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Abstract 

Current trends in smart homes suggest that several 
multimedia services will soon converge towards 
common standards and platforms. However this rapid 
evolution gives rise to several issues related to the 
management of a large number of multimedia streams 
in the home communication infrastructure. An issue of 
particular relevance is how a context acquisition 
system can be used to support the management of such 
a large number of streams with respect to the Quality 
of Service (QoS), to their adaptation to the available 
bandwidth or to the capacity of the involved devices, 
and to their migration and adaptation driven by the 
users' needs that are implicitly or explicitly notified to 
the system. Under this scenario this paper describes 
the experience of the INTERMEDIA project in the 
exploitation of context information to support QoS, 
migration, and adaptation of multimedia streams.  

 

1. Introduction 

Current trends in smart homes suggest that several 
multimedia services will soon converge towards 
common standards and platforms [1]. Such 
convergence will enable the exchange of several 
multimedia streams between a number of personal 

communication devices and home infrastructural 
devices, such as residential gateways or multimedia 
centers with advanced multimedia interfaces. 

A critical aspect in this scenario is how to make this 
convergence as automatic as possible, in order to avoid 
any manual user intervention. To this aim, an issue of 
particular relevance is how a context acquisition 
system can be used to support the management of such 
a large number of streams with respect to the Quality 
of Service (QoS), to their adaptation to the available 
bandwidth or to the capacity of the involved devices, 
and to their migration and adaptation driven by the 
users' needs that are implicitly or explicitly notified to 
the system. Consider for example, the case of a video 
transcoder able to dynamically adjust the output video 
quality (and thus the required bandwidth) that has to 
send a video stream to a multimedia renderer through 
the network. Such a transcoder may negotiate resource 
allocation with a QoS management service and, as a 
consequence, it may dynamically adjust the quality of 
its stream in order to adapt it to the available 
bandwidth. In this simple scenario it is possible to 
identify two components of the QoS management 
system: a component that acts as a network monitor in 
order to identify the activation of new communication 
streams and implicitly determines their needs, and a 
component that implements the QoS policies. The 
latter acquire the information produced by the 
monitoring components and negotiate with the 
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applications about the resource allocation. Moreover, 
the QoS policies may also take into account other 
context information, such as the position of the users, 
their activities, and their preferences (for example, to 
determine a priority between the different 
applications). In other words, the QoS management 
system can be seen as a context-aware system that 
aggregates context information from a large number of 
context sources including network monitors, 
environmental sensors, users' profiles, etc. 

Under this scenario, this paper describes the 
experience of the INTERMEDIA project [2] in the 
exploitation of context information to support QoS, 
migration, and adaptation of multimedia streams. More 
specifically, we propose an architecture in which a 
context service provides information about the user, the 
environment, and the network status to a QoS service 
using a simple and high-level interaction based on the 
UPnP standard [3]. Using this context information we 
describe how the multimedia content can be 
dynamically adapted and possibly migrated according 
to the network and users' condition. 

The rest of the paper is organized as follows. 
Section 2 presents basic concepts and services to 
support smart access for multimedia contents, while 
Section 3 introduces the INTERMEDIA 
communication infrastructure. The QoS management 
services and the integration layer are presented in 
Sections 4 and 5, respectively. Sections 6 and 7 discuss 
the metadata generation and the content adaptation 
servers. Conclusions are drawn in Section 8. 

2. Basic Services for Smart Multimedia 
Content Access 

The reference scenario depicted in Figure 1 can 
effectively represent a smart environment where users 
wish to access several kinds of multimedia contents 
available from different sources (television 
broadcasting, video-on-demand, IP telephony, etc.). 
These sources can be accessed by means of appropriate 
devices and/or applications inside the home; they are 
referred to as Content Source i in Figure 1. Contents 
are “played” by means of renderers (indicated as Media 
Renderer i), which are scattered around the house. 
Different renderers have different multimedia 
capabilities, mainly in terms of audio/video/textual 
formats and supported codecs; the Content Adapter 
elements are able to adapt media from its original 
format to the specific renderer capabilities. In such a 
scenario we are interested in two main issues: 
• automatic adaptation of media streams; 
• efficient usage of network resources. 

