
MULTI-CLIP QUERY OPTIMIZATION IN VIDEO DATABASES

PI 10s 10s os
P2 20s 20s os

Ahmed Mostefaoui, Lionel Bmnie

{ (c, , c2>}

Information Systems Engineering Lab.
Insa de Lyon, France

Ahmed. Mostefaoui(Lionel. Brunie)Qinsa-1yon.fr

ABSTRACT

A multi-clip query requests multiple video clips. In this
paper we address the multi-clip query optimization prob-
lem. We propose a new heuristics called Restricted Search
Interval that maximizes clip sharing between queries and
consequently reduces the workload of the video server. The
experimental results show that the suggested heuristics re-
duces the server workload by about 68.7% in comparison to
a classical heuristic approach.

1. INTRODUCTION

Many recent multimedia applications use the multi-clip query
paradigm. In such a paradigm, the result of a query is a
set of continuous objects (audio or video) that need to be
retrieved from a video server and delivered/displayed to the
user. Some sample applications include : (a) Customised
News-On-Demand in which a user may submit the fol-
lowing query : “Show me the news clrps of the day”. The
result of such a query includes all news clips (politics, sport,
economics, etc.) related to that day. A user may even ask
for specific news like Show me all the highlights of the bas-
ketball matches of the weekend”. (b) In Video Editing
applications [l], an object is composed of a number of clips
with strict temporal relations between them. Hence, deliv-
ering an object is synonymous to delivering the various clips
that compose that object. (c) Many Electronic Com-
merce applications also use the multi-clip paradigm. Take
for example a request made to a record company for twenty
clips of the latest soul music to hit the charts. In such a
case short samples (15-20 seconds each) will be delivered to
the user who will make a selection.

The management of multi-clip queries poses a number
of problems for the server. Firstly, there can be a num-
ber of possible delivery scenarios for a submitted multi-clip
query’. This is due to the presentation flexibility permitted
by an application. For example, a presentation of 3 clips
with no ordering constraints has 6 different possible delivery
scenarios. The task of the server is to fhd the optimal de-
livery scenario according to a given Optimization metrics.
Secondly, applications may specify complex presentation
scenarios by imposing structural and temporal constraints
on delivery scenarios (e.g. see the advanced capabilities of
the JavaMediaFYamework 2.0 [2] or presentation languages

This work is partially supported by France T&com under
contract CCETT No 96 ME 17.

W e will hereafter refer to a multi-clip query as a presentation.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 363

Harald Kosch, Ldszlo’ Boszorme‘nyi

Inst it ut e of Informat ion Technology
University Klagenfurt, Austria

harald.kosch(lasz1o.boesaoermenyi)Qitec.uni-klu.ac.at

as those defined in [3, 4, 5, 61). In video editing applica-
tions, for example, the clips of an object are strictly ordered,
in News-On-Demand applications clips can be partially or-
dered, while there is generally no clip ordering in electronic
commerce applications. The server must then respect this
ordering when delivering clips of submitted presentations.

The constraints that can be imposed by users and ap-
plications on a presentation fall into two categories (71 :
precedence constraints related to the ordering of clips when
delivering them; delay constraints related to the waiting
time that users/applications can tolerate. We distinguish
the following delay constraints :
MaxStartup : the maximum waiting time an application
can tolerate between the moment the query is submitted
and the moment the first clip is delivered.
MaxDelay : the maximum waiting time between the d e
livery of two successive clips.
MinBe lay : the minimum waiting time imposed on the
server for the delivery of two successive clips. This con-
straint is necessary in video editing applications, for exam-
ple, where the processing of clips is rather costly in terms
of computing and storage resources. It is therefore crucial
for such applications not to be forced to receive successive
clips too early, in which case resource problems could arise.

