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Abstract—The volume of Internet video is growing, and is
expected to exceed 57 percent of global consumer Internet traffic
by 2014. Peer-to-Peer technology can help delivering this massive
volume of traffic in a cost-efficient, scalable, and reliable manner.
However, single bitrate streaming is not sufficient given today’s
device and network connection diversity. A possible solution to
this problem is provided by layered coding techniques, such as
Scalable Video Coding, which allow addressing this diversity by
providing content in various qualities within a single bitstream.

In this paper we propose a new self-adapting piece-picking
algorithm for downloading layered video streams, called Deft-
pack. Our algorithm significantly reduces the number of stalls,
minimises the frequency of quality changes during playback,
and maximizes the effective usage of the available bandwidth.
Deftpack is the first algorithm that is specifically crafted to take
all these three quality dimensions into account simultaneously,
thus increasing the overall quality of experience. Additionally,
Deftpack can be integrated into Bittorrent-based P2P systems
and so has the chance of large-scale deployment. Our results
from realistic swarm simulations show that Deftpack significantly
outperforms previously proposed algorithms for retrieving lay-
ered content when all three quality dimensions are taken into
account.

I. INTRODUCTION

The consumption of all forms of Internet video is constantly
growing, and is expected to exceed 57 percent of the overall
Internet traffic by the end of 2014 [2]. Only the volume of
video-on-demand (VoD) traffic already doubles every two and
a half years, which is due to the higher bitrates used for
High-Definition (HD) content and to the increasing number
of consumers. As the rise in required bandwidth increases the
distribution costs of video, efficient strategies for supporting
video distribution are required. Thus, distribution mechanisms
that aim to be scalable, fault-proof, and cost-efficient, like P2P
systems, have become very popular [1, 21, 24, 25]. Addi-
tionally, videos are nowadays provided in different qualities
to ensure that various types of end-user terminals can be
supported. Layered coding schemes allow the encoding of
content into several qualities within a single stream, providing
the viewer with the best quality depending on his needs
and capabilities. In this paper we propose a novel algorithm
for downloading such layered content over P2P networks
called Deftpack, which we have integrated into the Next-Share
Bittorrent-based P2P system [12].

Due to the diverse capacities of end-user terminals for
multimedia content like HDTV sets, notebooks, and mobile
phones, and the heterogeneity of their network connections,

the provisioning of content in a single quality is not sufficient
anymore. Although the content can be provided multiple
times in different qualities, such an approach is inefficient
and leads to a waste of bandwidth. An alternative is pro-
vided by layered coding schemes, which provide the content
in multiple qualities within a single bitstream. The source
stream is encoded into several layers that can be retrieved
independently and that can be used to increase or decrease the
playback quality. This technology allows clients with devices
of different types and with different connection technologies to
access the same content, and, in a P2P system, to collaborate
with each other in sharing the layers. With layered content, the
problem of selecting the best sustainable quality is introduced,
increasing the complexity of the piece-picking algorithm re-
sponsible for determining the best order to download the
pieces of the required layers before their playback deadlines.
As the download bandwidth available to a peer is limited,
the piece-picking algorithm has to decide whether to focus
on downloading pieces needed to ensure continuous playback,
or on downloading pieces of higher layers to increase the
playback quality. Deciding when to increase quality is not
trivial as it involves the risk of not being able to maintain
the new playback quality, thus reducing the overall quality of
experience (QoE) [11].

Solutions for retrieving layered content over P2P networks
have been extensively investigated in the last years [6, 14, 17,
19, 20, 23], but they do not simultaneously address the quality
dimensions of reducing the number of stalls, minimising the
frequency of quality changes, and maximizing the effective
usage of bandwidth. In addition, our algorithm has been inte-
grated into the open source P2P system Next-Share [12], which
provides a BitTorrent-based solution for distributing layered
content taking advantage of existing BitTorrent communities.
Although the architecture and algorithms for supporting lay-
ered content within Next-Share are codec-agnostic, the system
has been implemented using Scalable Video Coding (SVC).
The remainder of this paper is organized as follows. Section

II provides an overview of the problems arising when selecting
pieces of layered content for download. In Section III related
work is discussed. In Section IV the design ideas and details of
our new layered piece-picking algorithm are described. Section
V describes the simulation settings used to evaluate our new
piece-picking algorithm, while Section VI compares its per-
formance to that of previous algorithms. Finally, Section VII
concludes the paper.