These two issues are somehow related: video and 
audio coding needs adequate support from the network 
in order to deliver packets within the required latency 

and with minimal losses. A QoS service is therefore 
needed to accomplish this task. Without any other 
element, users may have to manually change the 
renderer and the transmission coding when media 
quality degrades due to network congestion. This is 
avoided in the INTERMEDIA architecture by 
modelling the QoS Manager as a context-aware 
system, which collects data from a context acquisition 
system (depicted as circles and rhombuses in Figure 1).  

Figure 1. The INTERMEDIA scenario. 

The rest of this section gives a brief overview of the 
main functional elements identified in the smart home 
environment: context acquisition systems, QoS issues 
in the home environment, and transcoding. 

2.1. Context-aware Systems 
The first efforts to introduce context-awareness 

have been related to the localization of users [4]. 
Localization is still one of the main building blocks of 
context-aware systems, although recently the concept 
of context-awareness has been enriched to take into 
account more general environmental parameters, where 
the meaning of the term “environmental” is as broad as 
possible. Environmental parameters may refer to user 
physiological/emotional data, user actions/movements, 
user identity, status of the surrounding environment, 
location, time, profiles, agendas and data referable to 
the user, and even presence and context of other users 
[5][6]. Context-aware systems are particularly useful to 
support mobile applications since the context may 
change rapidly with mobility (of the user and/or of the 
environment), and the system should react rapidly to 
such context changes.  

In general, the architecture of a context-aware 
system includes the following layers: sensors, raw data 
retrieval, pre-processing, storage/management, and 
application. 

The sensor layer includes not only the hardware 
sensors (physical sensors) but also any data source 
providing context information, for instance virtual 
sensors which offer data available from applications or 
services (e.g., data deducted by a specific use of a 

1355



 

 

browser by the user) and logical sensors which 
combine information obtained from physical and 
virtual sensors (e.g., the location of the user associated 
to an action on a browser). Recent research issues 
focused on networking between physical sensorial 
devices, to build so called Wireless Sensor Networks 
(WSN [7]).  

Context-aware systems can be implemented 
according to different architectures, which in [8] are 
classified according to the way the contextual 
information is collected, in terms of direct sensor 
access, middleware infrastructures, or context servers. 

2.2. Quality of Service in Home Environments 
Quality of Service can be managed at different 

layers in the network stack. End-to-end guarantees can 
be effectively supplied by layers with an end-to-end 
scope; the typical solution is to implement QoS at the 
network layer with two different approaches, namely 
Integrated Services (IntServ) [9] and Differentiated 
Services (DiffServ) [10]. IntServ is a fine-grained, 
flow-based architecture for service guarantees on the 
Internet. Signalling is done using the RSVP protocol 
[11], which exchanges information about what the 
application requests from the network and what the 
network can guarantee. DiffServ is a coarse-grained, 
class-based architecture for service differentiation on 
the Internet. The network defines different classes of 
traffic, with different QoS requirements. In complex 
networks, the combination of IntServ at the network 
edge and DiffServ in the network core can offer the 
features of IntServ together with the ease of scalability 
and implementation of DiffServ. 

Dealing with QoS at the network layer enables to 
effectively distinguish traffic flows (for both hosts and 
applications), to use the same mechanisms across 
heterogeneous networks and to offer a uniform view of 
QoS to users and applications. However, the end-to-
end policies must usually be translated into specific 
technology-dependent mechanisms at the data link 
layer. Currently, QoS is defined by IEEE 802.1p for 
Ethernet switches in terms of queuing disciplines. For 
Wi-Fi networks, IEEE 802.11e defines the same 
priorities, which correspond to a limited number of 
Access Categories (AC); each AC is associated to a 
different queue and different operational parameters, in 
order to get several levels of priority among packets 
both inside a single device and among different ones.   

There are standard mechanisms to map L3 (i.e., 
network layer) policies into specific L2 (i.e., link layer) 
mechanisms. For example, the 802.11e priorities are 
derived automatically from the IP DSCP codepoints 
[12]; thus, the treatment of traffic depends only upon 
the policy at the network layer. A QoS server is 
typically needed to manage the priority level of each 

traffic stream in order to achieve system efficiency and 
fairness. 

