection 5,970 4.54
5. Phacoemulsification 49,986 38.02
6. Irrigation and aspiration 22,049 16.77
7. Capsule polishing 5,307 4.04
9. Lens implant setting-up 5,541 4.21

10. Viscous agent removal 17,447 13.27
11. Tonifying and antibiotics 6,353 4.83

Total: 131.484 100.0

have a duration below the average duration of this phase. Similar observations
can be made for the other deviations.

The 175,488 images of the training dataset are center-cropped to a square
shape and downsized to 256 × 256 pixels. This preparation reduces the size of
the LMDB and the training time. Furthermore, we shuffle images before writing
them into the LMDB to avoid feeding the CNN with a group of similar pic-
tures when the LMDB is read sequentially. At training time we use the data
augmentation methods provided by the CAFFE framework to vary the input on
every training iteration (epoch): random mirroring and random cropping to the
required size of 224 × 224 pixels.

4.2 Purified and Balanced Cataract-Surgery-Phase CNN

The first preprocessing method of the training dataset consists of manual pu-
rification followed by automatic balancing of the dataset. Purification takes care
to reduce the variation of data within each class (operation phase). Each phase
is characterized by the presence of certain instruments. During a phase there
are also short periods, where these instruments are not visible. During manual
purification, we identify all frames where none of these instruments are visible,
and remove them from the training dataset. Table 3 shows that in total 44,004
images have been removed from the original training dataset.

It is interesting that some phases are affected less than others from purifica-
tion. Phases incision, viscous agent injection, and lens implant setting-up lose
approximately half of their samples, which can be explained as follows. In phase
incision the surgeon performs two incisions, which are done within seconds. Be-
tween them and the end of the phase no instrument is visible. After the viscous
agent is injected in phase eight, the lens implant setting-up is prepared, result-
ing in several seconds when no instrument is visible. The main instrument in
phase lens implant setting-up is the cartridge for the lens, which is visible for



approximately half of the phase. The least affected phase is phacoemulsification,
where only 8.6% of the images are dropped, because during the whole phase the
phacoeomulsification-tip is visible except at the end of the phase when instru-
ments are changed.

Purification makes the training dataset even more unbalanced, especially if
we compare phase incision with 2.5% of the training images and phase pha-
coemulsification with more than 38% of the training images. This unbalanced
dataset strongly increases the likelihood to classify in favor of the majority class.
To overcome this problem we apply either random sampling (to video frames of
large classes) or three data augmentation techniques (to frames of small classes):
(1) simple copying, (2) rotation, and (3) scaling.

In detail, we choose 12,000 as uniform sample size for each phase. This means
that larger classes are randomly reduced and smaller classes are extended with
randomly chosen data augmentation techniques. For example, the phase pha-
coemulsification is reduced to one quarter of the original size, whereas phase
incision is extended four-fold with artificially modified images.

To ensure that each available image is used for training, all images of the
classes are copied in a first step. As long as a class has too many samples, one
sample is randomly chosen and deleted. If the class has too few samples, we
choose one of three data augmentation methods randomly and apply it to one
randomly chosen (unmodified) image of the class. These steps are repeated until
a uniform distribution of 12,000 images per class is achieved.

For rotation and scaling we randomly choose values for the rotation angle
and the scaling factor. The angle for the rotation is constrained to the range
[−10◦,+10◦]. The rotation introduces an empty area in the image, which is
eliminated by cropping the image to a maximum-sized square whose corners hit
these areas. Finally, the rotated image is resized to 256 × 256 pixels again. For
scaling we select a square with a randomly chosen length between 246 and 156
pixels. We center-crop the image to this square and scale the resulting image up
to a size of 256 × 256 pixels.

4.3 Timestamp-Based Cataract-Surgery-Phase CNN

For the third CNN model we extend each of the video frames with time informa-
tion: the ratio of the frame number and the total number of frames in the video
(relative timestamp). To feed timestamps into the CNN, we add a fourth “color
channel”3 to each image that contains this time information. Figure 2 shows
that for most of the phases the starting time is well distinguishable. Temporal
information of video frames is therefore expected to improve the classification
performance of the trained CCN model.

3 This decision is due to restrictions of the CAFFE framework, which does not easily
allow adding inputs to fully connected layers of the CNN.



Fig. 2. Relative starting time of operation phases in surgery videos

Table 4. Classification results. Bold numbers indicate best performance within a phase.

