
Simple and Efficient Transactions
for a Distributed Object Store

Laszlo Boeszoermenyi and Carsten Weich
Institut fuer Informatik, Universitaet Klagenfurt,

Universitaetsstrasse 65 - 67, A-9020 Klagenfurt, Austria,
e-mail:flaszlo,carsteng@ifi.uni-klu.ac.at, tel/fax: (43)-(463)-2700-509/505

www: http://www.ifi.uni-klu.ac.at/home?flaszlo,carsteng

Abstract

Even the more or less “canonical”, lower-level architec-
ture of information systems needs to be revisited from time
to time. Notions like persistence and transactions belong
traditionally to the area of database management systems.

There are, however, many applications, such as CAD,
VLSI design or simulation, which need persistence and
could take advantage of transactions, but require especially
fast implementations not provided by DBMS. In this paper
we are describing a low-level transaction concept used to
implement our parallel main memory object store (PPOST),
to provide main memory access times combined with the
safety and convenience of transactions.

Keywords: parallel systems, distributed systems, object
databases and persistence.

1. Introduction

Despite of the amount of knowledge we have about
object-oriented systems, some crucial points are still open.
The work described in this paper has been motivated by the
following considerations.

We are looking for a way to cope with storing a large
number of objects in an object space that is most likely per-
sistent in time and possibly distributed in space. What we
need is first of all the proper abstraction that can hide the
details of persistence and distribution and that enables fast
retrieval of required objects.

As such a proper abstraction we suggested the use of
polymorphic, persistent and distributed sets in some previ-
ous papers [3, 5]. Sets are on the one side associative, i.e.
well-suited for queries depending on the actual content of
certain object-attributes. On the other side, sets are per defi-
nition unordered, therefore operations on their elements can
be easily parallelized. The proposal in [5] contains language

elements for powerful, declarative set-operations (first of all
a generalized selection) that can be optimized and paral-
lelized relatively easily. All proposed set-expressions yield
sets again as result, and therefore can be applied recursively.

The operations can becomposedto still more powerful
ones. Both simple and composed operations on persistent
and distributed sets have to fulfill some basic requirements:
they must not lead the set into an inconsistent state, they
must not interfere with each other and they must not loose
legal changes of the stored data. If we take a closer look
at these requirements, we immediately see that they lead to
the usual ACID-conditions oftransactions.

In this paper we describe a concept for fast distributed
transactions. The concept was implemented at the heart of
a main-memory based parallel object store, described in [6,
4, 7].

2. Transactions for distributed object stores

Object-oriented applications build up and manipulate a
data structure which consists of large numbers of objects
structured in complex aggregations, as lists, sets and rela-
tions. Typical engineering applications which fall into this
category aredesign applications, like CAD, VLSI design
and the like. These applications have high performance re-
quirements. They also have requirements which are tra-
ditionally served by database management systems: Their
data must be kept persistent, even in presence of system
failures. Usually several users access the same data; they
must be protected from disturbing each other. Conventional
relational database systems cannot be used for such appli-
cations: The relational data model is not expressive enough
to conveniently represent their object structures [13]. In ad-
dition, they are usually too slow to meet the performance
requirements [9].

Object-oriented database systems were designed for
such applications. They store the application’s data struc-



Log

User

Objektstore

Transactions

Archive

Checkpoint

ve
rt

ic
a

l 
p

a
ra

ll
el

is
m

horizontal parallelism

Figure 1. PPOST: A main memory distributed object store architecture

tures on disc, but they usually include features to check out
data to main memory to meet the performance needs.

We propose to view the problem from a different per-
spective: We claim that engineering applications should
store their data structures primarily in main memory. There
should be no copying or conversion necessary to access the
data from the application code. All that is needed is a mech-
anism to guarantee the persistence of the data. We propose
to use the main memory as primary storage area, and to use
the disc only for guaranteeing persistence in case of sys-
tem crashes. The disk is used only in sequential mode (to
write a log of changes), no direct access is necessary. Thus,
discs operate under optimal conditions and at full speed. To
guarantee consistence of safe-points and concurrent data ac-
cess of several users a simple transaction mechanism shall
be provided by the system. Database management systems
can be built on top of this transaction mechanism, so that the
application developer can choose to take advantage of addi-
tional features provided by the DBMS only if it is needed.