2.3. Exploiting Metadata for Adaptation 
Because of the large variety of possible media 

items, content delivery heavily benefits from any 
available knowledge about how the content is to be 
adapted. Regarding the application scenario, the 
adaptation decisions generally target maximum visual 
quality at the given bandwidth. However, since there 
are multiple dimensions of adaptation, the optimum 
decision requires taking both the context of the user 
and the characteristics of the media into account. 
Metadata represents this knowledge about the media. 

Sometimes metadata is stored within the media (like 
EXIF tags in digital photos), in other cases it might be 
available from other locations (like electronic 
programme guides for TV). It might also be possible 
that helpful information is implicitly contained in the 
coded multimedia data itself, but has to be extracted. 
The detection of shot boundaries and spatial 
segmentation are typical examples of such cases [13]. 
In INTERMEDIA, an extensible set of tools has been 
defined that allows annotating multimedia data 
whenever new media items become available. 

We can roughly make a distinction between low-
level (signal level) annotations, medium-level 
(structural level) annotations, and high-level (semantic 
level) annotations. Annotation can be performed either 
by humans or by machines; semi-automatic hybrid 
procedures with varying degrees of automation are also 
possible. 

Higher-level annotations typically allow for more 
effective adaptation decisions. It might, for example, 
be good to reach a given bandwidth bound by reducing 
temporal resolution for scenes with low motion activity 
(structural level), but it might be even better to utilize 
spatial or SNR scalability in image regions that are not 
important to the human viewer (requiring semantic 
level information like region of interest (ROI) 
information) [14]. 

3. An Architecture inside INTERMEDIA 

The INTERMEDIA vision goes beyond the 
traditional communication paradigms, where the user 
usually has to adapt to the available communication 
system. INTERMEDIA has adopted a user-centric 
approach, where the communication facilities are built 
around the user: dynamic networking, context 
acquisition, content sharing and adaptation, security 
and Digital Right Management (DRM). The 
INTERMEDIA vision and scenarios are summarized 
on the project Web site [2]. Context information is 
required to identify the user and its representation 
(profiles, requirements); a number of heterogeneous 
interfaces on different kinds of devices are available to 
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the user and content adaptation is required in order to 
adapt multimedia sources to such interfaces. 

Multimedia transmissions usually consume a lot of 
bandwidth, and this kind of traffic is sensitive to delay 
and jitter. Our architecture is devoted to deal with such 
kind of traffic in an efficient and scalable way, taking 
into account the fact that home networks are often 
made of simple and cheap devices, unable to support 
sophisticated QoS control mechanisms. 

Apart from the obvious presence of a wireless 
network, we can identify three main components in our 
architecture: 
• the multimedia subsystem, composed of content 

sources, multimedia renderers and content 
adapters; 

• the QoS management subsystem, which is 
responsible for the communication management 
by taking into account as much context 
information as possible; 

• the context acquisition subsystem, which gathers 
context information and exports it to the whole 
system. 

The multimedia subsystem includes all the 
elements able to provide, manipulate or use multimedia 
content, i.e., sources, renderers and adapters such as 
transcoders. Several multimedia content sources can be 
taken into account in a smart home environment; these 
sources can be external, for example television 
channels on the satellite, DVB-T, or the Internet, or 
they can be internal, in form of multimedia data stored 
in PCs, PDAs, mobile phones, or other multimedia 
appliances available in the home. In the same way, a 
number of renderers might be used to play the content: 
these renderers can be static (such as televisions, 
stereos, PCs) or mobile. In the latter case, the renderers 
are typically mobile phones or PDAs or other wearable 
devices. As there is potentially a large number of 
heterogeneous renderers, with different capabilities, the 
architecture takes into account also content adapters, 
which are able to adapt the format of the available 
multimedia content to the actual media renderer in use. 
These tools include video transcoders that are able to 
dynamically change the video (audio) stream 
characteristics, e.g., in terms of used bandwidth. The 
multimedia subsystem also contains a controller 
component that governs the behaviour of the 
multimedia components, especially the interaction 
between them, based upon information gathered from 
the other subsystems. Currently, the controller is 
realized as a UPnP control point, exceeding the scope 
of usual UPnP AV control points by offering the 
capability to redirect content transport via adaptation 
components, and to transfer running multimedia 
sessions from one renderer to another. 