To illustrate the presentation optimization problem, let
us consider the following example. Let us consider three
presentations PI, P2 and P3, such that :

pi = ((~ 1 ~ 1 5 , 1.5), (~ 2 , 10,3), (~ 3 ~ 1 5 , 1.5), (~4,15,3)}

p3 = {(c8,25,1-5)1 (a, 15,1.5)1 (C411513))
PZ = {(CS, 10,1*5)i (c6115,1.5)i (C7,10,1.5)}

Each tuple contains the clip identity, its length and its de-
livery rate respectively (e.g. clip c1 has a length of l=&
and a delivery rate of r=1.5 Mb/s). For each presentation
we specify the following waiting constraints :

I 11 MaxStartuD I M a x D . I MinD. I Precedence I

We suppose that the server has an available bandwidth of
3 Mb/s. Figure 1 shows an optimal schedule for the clips
of the three submitted presentations. For every clip, the
optimizer attributes a start-trme at which the clip is to be
delivered. Note that e.g. clip a is requested simultaneously
by presentations P2 and Pa. If no constraint violation is
encountered, clip a can be shared between P2 and P3. Such
sharing is called “piggybacking”.

http://Brunie)Qinsa-1yon.fr

In many multimedia applications, including those men-
tioned above, a subset of clips are more frequently requested
(“hot”) than the rest of the data. For instance, in News-
On-Demand applications, clips from the current day are
usually far more frequently requested than those from pre-
vious days. Hence, piggybacking, whenever possible, is ben-
eficial because shared clips require no additional server re-
sources. This increases the throughput of the server and
consequently allows the latter to support more simultane-
ous presentations. In this paper, we concentrate on how to
maximize the effect of piggybacking when scheduling pre-
sentations.

Server Bwdwldth (Mbls)
3 I I I 1

I5-.
C8 C6

c2 c4
c1 c5 c3

0 S 1 0 15 20 25 30 3S 40 45 SO SS 6U 65 70 75 80

Figure 1: Example schedule of the presentatrons.

The rest of the paper is organized as follows : section 2
presents related approaches. Section 3 outlines our prob-
lem. Section 4 presents the suggested heuristics. In sec-
tion 5, the effectiveness of the latter is evaluated through a
series of experiments. Section 6 highlights the future work
and concludes this paper.

2. RELATED WORK
To the best of our knowledge, three research works address
the problem of multi-clip queries in video databases [8, 9,
lo]. Shahabi et al. [8] propose an excellent formulation of
the problem by defining the set of constraints that a multi-
media application can impose on a presentation. However,
they have not considered the potential benefit of the pig-
gybacking. Garofalakis et al. [lo] provide a near-optimal
scheduling algorithm based on Graham’s list-scheduling for
composite multimedia objects of different length and rate.
However, they did not yet include any delay constraint, nor
did they considered piggybacking. Raymond and Paul [9]
made the simplification that all clips in the database have
the same rate and duration. They then showed that opti-
mizing multi-clip queries is the same as finding a maximum
matching in a bipartite graph.
In our work, we consider the potential benefit of piggy-
backing without making a reductionist hypothesis of clip
size (rate and duration).

3. THE PROBLEM
The research problem that we study in this paper is how to
find efflciently an optimal or near optimal schedule of the
presentation’s clips that mazimizes the effect of piggyback-
ing? In other words, given a submitted presentation with
its constraints and the workload of the server (the clips
of already scheduled but not yet delivered presentations),
the optimizer must find an optimal schedule of the pre-
sentation’s clips in a reasonable time such that neither the
presentation constraints nor the server constraints are vio-
lated. The latter assumes that the server has enough avail-
able resources to sustain the requirements of all supported
presentations. This implies that for every new submitted
presentation the server checks whether or not it can be ac-
cepted (udmission control). Deriving admission criteria for

0-7803-6536-4/00/$10.00 (c) 2000 IEEE

a presentation is a complex task and is highly dependent on
the physical characteristics of the server (size of the buffer,
disk bandwidth, striping technique used, etc.). The purpose
of this paper is not to address a particular server architec-
ture, but to propose a general framework for the multi-clip
optimization problem. For this reason, we w u m e that the
server has a maximum available bandwidth sharable among
the clips (i.e. at every instant the maximum number of
simultaneous delivered clips is limited). Furthermore, we
assume that no overlapping can occur between the clips of
the same presentation.