Main memory has the obvious disadvantage of being re-
stricted in size. We propose to use the main memory of
more than one machine to make the size of the application
data scalable: If the size of the data increases we add ma-
chines to the pool of storage machines. Thus, we not only
get more storage capacity but also more processing power to
work with the data. We already have proposed the PPOST
architecture [6, 4, 7] in which several nodes of a cluster of
workstations are used to store data in main memory (Fig-
ure 1). One node acts as master node (transaction node).
User processes access data via the transactionnode. In the
background - decoupled from the operation of the object
store -, a checkpoint processor produces a disc copy of the
main memory database with the help of the log files pro-
duced on eachnode.

Problems of distributed transactions

A common technique to implement transactions on central
disc based systems involves locking of data which is read or
written by a transaction to provide consistentaccess [10].
In a distributed system locking is much more difficult: If
a node reads the value of an object from another node it
will cache this value for repeated access (otherwise reading
an object repeatedly would be extremely expensive). If an
object is to be modified during a transaction, not only the
original copy has to be locked but also all its replicas in the
cache of othernodes.

In a distributed environment withk copies of an object
we need at least2k+3messages for a value update: A lock
request, a lock grant,k update withk acknowledge mes-
sages and an unlock request [10]. This can only be achieved
if we store the locking information on some central location
(like a dedicated server – which could then do deadlock de-
tection also – or on the owner node of the object). Using this
scheme we also have to contact this central location even
if we only read the object (and even if we have cached the
objects value locally). If reading is more frequent than writ-
ing, which is very likely, another scheme is needed: Lock
objects and replicas only for writing. Then we need at least
3k messages:k update/lock requests to the replicas,k ac-
knowledgments andk unlock messages [2]. Alternative al-
gorithms are imaginable, but they all suffer from the same
problem: Before changing an object we always have to first
make sure that it is “free” and after changing it we have to
propagate the new value. Both parts of the operation require
information exchange among different locations.

In addition to this expensive synchronization, automatic
detection and resolving of deadlocks is necessary if more
than one transaction is allowed running at the same time.
This requires either a central location collecting the locking



states or a sophisticated distributed algorithm. Both possi-
bilities again require additional message passing.

Possible solutions

Let us now consider some solutions to the above described
problem:

1. No caching(i.e. avoid replicas at all)
would prohibitively slow down data access.

2. Reduce latency time
would require expensive non-standard communication
hardware.

3. Enlarge lock granularity
e.g. by locking whole sets of objects instead of single
ones. Thus, the number of locks (and lock messages)
can be greatly reduced. On the other hand, this could
drastically increase the probability of deadlocks.

4. Use optimistic transaction implementation techniques
Such techniques are free of deadlocks and do not re-
quire locking. But they have their own synchroniza-
tion problems: The validation phase still must be done
in an atomic action (instead of the whole transaction).
So in the end this technique does not help a lot in
distributed systems because it only delays the same
distributed synchronization problem to the validation
phase. In addition, the technique increases the proba-
bility of transaction roll-backsafter they have already
been processed.

5. Prohibit inter-transaction parallelism
Most of the described problems do not occur if only
one transaction is allowed to run at the same time.

Alternative 5 looks like a serious restriction, but in dis-
tributed systems it turns out that this restriction makes im-
portant optimizations possible. Locking of objects and im-
mediate propagation of new values can be eliminated all
together in principle: Since there is only one transaction
active, which does not have to be protected against interfer-
ence by others, the system’s efforts to synchronize shared
access can be reduced. We will take a closer look on that in
the following section.