The QoS management subsystem acts as an 
admission controller and streaming manager; it is a 
context-aware subsystem, which gathers information 

from a context acquisition subsystem. The QoS 
Manager exports information to the multimedia 
applications (e.g., multimedia subsystem elements) 
about network usage and available resources, so that 
the latter can adapt their coding as appropriate; it might 
directly suggest applications to reduce or increase their 
bandwidth and, if supported by the physical and MAC 
layers, it manages requests of bandwidth allocation. 

 

Figure 2. An architecture for smart homes. 

Finally, the context acquisition subsystem 
represents one of the most important elements in a 
user-centric framework. Context information enables 
multimedia applications and the QoS Manager (as well 
as all other kind of managers) to become aware of 
environmental conditions and users’ preferences 
without requiring any manual intervention from users. 
In the specific scenario, a wireless sensor network 
monitors the environment and the users; it provides 
information related to user localization, to users’ 
activities, to their use of appliances, devices or other 
equipment, and to general conditions of the 
environment (light, temperature, humidity, etc.). 
Moreover, the network is monitored by a set of 
“probes” that provide information about the current 
active communication flows. 

Figure 2 shows how the three components are 
integrated in the proposed architecture. Apart from the 
obvious presence of the TCP/IP stack, this architecture 
builds upon well known wireless standards including 
IEEE 802.11 for multimedia communications and 
management, Bluetooth for interconnection with 
personal devices, and IEEE 802.15.4 for the WSN. 
Multimedia communications rely on control and 
transport protocols, such as RTP, RTSP, and SIP; in 
addition, the UPnP technology helps in making the 
different devices usable out-of-the-box, thus 
unburdening the user of tedious manual configuration. 
The architecture exploits the device and service 
discovery mechanisms of UPnP. 

The context acquisition subsystem gathers very 
heterogeneous information; in the proposed 
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architecture, a common interface to access and interact 
with the various components is provided by a software 
layer called SAIL (Sensor Abstraction and Integration 
Layer), which embeds each component and provides an 
abstraction of the component that is exported in terms 
of a UPnP device. A description of SAIL is given in 
Section 5. 

4. The QoS Manager Services 

The QoS Manager is hosted in a server that offers 
the QoS services to the applications and that acquires 
context information from the WSN and from the 
Network Probes. The interaction among these 
components happens by means of UPnP; the QoS 
Manager is a component of the QoS UPnP architecture. 

The QoS Manager should provide information about 
estimated network traffic conditions of both single 
subnetworks (e.g., one Wireless LAN) and paths 
crossing multiple subnetworks; it should also take care 
of resource reservation if network devices support such 
a feature. 

The monitoring service provides the QoS Manager 
with a quite varied set of information (mean and 
instantaneous bandwidth, number of active flows, 
arrival and service rates, etc.). This information is 
updated dynamically according to a configurable 
period and is a direct product of the Network Probes; it 
is merged with context information about user/renderer 
localization in order to implement a real context-aware 
system. The actual design of the merging process is out 
of the scope of this paper. The Network Probe does not 
require any specific QoS features on all intermediate 
devices; it should be introduced in the QoS architecture 
profile of UPnP. 

When the application requires information on a path 
between different subnetworks (namely, when the 
source and the destination are not in the same physical 
network), the service combines the information on the 
status of the different subnetworks crossed by the path 
connecting the two hosts, and the user’s location and 
statistics. 

The service described above only provides 
feedbacks and “suggestions” to QoS-aware 
INTERMEDIA applications, but in absence of low-
level mechanisms at the MAC layer of the networks it 
cannot force any QoS policy; it can only implement a 
simple Call Admission Control function.  However, if 
the network and MAC layers provide QoS mechanisms 
(for example, if IEEE 802.11e is used), the QoS 
Manager can fully act as a Bandwidth Broker. In such 
a case, when requests for new communication streams 
with given characteristics (bandwidth, latency, 
burstiness) are received, the QoS Manager can attribute 
to each request a priority depending on the user and on 
the applications involved in the communication and, 
based on the information about the available network 

resources, it can also grant network resources (e.g., 
bandwidth, queue space). Such interaction is described 
in the UPnP QoS profile [3]. In any case, the admission 
of a new flow may require a renegotiation of resources 
currently used by other applications, if such 
applications can dynamically adjust their requirements. 
This should avoid network congestion and 
consequently prevent applications from experiencing 
any quality degradation due to a drop of resources. 