The task of the optimizer is then to attribute, for every
clip of the submitted presentation, a start-time with respect
to all defined constraints (i.e. precedence constraints, delay
constraints, the no-overlapping constraint and server band-
width constraints). The problem studied here is shown to
be NP-complete (111.

4. OPTIMIZATION ALGORITHMS
As mentioned before, the admission of a newly submitted
presentation depends on the scheduling of the clips of that
presentation. This implies that the scheduling task is per-
formed on-line. Furthermore, as the server receives sev-
eral presentations concurrently, the processing time taken
to compute a schedule affects not only the response time
of the current presentation being processed but also the re-
sponse time of the other presentations. Here, we face a new
constraint that is related to the computational time of a
presentation schedule.

As the problem is NP-complete, optimal algorithms
have an-facto not been considered because of their relative
long processing time. We concentrate mainly on heuristic
approaches to fulfill all the constraints including the com-
putational time of the schedule. In this section, we will
present an heuristics called Restricted Search Interval (RSI)
that attempts to maximize piggybacking. Before outlining
the principle of this heuristics, we will present the basic
heuristic algorithm, called the baseline heuristics, generally
used to schedule the presentation clips.

Baseline heuristics The baseline scheduling heuristics
is a simple and widely used list scheduling. The clips of a
presentation submitted by the server are scheduled accord-
ing to their order in the presentation (this order is deter-
mined by the precedence constraints). We start to schedule
a clip as early as possible, i.e. for the non-first clips at
the end position of the last scheduled clip plus the min-
imal delay which does not violate the delay and resource
constraints. This approach has the advantage of being sim-
ple and fast but it does not utilize the potential benefits of
piggybacking.

Restricted Search Interval Heuristics (RSI) The
principle of the proposed heuristics is to merge heavy clips
(length x delivery x rate is large) already queued for sched-
ule from previously submitted presentations. For a sub-
mitted presentation P , the heuristics operates in two main
steps :
1.) Split the clips of the submitted presentation P into two
clip lists, one for clips where sharing is possible (piggyback-
ing last) and one for the others. Sort the piggybacking list
by decreasing weight of the clips in order to maximize the
effect of the piggybacking.

364

2.) Go through the piggybacking list and find a valid sched-
ule for the presentation P knowing that the clip currently
being examined is shared with previously submitted pre-
sentations. If there is no valid schedule for a clip in the
piggybacking list (this means that piggybacking is not pos-
sible), then apply the baseline algorithm.

The second step is performed as follows : we start by
considering the first element of the piggybacking list (the
heaviest sharable clip). We then consider the first occur-
rence of the clip (less start time) in the list of already sched-
uled clips (submitted by previous presentations). For this
occurrence we determine a search interwahhich is the maxi-
mal interval the presentation P can occupy under the given
constraints. Then we try to find a d i d schedule in this
search interval. If this is not possible due to a constraint
violation we consider the next occurrence, if any, of the clip
in the list of those already scheduled. If this fails again,
the next clip in the piggybacking list is considered. If no
valid schedule for any of the clips in the piggybacking list
can be found a timelimit is exceeded we apply the baseline
algorithm.

The task of determining a valid schedule in the search
interval is performed by constructing a Branch & Bound
search tree. The heuristics stops when the first valid sched-
ule is found. We illustrate the principle of the proposed
heuristics in figure 2. Assume that the optimizer has to
schedule the presentation A of the previous example un-
der the server workload shown in figure 2. We identify two
possibilities for sharing clips Q, and c4. The first one is
excluded because of the precedence constraint between the
cs resp. cs (the corresponding search interval is not valid).
Clip y is shared and the corresponding Branch & Bound
search tree is shown in the figure. The double edged path in
the search tree corresponds to the valid schedule generated
by the heuristics.