2011 IEEE International Symposium on Multimedia

978-0-7695-4589-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ISM.2011.52

285



II. PROBLEM STATEMENT

In this paper we assume the video streams to be distributed
by a P2P system to be encoded using the Scalable Video
Coding (SVC) scheme. In SVC, the video bitstream consists
of the H.264/AVC-compatible base layer and spatial or quality
enhancement layers. The scalability of the video codec allows
changes of the resolution and the visual quality by simply
adding or discarding enhancement layers for the decoding pro-
cess. While the base layer provides the minimum quality and
can be decoded on its own, every enhancement layer requires
all lower layers to be available for decoding. An example of a
four-layer encoded stream is presented in Figure 1, where BL
stands for base layer, and EL1-3 for the enhancement layers.
The time slots on top of the figure represent the time intervals
at the end of which the playback quality can be changed.

The main goal when designing a layered piece-picking
algorithm is to provide the best possible quality for the
following time interval and still ensure that all pieces are
received in time for playback. Therefore, the P2P client needs
to receive the pieces for every time slot from the lowest layer
up to the desired playback quality to ensure that the content
can be processed by the decoder. Thus, the order in which
layers are received is crucial, as high-layer pieces cannot be
processed if the corresponding pieces of the lower layers have
not been received as well.

When layered content is transmitted through P2P systems,
four major problems may arise. First of all, stalling may
occur, that is, the decoder may not have data available for
continuous decoding of the video stream. Stalling occurs
when data from the base layer is not received in time for
playback. This can happen if the peer’s download capacity
is not sufficient, or if the available download bandwidth is
not smartly used to download the more important pieces first
in highly dynamic environments such as P2P systems. This
behaviour is particularly evident if the base layer is only
prioritized over the enhancement layers of the same time slot,
but not over the enhancement layers from previous time slots.
An example of this situation is presented in Figure 1, where,
given the playback position at time instant t, the playback will
stall at the end of time slot t because the base layer in time
slot t+1 is not available (but the enhancement layers are).

Second, layered piece-picking algorithms may not make
optimal use of the available bandwidth, introducing a band-
width usage problem. These algorithms usually focus on the
download of pieces within a sliding window that contains
pieces for a limited number of time slots starting from the
current playback position. However, if only the pieces for
the near future are considered, the bandwidth may not be
fully utilized if the network conditions are good and the peer
has a download link capacity higher than what is needed
for the playback of the highest available quality. As the
network conditions in P2P systems are often very dynamic,
the bandwidth should be utilized as much as possible, possibly
for pieces further in the future.

Third, bandwidth waste may occur if pieces from higher

Fig. 1: An overview of the problems arising with SVC

layers are downloaded but are never used for playback. Piece-
picking algorithms usually try to increase the quality as soon
as possible, trying to fully utilize the available download
bandwidth. Therefore it can happen that pieces are often
selected for download even though their playback deadlines
are already close. In such cases, the pieces may be received
after their playback deadlines and thus be discarded because
they are useless for the current playback. In Figure 1, if the
playback would reach time slot t+5 and the corresponding
data of the enhancement layer EL1 for that slot would still
be missing, (e.g., because it is requested from a slow peer),
the player will only be able to display the base layer, wasting
the bandwidth that has been invested in the download of the
second enhancement layer (EL2).

The last problem regards the frequency of quality changes
that occur during playback. Enhancement layer pieces are
usually downloaded as soon as there is sufficient bandwidth,
and as a consequence, the viewing quality may frequently be
changed. Such frequent quality changes should be avoided,
as they lead to a worse viewing experience than viewing the
content at a lower, but constant, quality [11]. As an example,
in Figure 1 it is better to avoid displaying the EL2 layer in time
slot t+8, thus having a continuous playback of EL1 between
t+7 and t+9, rather than switching quality every time slot.