The service offered by a QoS Manager is much 
more powerful than that available with specific 
transport protocols, such as the control of RTCP for 
RTP flows: it provides a detailed view on the whole 
network status rather than a feedback on a single 
transmission stream. 

5. The Context System 

This section presents the context system by which 
information about users and networks is collected. It 
consists of a common layer responsible for the sensors’ 
abstraction and integration (called SAIL); virtual 
sensors (WSN and network measures) are modelled 
and exported by this layer. 

5.1. The Virtual Sensor Model 
A Sensor Node models an abstract sensor 

embedding a set of abstract transducers, actuators, and 
services (that are used to model complex services, such 
as those offered by ZigBee).  The concept of Sensor 
Node is not bound to any specific hardware or software 
platform for the WSN, furthermore a Sensor Node may 
or may not correspond to a physical sensor of the 
WSN. In fact, this abstraction can be used to model a 
single physical sensor, a group of physical sensors, or a 
virtual sensor, such as a Network Probe. For example, 
two different physical transducers in a sensor can be 
modelled by a single Sensor Node with a single 
abstract transducer. 

The services can be accessed by send and receive 
primitives, while transducers and actuators can be 
accessed according to push or pull models. In the push 
model, the Sensor Node automatically sends the data to 
the upper layers, while in the pull model the data has to 
be explicitly requested by the upper layers. 

5.2. The SAIL Architecture 
SAIL is organized in three layers, namely the 

Access, Abstraction, and Integration Layers, 
constructed over an OSGi framework [15] and shown 
in Figure 3. The OSGi specification defines a service-
oriented, component-based environment for developers 
and offers standardized ways to manage the software 
life cycle for Java applications.  

The SAIL Access Layer defines a minimal set of 
functionalities that any WSN application should 
provide, either on its own or by means of an 
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application adapter. This layer interacts directly with 
the WSNs to implement the Sensor Node. To this end, 
it comprises a set of components called Sensor 
Application Drivers (SADs), each of which 
communicates with an application running on a WSN. 
The SAD exports the WSN functionalities in terms of a 
Service Provider Interface (SPI) [17] that is specified 
by the Abstraction Layer.  

 

Figure 3. The SAIL architecture layers 
and the OSGi platform. 

The Abstraction Layer is implemented by a single 
component called Sensor Base Driver (SBD). The SBD 
defines the SPI interface that must be implemented by 
the SAD. The SPI is a general interface that is designed 
to support different WSN application models. The SBD 
can be thought of as a high-level driver which registers 
the SAD in the OSGi framework. The SBD also 
implements an API that is used by the Integration 
Layer. 

The Integration Layer exports the OSGi services 
registered by the Abstraction Layer to client 
applications. To this purpose it encapsulates different 
exporters, called Sensor Technology Exporters (STEs), 
suitable to provide access to the OSGi services using 
different technologies. In the current implementation 
the Integration Layer comprises exporters for UPnP 
and PERSONA [16]. 

5.3. The Network Probe as a Virtual Sensor 
Usually, network measures are only available from 

internal hardware and software monitoring of network 
equipment (bandwidth usage, queue sizes, queue 
latencies, and so on). Often such measurements can be 
realized only in hardware and are thus quite expensive 
to supply. This leads to the unavailability of suitable 
monitoring tools for most widespread low-end network 
access hardware, such as access points and Ethernet 
switches. 