Corresponding
Branch & Bound
search tree

Search interval of the clip C4
1

o s ~ a ~ s z a ~ ~ ~ ~ ~ ~ ~ ~ m s ~ m ~ m i ~ ~ u ~ ~ im T I
Not valid sharing Valid sharing

Figure 2 Schedule of the presentation PS generated by the
RSI heuristics.

In order to fulfill the on-line requirement of the opti-
mizer, we set a computational time limit for the heuristics
to find a valid schedule so as not to exceed the time limit
imposed. If this limit is exceeded the baseline algorithm is
triggered. Note that this limit is an input parameter for the
M I heuristics and can be fixed based on the arrival rate of
presentations.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 365

5. EXPERIMENTAL ANALYSIS
This section describes a significant part of the series of ex-
periments we performed in order to evaluate the effective-
ness of the suggested heuristics. We have implemented a
multi-clip query optimizer which performs admission con-
trol based on one of the following : baseline rap. RSI
algorithm. Let us start by presenting the experimental set-
tings :
e The number of presentations NpVe. submitted to the
server was fixed at a default value of 5000. The arrival rate
of presentations was modeled as a Poisson process with a
mean inter-arrival time equal to 1 second. The size of the
clip database varied between 50 and 750, step 50 (thus we
considered 15 different values). The number of clips per
presentation was chosen randomly out of an interval of 3
to 5 clips. The length of a clip was chosen randomly out
of an interval of 20s to 60s. The compression rate of the
clips was randomly chosen from the two compression rates
MPEG-1 with 1.5 Mb/s and MPEG-2 with 4 Mb/s. The
set of precedence constraints was preliminarily held empty.

The constraints MaxStartup, Max Delay, MinDelay,
i.e. the maximal tolerable start time of the schedule, the
maximal and minimal tolerable delays between two clips
in a schedule of a presentation P, were set to the following
typical default values : MaxStartup = 608, MaxDelay =
30s and MinDeloy = Os.

In order to evaluate the effectiveness of the proposed
heuristics, we used realistic statistical distributions of clips.
The first one is based on the Zipf distribution which is
proven to be close to the access distribution in video rental
in general and News-On-Demand in particular [12]. The
second one is based on Hot-Spot distribution where a sub-
set of clips (hot) are more frequently requested than others.
Further variation of the parameters, delay and resource con-
straints are described in the report [ll]. Note that for all
experiments, we measured a mean computational time of 35
milliseconds for the RSI heuristics. This computational
time remains negligible in comparison to the advantage of
the RSI heuristics as reported below.

Zipf Distribution In these experiments, we measured
the server mean workload under the two heuristics (base-
line and RSI). In our analysis we varied the zipf parame-
ter with four distinct values : 0.9, 0.7, 0.5 and 0.3. The
higher the value of the parameter, the more the same clips
are requested. For a parameter value equal to 0, a uni-
form distribution is reached. Figure 3 displays the quotient
of the server mean workload for the baseline and for the
M I heuristics. Figure 4 displays a typical server work-
load distribution for the baseline and for the RSI heuristics
(param2 = 0.7).

Figure 3 shows that a significant reduction is achieved
in the server workload by applying the RSI heuristics in-
stead of the baseline. The reduction achieved ranged from
52.7% for pram4 = 0.3 to 68.7% for prom1 = 0.9. With
an increase in the size of the clip’s database, the reduc-
tion decreased, but remained very significant: 14.4.% for
paramr = 0.3 and 39.5% for paraml = 0.9.

Figure 4 gives additional details about the behavior of
the two algorithms for the Zipf distribution. For larger
clip databases the sharing of clips between presentations
decreases. This affects the effectiveness of the heuristics.

Figure 4 shows that the server mean workload hovered around
59 MB/s with the baseline algorithm, whereas with the RSI
heuristics the workload increases fairly sharply from 50 to
450 clips in the database and continues to increase, although
less sharply, from 450 clips onwards. This also explains why
the reduction in the server workload reported in figure 3
gradually decreases after 450 clips.

- puwn-0.s

Figure 3: Server man workload Zaseline/heuristics for the
Zipf distribution.