To address all of these problems, we have developed a new
layered piece-picking algorithm that is described in Section
IV.

III. RELATED WORK

Over the last few years, P2P video on demand and live
streaming have been widely investigated. The most recent
work converges on the opinion that the usage of layered coding
solutions such as SVC can be beneficial for P2P networks.
Several solutions have been presented on how to design and
implement layered coding support in P2P networks. In [19] a
new approach that takes advantage of SVC as well as network
coding is presented. Our approach differs since we only focus
on the download algorithm relying on the existing Bittorrent
[3] overlay and communities. In [16] an algorithm using a
”zigzag scheduling” approach is presented. The zigzag-like
piece-picking algorithm defines a zigzag priority order on the
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pieces within a sliding window that contains the pieces with
deadlines in the near future, prioritizing lower-layer pieces
over higher-layer pieces. Using this zigzag order to sort the
pieces according to their priority, the pieces are subsequently
selected for download as long as there is sufficient download
bandwidth available. Although the results show the advantage
of using layered coding technology in P2P, their approach
consists of a stream divided into 50 layers with a 8 kbit/s
average bit-rate reaching a total of 400 kbit/s, causing many
quality changes.

Recent studies show that frequently changing viewing qual-
ity has a bad effect on the user-perceived QoE [11]. To
maximize the QoE, is better to stay at a lower quality rather
than having frequent quality changes, even if it means loosing
bandwidth efficiency. Therefore, one of the main goals of this
paper is to show how to reach HD quality using as few layers
as possible to minimize the number of quality changes during
playback.

In [17] a complete new system has been designed and
implemented focusing on robustness rather than on offering
highly different bit-rates for different devices/connections. The
paper focuses on the arriving requests of the peers from the
network and presents a smart algorithm for scheduling. This
design relies on the adoption of the algorithm by all the
peers in the system and on the good nature of the seeders.
Furthermore, there is no proposed algorithm for retrieving
pieces in an efficient manner.

The deadline-based algorithm used in the Next-Share sys-
tem [12], which is very simple and has a low complexity,
downloads pieces according to their playback deadline, i.e.,
pieces with an earlier deadline are downloaded before pieces
with a later deadline. This kind of algorithm is usually
applied for single-layer streaming and ensures that the pieces
are received in time for playback. When applied to layered
content, it first downloads all of the base layer pieces according
to their deadline, then continues downloading the pieces for
the first enhancement layer, and so on, as long as there is
bandwidth available for higher-layer pieces.

The KP-based piece-picking algorithm [9] is based on
algorithms for solving the knapsack problem (KP) [18], which
is a problem in combinatorial optimization. As the piece-
picking of layered content and the knapsack problem are very
similar, the KP-based algorithm reuses approaches to solve
the KP for addressing the layered piece-picking problem. The
algorithm first calculates the priority for all enhancement layer
pieces based on a utility formula (see Equation 1), which takes
the layer weights (lower enhancement layers are required for
the decoding of higher enhancement layers), the remaining
time until the playback deadline, and the download probability
into account. After calculating the utility for all enhancement
layer pieces within the sliding window that are not yet selected
for download, these pieces are sorted according to their utility.
From this sorted list the pieces are selected for download as
long as there is download bandwidth available.

These last two algorithms provide good solutions for dif-
ferent scenarios, protocols and network conditions, and are

considered for the design of our new piece-picking algorithm
in the following section.

IV. DEFTPACK

In this section we describe our piece-picking algorithm,
called Deftpack. Section IV-A describes the design of the
algorithm while Section IV-B explains in detail the behaviour
of its sliding window. Section IV-C describes how Deftpack
addresses the problems stated in Section II.

A. The Design of Deftpack

The layered piece-picking algorithm presented in this paper,
Deftpack, is based on a single-layer VoD algorithm to retrieve
the base layer, and on the knapsack problem-based algorithm
[18] for retrieving the enhancement layers. Deftpack divides
the pieces to be downloaded into five sets, and decides from
which one to select them, following the order of importance
of the sets, which is indicated by the numbers in Figure 2.
As the sizes of the sets are not relevant to their importance,
Figure 2 does not show their real proportionality. Every set has
a horizontal size, a range of pieces that represents a specific
time window in the stream, and a vertical size, covering a
number layers.