In the proposed architecture, we monitor the 
network by means of software probes, whose aim is to 
collect as much information as possible about the 

network traffic. Such tools can be hosted on general 
purpose PCs as well as on network equipment; they 
take advantage of the intrinsic shared nature of the 
wireless medium and the replication capabilities1 of 
many Ethernet switches. Each Network Probe makes a 
flow-based classification at the application layer and 
keeps track of any flow above the transport layer. For 
each flow a number of parameters is kept: total number 
of packets/bytes seen so far, QoS class, average and 
current bandwidth, estimation of the application 
protocol from which the flow has been generated, etc.; 
other measurements can be retrieved from aggregated 
data, such as number of active and terminated flows, 
statistical properties of any given class of flows (mean 
and instantaneous arrival rate and flow duration), 
bandwidth for different QoS classes. 

The classification engine is built upon the Click 
Modular Router [18] tool running in user-space, while  
specific modules have been developed in order to 
recognize the application protocol generating the flow 
(these modules are based on a patter-matching schema 
derived from L7-filter [19]), associate each packet with 
a specific flow, and update statistics accordingly. 

 

Figure 4. Architecture of the Network Probe. 

The Network Probe can be viewed as a particular 
type of sensor, and thus it is virtualized within SAIL as 
a virtual sensor, where the transducers are associated to 
the measurements described above: mean and current 
bandwidth, number of active flows, mean and current 
arrival/departure rates, and number of bytes/packets 
arrived (see Figure 4). Such measures are available for 
different levels of aggregation, in particular we model 
each Network Probe (including network traffic below 
the transport layer), all the three main QoS classes 
[10], namely EF (Expedited Forwarding, [12]), AF 
(Assured Forwarding, [20]) and BE (Best Effort), and 
every recognizable application (HTTP, RTSP, RTP, 
DNS, etc.) to a different Virtual Sensor. This provides 
the QoS Manager with a powerful set of information 

                                                             
1 Some L2 switches can replicate all traffic from all or a subset of 

their interfaces to any given interface, in order to allow an external 
device to monitor all switched traffic. 
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and the ability to distinguish among different classes of 
service, protocols and applications. 

6. Metadata Generation for Context-aware 
Content Adaptation 

The purpose of metadata extraction and generation 
is to allow for context-aware adaptation. Therefore, 
only those characteristics of the content have to be 
described that can be interrelated with both a user’s 
context (including the networking conditions) and 
available adaptation techniques. In the INTERMEDIA 
scenario, we are mainly interested in metadata 
concerning temporal segmentation, Region of Interest 
(ROI) and scene classification. 
Temporal segmentation. The general structure of 
audio as well as video material can be usually 
described as temporally concatenated pieces of media. 
Correspondingly, the first step to acquire information 
about multimedia content is to deduce this temporal 
structure (structural level) from hints found on the 
signal level. The INTERMEDIA scene cut detection 
tools [22], for example, use colour histograms to detect 
shot boundaries. A resulting initial description is 
subsequently stored in MPEG-7 format and can be 
accessed through the context server. 
Region of Interest. In addition to the temporal 
domain, spatial information is also meaningful 
structural level information to be made available by the 
context server. Video object segmentation is a standard 
task in computer vision. Based on low-level 
characteristics like motion, colour, and texture, 
INTERMEDIA tools separate objects from 
background. This allows crop & scale approaches to 
adapt video to lower resolution screens (see [14]), but 
it also allows performing unequal SNR scalability, i.e. 
cutting down the bitrate for spatial parts with lower 
significance. 
Scene classification. The INTERMEDIA video tools 
include scene classification into genres (e.g., anchor 
person of a news cast, weather forecast, or sports), 
which enables balancing multiple streams that share 
bandwidth. During scenes that match a preference of 
the user (via user context information), the system 
would acquire a larger slice of the bandwidth, while 
during scenes or genres that a given user does not value 
that much, the system may donate parts of a user’s 
allowed bandwidth to users that currently stream 
scenes of their interest. 