Figure 4: %pica1 example of the server workload for the
Zipj distribution.

Hot-Spot Distribution In these experiments, we stud-
ied the impact of the RSI heuristics in the presence of a Hot-
Spot distribution. We assumed that 80% of the queries (pre-
sentations) access hot percentage of clips in the database.
We considered four values for the percentages of hot clips :
hotl = 8%, hot2 = 11%, hot3 = 17%, hot4 = 50%. The
lower the hot percentage, the more the same clips are re-
quested.

Figure 5 illustrates the quotient of the server mean work-
load for the baseline over the server mean workload for the
RSI heuristics. The typical server mean workload distribu-
tion for the baseline and the RSI heuristics looks similar to
that of the Zipf distribution (see report [ll]) and the same
conclusions about the scalability can be drawn.

Figure 5 shows a significant reduction of the server mean
workload when using the RSI heuristics - aa with the Zipf
Distribution. The reduction varied between 54.2% for the
case hot4 = 50% and 95.4% for hotl = 8%. With an in-
crease in the size of the clip's database, the reduction rate
decreased once again, but remained very significant, 15.2%

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 366

for hot4 = 50% and 36.0% for hot1 = 8%.

I:::
f
I--

q.3 -
1.2 -

Figure 5: Server mean workload baseline/heuristics for the
Hot-Spot Distribution.

6. CONCLUSION AND FUTURE WORK
In this paper, we tackle the problem of multi-clip opti-
mization. We developed a novel heuristic approach that
takes advantage of piggybacking. The experimental results
clearly show the effectiveness of the suggested heuristics.

tics in order to make it faster as far as the Branch & Bound
search tree gives good opportunities for parallelizing.

In future work, we plan to parallelize the proposed heuris-

7. REFERENCES

(11 D.P. Anderson. Device reservation in audio/video editing sys-
tems. ACM ltonsactions On Computer Systems, 15(1):111-
133, 1997.

121 Sean C. Sullivan, Loren Winseler, Jeannie Deagen, and Deanna
Brown. Programming with the Java Media Ramework. Wiley
and Sons, Wiley Computer Books, 1998.

[3] S. Adali, M.L. Sapino, and V.S. Subrahmanian. A multimedia
presentation algebra. In ACM SIGMOD Conference, pages
121-132. Philadephia, Pennsylvania, June 1999.

(41 N. Aloia, M. Matera, and F. Paterno. Presentations for
databases in multimedia environments. Multimedia Systems,
6(6):408-420, 1998.

[SI C. Baral, G. Gonzalea, and A. Nandigam. Sql+d : Ex-
tended display capabilities for multimedia database queries. In
ACM International Conference on Multimedia, pages 104-114,
September 1998.

[e] S. Marcus. Muttimedia Database System : Issues and Re-
search Direction, chapter Querying multimedia Databases in
SQL. Springer, 1996.

[7] C. Shahabi, A.I. Dashti, and S: Guandeharizadeh. Profile aware
retrieval optimizer for continuous media. In World Automation
Congress (WAC), May 1998.

[8] C. Shahabi, A.I. Dashti, and S. Ghanderharizadeh. Continuous
media retrieval optimizer and hierarchical storage structures.
In Third Intemational Conference on Integrated Design and
Process Technology IADT'98, pages 360-367. Berlin, Germany,
1998.

191 T. Ng. Raymond and S. Paul. Optimal clip ordering for multi-
clip queries. VLDB journal, 7(4):239-252, December 1998.

[lo] M. Garofalakis and Y. Ioannidis. Resource scheduling for com-
posite multimedia objects. In Proceedings of the International
Conference on Very Large Databases, pages 74-85, New York
City, USA, August 1998.

[ll] Ahmed Mostefaoui and Harald Kosch. Multi-clip query opti-
mization in video servers. Technical report, Information Sys-
tems Lab (LISI), INSA de Lyon, December 1999.

1121 A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies
for an on-demand video server with batching. In ACM Inter-
notional Multimedia Conference, pages 15-23. San Francisco,
October 1994.