3. Distributed Transaction Consistency

If we rule out parallel execution of different transactions
we still have to deal with the synchronization of dataaccess
inside a transaction (intra-parallelism). Corresponding to
our basic model, objects of distributed sets maybe located
on different physical nodes. Transactions consist basically

of a chain of calls of methods - which can be executed on
different physical nodes in parallel. Parts of a transaction,
running on several nodes, might write the same object, thus
causing a racing condition. This happens frequently, e.g., if
we update complex objects - sharing common parts, spread
over several different nodes. There are three principal pos-
sibilities to track the problem:

1. Ignore it: Let the application programmer be responsi-
ble for synchronization. This is of course easy to im-
plement, but actually impossible to use [16].

2. Guarantee sequential consistency [14]: Let the system
be responsible to provide the application a view of the
data as if it were stored on a single location. This
is easy to use, but leads to similarly inefficient algo-
rithms (see, e.g., thetwo-phase updateprotocol in [2]),
as two-phase locking, as discussed earlier.

3. Look for a compromise: Let the system provide as
much consistence as necessary for as low costs as pos-
sible.

3.1. Transaction consistency

We now propose a consistency model suitable for dis-
tributed programs with short transactions. We call a system
”transaction consistent”if it guarantees the following con-
dition:

1. Before and after a transaction execution all read re-
quests from every node yield the same value for all
objects. Write requests are not permitted outside trans-
actions.

2. During a transaction read requests either return

(a) the value produced locally on the requesting
node,

(b) or the value the object had at the beginning of the
transaction.

3. During transactions write requests are sequentialized,
i.e., no concurrent writes are permitted. In order to
submit a write request, the program first has to request
an exclusive, writable copy of the object. The changes
that were previously made to the object on other nodes
will be visible to a writing node. Changes made on
other nodes after the write request was finished are not
visible (unless the exclusive copy is requested again).

4. At the end of the transaction the system is responsible
to guarantee condition 1 again. I.e., read requests that
come in during transaction termination are delayed un-
til changed values are propagated. If the transaction
has aborted, the state valid at its start is restored.



Obj

Obj Obj

primary copies

cache

Obj

object store node

primary copies

cache

node process

object store node

node process

Figure 2. Nodes of the object store

This consistency model is especially suitable to support
caching: Once a value has been transfered to anode to serve
a read request it is not necessary to check whether it has
been changed until the end of the transaction. This is also
true after it has been updated: The object stays in thecache,
its cached value is used for local reads.

The resulting programming model is fairly simple. The
programmer knows: Read requests on a certain node either
return the old value of the object or the value locally pro-
duced on the very node. It is never necessary to prepare
for updates which come in asynchronously from foreign
nodes. (With sequential consistencyeach method access-
ing a shared object has to deal with the fact that the object’s
value might change during execution of the method.)

Since write requests are sequentialized the model guar-
antees the memory coherence condition [1] inside transac-
tion execution: i.e., writes to a single object are “sequen-
tially consistent” – all changes are seen in the same order
on all nodes. However, writes to several objects can be ob-
served in different order on different nodes. A proof of the
memory coherence guarantee is given in [16].

Using this model leads to short transactions. Several up-
dates which depend on each other must bedone in more
than one transaction. If, e.g., you delete a number of objects
in a transaction you will in general need another transaction
to do consecutive updates. There is no easy way to “wait
for the completion of an update” inside a transaction, if the
update is done on a foreign node. (You could request the ac-
tual copy, but, without explicit synchronization, you would
not know if you got it before or after the method you are
waiting for has written to it.)

The model can be implemented efficiently. For a read re-
quest, only two messages are required (a request and a value
message), consecutive reads of the same objects never need
messages. For a write request, two or three messages are re-
quired each time the exclusive, writable copy must be allo-
cated (a request, possible a delegation to the current location
of the exclusive copy and a value message). In case of con-
flicts, the exclusive copy has to change its location several

times, requiring message passing. If no conflict occurs, no
further message passing is necessary (see Section 4). There
are no locks required, apart from holding an exclusive copy.
If every node is only allowed to write to a single object at
the same time the system is free of deadlocks.