Useful domains of adaptation here are related to 
those expected from scalable media representations. 
Adaptation tools therefore allow changing (i.e., 
lowering) the data rate of encoded media by lowering 
its quality in terms of spatial, temporal, or SNR 
resolution. This might be possible by simply discarding 
parts of hierarchically-encoded streams but may also 

require complex manipulations to the encoded data or 
even transcoding by re-encoding. To make the context-
aware adaptation processes in Section 7 format-
agnostic, high-level descriptions of the structure of the 
scalable content (i.e., compressed multimedia 
bitstreams) have to be generated and made available 
through the context server. This structural metadata can 
be transformed (an operation in the semantic domain) 
in order to reflect desired adaptations of the content, 
and can then be used to automatically create adapted 
versions of the multimedia streams. In INTERMEDIA, 
we describe the compressed bitstream structure in 
eXtensible Markup Language (XML), more 
specifically, we automatically generate MPEG-21 DIA 
generic Bitstream Descriptions (gBSDs) [21]. This 
shifts the complexity of the content adaptation process 
from the binary (compressed) domain to the XML 
domain. 

7. Adaptation Servers  

The adaptation process takes care of transforming a 
given content into the most suitable media format, 
according to the context information (namely 
renderers’ capabilities, user preferences and network 
conditions). Adaptation could resolve into both media 
transcoding and content manipulation. The former is 
mostly related to transmission formats and codecs as 
controlled by a set of parameters, which include 
references to formats to be used as well as numeric 
properties for the resulting content, such as temporal 
frequency (frame rate, audio sampling rate), bitrates, 
frame size and height. The latter takes into account the 
content to be transferred and works at a higher layer by 
managing logical entities, such as scenes and objects. 

The optimal settings of the transcoding parameters 
for the current situation must be determined by the 
adaptation decision taking engine (ADTE). The 
optimization problem to be solved by the ADTE can be 
specified by three components from MPEG-21 Digital 
Item Adaptation (DIA) [21]: Universal Constraint 
Descriptions (UCD) expresses fundamental constraints 
on variables that represent various media 
characteristics (e.g., bandwidth); Usage Environment 
Description (UED) characterizes terminal capabilities, 
network characteristics (which would be repeatedly 
updated using the aforementioned QoS Manager), user 
properties and relevant factors of the environment; and 
Adaptation Quality of Service (AQoS) descriptions 
enumerate possible values for adaptation parameters, 
resulting values (such as quality measures) and 
relationships between the values, e.g., only certain 
tuples are allowed for frame height and width, and such 
a tuple, along with other parameters, is input to a 
function that computes the resulting video’s bitrate. 

After a multimedia session is started with adaptation 
parameters computed according to the initial situation, 

1360



 

 

the controller of the multimedia subsystem maintains 
the UED according to regular queries of the available 
context information, including results of network 
probing. If the available bandwidth is suddenly too 
small for the currently produced bitrate, the ADTE is 
invoked again, giving new parameters that are then 
used for adapting the rest of the media stream. Also, if 
the bandwidth rises by a significant amount, adaptation 
parameters will be updated by the ADTE. 

Semantic and ROI-based content adaptations are 
two scenarios supported by the services for smart 
multimedia access and the INTERMEDIA architecture 
discussed in this paper. Semantic adaptation enables 
the extraction of desired content fragments by linking 
the high-level descriptions of the multimedia streams 
to the temporal segmentation metadata (see Section 6) 
and the user preferences (available through the context 
acquisition subsystem). In smart home environments, 
scene classification (see Section 6) can be used 
together with semantic adaptation to manage the 
multimedia streams, in terms of efficiently allocating 
network resources to users based on their semantic 
preferences. In the ROI-based adaptation process, the 
high-level descriptions of video streams are adapted, 
steered by the automatically generated spatial metadata 
(see Section 6). The transcoding decisions are a trade-
off between quality and compression, which can be 
different for ROIs and boundaries. In combination with 
information obtained from the QoS Manager, it is 
possible to reflect the (dynamically changing) 
bandwidth in the unequal partitioning of the data rate, 
devoting a higher rate to the ROIs while lowering the 
rate for the remainder of the video stream. 

8. Conclusions 

In this paper, a context-aware architecture for QoS 
of multimedia streams has been described. The main 
components are the context acquisition, the QoS and 
the multimedia adaptation subsystems. Context 
information is mainly devoted to user localization and 
network monitoring. The QoS Manager aggregates 
such information for the adaptation process. 
Adaptation is based on metadata descriptions of 
multimedia contents and consists of both transcoding 
and content manipulation. 

Several tools are already available from different 
partners; current activities are aiming at their 
integration in a common experimental setup that will 
implement the full architecture described. 
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