Phase numbers
CNN-Type 1 2+8 3 4 5 6 7 9 10 11 Average

Precision

Basic CNN 0.87 0.24 0.61 0.70 0.73 0.55 0.61 0.62 0.83 0.76 0.65
Balanced CNN 0.38 0.59 0.89 0.66 0.89 0.68 0.72 0.39 0.75 0.90 0.69

Time-based CNN 0.65 0.37 0.82 0.75 0.96 0.68 0.71 0.76 0.75 0.91 0.74

Recall

Basic CNN 0.06 0.54 0.55 0.43 0.93 0.48 0.33 0.62 0.63 0.75 0.53
Balanced CNN 0.80 0.49 0.56 0.45 0.91 0.57 0.51 0.67 0.83 0.88 0.67

Time-based CNN 0.72 0.55 0.69 0.54 0.95 0.80 0.79 0.50 0.84 0.85 0.72

F1-score

Basic CNN 0.11 0.33 0.58 0.53 0.82 0.51 0.43 0.62 0.72 0.76 0.59
Balanced CNN 0.52 0.54 0.69 0.54 0.90 0.62 0.60 0.49 0.79 0.89 0.68

Time-based CNN 0.69 0.44 0.75 0.62 0.95 0.73 0.75 0.60 0.79 0.88 0.73

5 Evaluation

As evaluation dataset we use the four randomly selected videos mentioned in
Section 4.1. It consists of 36,999 samples. The detailed distribution of video
frames can be seen in Table 1.

For a given (preprocessed) training dataset, the CNN is trained for 50 epochs
and the CNN model resulting from each epoch is kept for subsequent model
selection. From the 50 resulting CNN models, only the best performing model
(with respect to accuracy on the training dataset) is selected for final evaluation.

Table 4 structures the results in three quality measures: Precision, Recall,
and F1-score (harmonic mean). In each of the table sections we see among each
other the results of the three CNN-models: Basic CNN (Section 4.1), balanced



(a) Basic CNN (b) Balanced CNN (c) Time-based CNN

Fig. 3. Confusion matrices for the basic CNN, balanced CNN, and time-based CNN

CNN (Section 4.2), and time-based CNN (Section 4.3). It can be seen that
each refinement improves the average performance of the network in terms of
precision, recall, and F1-score clearly.

The time-based CNN shows problems with precision for phase 2+8 compared
to other phases, where it performs similar or better than the other two CNN
models. Figure 3c shows that time-based CNN tends to confuse phases 2 and 8
with neighboring phases 3 and 9, respectively.

A considerable performance gain can be achieved in terms of recall for the
balanced CNN and the time-based CNN. Again, the time-based CNN outperforms
both other networks for all phases but 1, 9, and 11, where it performs only slightly
worse.

Looking at the F1-score we see that the time-based CNN shows a similar
performance or outperforms the balanced CNN and the basic CNN in all cases
except one (phase 2+8). In the absence of similar studies in the area of frame-
based classification of ophthalmic surgery videos, we can compare our work only
with results for frame-based classification of other types of surgery videos [4,5,6],
where the authors achieve F1-scores of 0.51, 0.69, and 0.85.

Figure 3 visualizes the improvement in classification performance for bal-
anced CNN and time-based CNN in comparison to basic CNN. The basic CNN
has many false positive predictions for phase 5, which is overrepresented in the
training dataset. There are also a lot of false positive predictions for phase 2+8.
The confusion matrices also show that all CNN models have problems with the
classification of phase 6.

6 Conclusion

In this paper, we examined frame-based classification of operation phases in
cataract surgery videos using different CNN models. Along with this paper we
provide a dataset of 21 video recordings of cataract surgeries that have been
annotated by our medical partner. In particular we trained three CNN models
based on the GoogLeNet-architecture. The basic CNN model was trained with a
dataset that took the annotated phases directly as classes. For a second approach
the dataset was modified manually by removing images where no instrument was



visible. This dataset was additionally balanced using different data augmentation
techniques. Temporal information of video frames was added for training the
third CNN model.

The evaluation showed that the classification performance can be improved
significantly with a cleaned, balanced dataset and temporal information. In fu-
ture work this CNN model can be extended for classification of various optional
operation phases as well as for detection of complications. The development of
such a neural network model enables also further automatic tools like keyframe
selection for documentation, video summarization, or operation planning.
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6. Primus, M.J., Schoeffmann, K., Böszörmenyi, L.: Instrument classification in la-
paroscopic videos. In: Content-Based Multimedia Indexing (CBMI), 2015, 13th
International Workshop on. pp. 1–6. IEEE (2015)
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