With the suggested transaction consistency we can ex-
pect short transactions which run very fast. Thus, the re-
striction that only a single transaction may be executed si-
multaneously seems acceptable.

4. Implementation

We have implemented a prototype of an object store us-
ing the transaction consistency model. It is described in
detail in [16]. In this section we concentrate on describing
the implementation of the transaction protocol. We explain
how objects are stored in main memory, how they are ac-
cessed from other nodes and how they are updated during a
transaction. To verify the prototype we have implemented
the OO1-benchmark [9]. We conclude the section with re-
porting the experiences we have made.

4.1. Storing objects in main memory

The object store - implemented in Modula-3 [15] - con-
sists of a number of node processes, a single process on
each separate machine. Thenode processes store objects in
their address space and feature a cache which also stores ob-
jects (Figure 2). Objects are ordinary Modula-3 objects, i.e.
type-safe pointers to a record and a method suite. Objects
always have an owner node assigned, this is the node that
stores their primary copy. On other nodes, values are only
stored in the cache. The primary copy is never changed un-
til a transaction terminates successfully, all updates are done
on a copy of the object in the cache, even on its ownernode.
To every object a reference is generated at initialization.



commit

of transaction

actual copy

delegation to node

state after

state before end

node 1 gets

node 4 reads old value

with actual copy

node 1 wants to change

(actual) copy of object

node 3 wants to change

z: 0

z: 0

z: 0z: 0

z: 0

z: 0

z: 0

z: 0
*

z: 1

21

*
z: 2 z: 1 z: 0

z: 2

z: 2

z: 2 z: 2

*

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3 4

Figure 3. Write and read requests with transaction consistency

4.2. Transaction consistency protocol

To implement the transaction consistency model (3.1)
read and write requests are processed as described below.
An application never accesses an object directly, requests
always need the reference to the object as parameter. The
owner node of the object and its type can be determined
from the reference. The result of the request is a readable or
writable in-memory copy of the objects value:

� Reads
First the cache is checked and the value there is re-
turned if available. If not, the primary copy is returned
if it is a local request. On all other nodes a message is
sent to the owner node which returns the value of the
primary copy of the object. This value is then put into
the cache.

� Writes
First the cache is checked whether the exclusive copy
of the object is available. If so, the object is locked
locally and made available to the caller. If not, a re-
quest for the exclusive copy is sent to the owner node
of the object. The owner node immediately notes the
requester as “current holder of the exclusive copy of
this object”. It sends a message to the preceding holder
to pass the exclusive copy to the new one as soon as it
is available.

If a node receives the request to pass an exclusive copy
to another node it checks that it is not locked. As soon

as the exclusive copy is free (i.e. the write request
on this node has already been completed), its value is
passed to the future holder. The copy remains in cache
but it is noted that it is no more the exclusive version
of the object.

The node waiting for the exclusive copy to process its
write request puts the object in its cache when it ar-
rives, marks it as “exclusive version”, locks it and fi-
nally makes it available to the caller.

Figure 3 shows an example of how the protocol works (the
exclusive copy is marked by an asterisk).

4.3. OO1-Benchmark results

We have used the OO1-benchmark [9] to verify our ob-
ject store. There are newer benchmarks but OO1 was de-
signed to measure object-oriented databases for exactly that
kinds of applications we want to support. It tests the most
basic operations efficiently and is especially easy to imple-
ment.

The measurements we have done with the prototype are
described in detail in [16]. The OO1-benchmark results are
listed in Table 1, they are compared with the best OO1 re-
sults published in [9].

The numbers show two things: On the one side, the pro-
totype needs improvement. Some obvious optimizations
have to be done yet. On the other hand, we were able to
demonstrate that the transaction consistency protocol works
and has the potential to exploit the processing power of a



Operation Prototype (4 nodes) Best OODBMS
build time 332.63 50.00

disk size 5.5MB 3.4MB
reverse traverse 2.23 13.00

lookup 2.84 13.00
traverse 3.01 13.00

insert 4.98 6.70
lookup warm 0.68 0.03

traverse warm 0.58 0.10
insert warm 2.35 3.10

sum cold 10.83 33.00
sum warm 3.61 3.20

times in sec

Table 1. OO1 benchmark results (compared with the best in [9])

distributed main memory object store. Processing of lo-
cally available objects can be done at full main memory
speed, there is no buffering, copying or conversion neces-
sary – only a function call to check whether the object is
in the cache. Accessing a remote object basically needs the
time to transfer the value over the network, only in case of
write conflicts is some overhead needed, to look up the cur-
rent holder of the actual version. Very basic operations like
selection or aggregation calculation can be parallelized eas-
ily without the user having to struggle with the complexity
of parallel programming.

5. Conclusion

A simple transaction concept has been presented for
a distributed, main-memory based object store. The key
idea lies in providing only intra-transaction but no inter-
transaction parallelism. Concurrent transactions are actu-
ally sequentialized as a whole – but executed very fast, by
taking advantage of a specially adopted protocol foraccess-
ing shared data and by internal parallelism. During the ex-
ecution of a transaction the coherence of the distributed ob-
ject store is guaranteed. At transaction commit the object
store is resynchronized and thus becomes consistent. Some
measurements have been shown to demonstrate that the sug-
gested transactions can be very fast.

In the future we are looking for algorithms and data
placement strategies which make PPOST faster. We also
have to understand better, how to use the suggested transac-
tions, especially, how could they support applications rely-
ing onsnapshot isolation.

References

[1] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger.
The power of processor consistency. Technical Report GIT-
CC-92/34, Georgia Institute of Technology, 1992.

[2] H. Bal. Programming Distributed Systems. Prentice Hall,
1990.

[3] L. Boeszoermenyi. Distributed sets of objects. InECOOP,
Linz, 1996. position paper in workshop-9.

[4] L. Boeszoermenyi, J. Eder, and C. Weich. PPOST: A par-
allel database in main memory. In D. Karagiannis, editor,
Lecture Notes in Computer Science 856, Database and Ex-
pert Systems Application (DEXA), Athens, Greece, Septem-
ber 1994. Springer.

[5] L. Boeszoermenyi and K. H. Eder. M3Set – a language for
handling of distributed and persistent sets of objects.Paral-
lel Computing, 22 (1997) 1913 - 1925.

[6] L. Boeszoermenyi, K. H. Eder, and C. Weich. PPOST a par-
allel persistent object store in main memory. InDatabase
and Expert Systems Applications, Fifth International Con-
ference (DEXA), Athens, Greece, September 1994. Springer
Verlag.

[7] L. Boeszoermenyi, K. H. Eder, and C. Weich. A very fast
parallel object store for very fast applications.Simulations
Practice and Theory, 5 (1997) 605 - 622.

[8] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The oo7
benchmark. Technical report, University of Wisconsin-
Madison, 1994.

[9] R. G. G. Catell. An engineering database benchmark. In
Gray [12]. Chapter 7.

[10] C. J. Date.An Introduction to Database Systems. Addision
Wesley, 1990.

[11] D. J. DeWitt, J. F. Naughton, J. C. Shafer, and S. Venkatara-
man. Parallizing OODBMS traversals: A performance eval-
uation.VLDB Journal, 5:3–18, 1996.

[12] J. Gray, editor.The Benchmark Handbook. Morgan Kauf-
mann Publishers Inc., second edition, 1993.

[13] A. Kemper and G. Moerkotte.Object-Oriented Database
Management. Prentice Hall, 1994.

[14] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs.IEEE Transac-
tion on Computers, C-28:690–691, Sept 1979.

[15] G. Nelson, editor. Systems Programming with Modula-3.
Prentice Hall, 1991.

[16] C. Weich. Hauptspeicherdatenstrukturen und Transaktion-
skonzepte fuer eine objektorientierte Datenbank. Disserta-
tion, Technische Universitaet Wien, 1996.