The horizontal boundaries of the high-priority set (set 1
in Figure 2), which is also called the sliding window, are
determined by the current playback position in the stream
and a certain size that might vary depending on the content
duration. The right end of the high-priority set determines the
beginning of the mid-priority set (set 2 in Figure 2), the size
of which is set to four times the size of the sliding window.
The remaining pieces, from the end of the mid-priority set
until the end of the stream, define the low-priority set (set 3
in Figure 2). The active layers are defined as the layers that
are currently used for playback, and they define the vertical
boundary of the mid- and low-priority sets. In the example of
Figure 2, the number of active layers is three.

Once all the pieces from the high-, mid-, and low-priority
sets have been downloaded, Deftpack will select pieces from
the lowest-priority set (set 4 in Figure 2). This gives a chance
of improving the playback quality towards the end of the
stream, increasing the QoE [11]. The past set (set 5 in Figure
2), represents all the pieces, for all the layers, from the
beginning of the stream until the current playback position.
Downloading pieces in the past set increases their availability
in the swarm, and allows the user to watch the stream at its
best quality once the download is finished.

Except for the high-priority set, pieces within all the sets are
selected following the rarest-first approach. For the mid-, the
low-, and the lowest-priority sets, this behaviour guarantees
that the spare bandwidth, that is not being used for pieces
from the sliding window, is invested in retrieving any pieces
that will probably be needed in the future.

In the high-priority set, the pieces of the base layer are
always downloaded in order, based on their playback dead-
lines, before pieces of the enhancement layers. Pieces of the
enhancement layers are downloaded in decreasing order of
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Fig. 2: The five priority sets distinguished by Deftpack. The
grey pieces represent downloaded pieces.

their utility. The utility at time slot tk of piece j (corresponding
to time slot tj) of layer i is defined as:

uijk =
lwi × dpi

(tj − tk)
α , (1)

where lwi is the weight of layer i, dpi is the probability that a
piece can be downloaded under the current network conditions
in time for playback [18], and α is a positive constant. In
the simulations presented in Section VI, we investigate the
simplest scenario where α is set to 1, and the weights of the
BL, EL1, EL2, and EL3 are set to 4, 3, 2, and 1 respectively.

The low computational complexity of Deftpack when down-
loading only the base layer greatly reduces the computational
requirements for hardware-limited devices, as these devices
will never be able to display higher qualities due to their
network connection or the resolution of their display. For
devices that can also process the enhancement layers, the more
complex KP-based algorithm is applied to display the best
possible quality. The complexity of the algorithm is given by:

O(Deftpack) =

{
O (n) BL
O (m · n · log (max (m,n))) , ELs

(2)
where n and m are the horizontal and vertical size of the
sliding window, respectively.

B. Dynamic sliding window

Previously proposed piece-picking algorithms for layered
content use a sliding window to identify urgent pieces that
need to be retrieved sooner than others for playback [16] [17].
This sliding window usually has a fixed horizontal size, related
to a time range, and a fixed vertical size that includes all the
available layers. Deftpack, on the other hand, uses a dynamic
approach in order to optimize piece retrieval depending on the
available resources.

To guarantee a near-zero-stall algorithm, and therefore con-
tinuous playback, the size of the sliding window is adjusted to
ensure a stable download rate for the active layers. In contrast
to other adaptive window approaches [15], where the window

Fig. 3: An example of the dynamic window used by
Deftpack when increasing quality.

grows for fast peers and shrinks for slow peers to increase
piece availability in the swarm, our algorithm will increase the
window sizes for slow peers and shrink them for fast peers. As
a consequence, slow peers avoid switching to a higher quality
when their download speed is barely sufficient to guarantee
the playback of the active layers, and fast peers sooner start
downloading pieces of the enhancement layers.

We adjust the window size by monitoring the speed of data
arrival of the pieces of the currently active layers as follows:

wt =

⌊
k × dal

bal
× wt−1

⌋
, b ≤ wt ≤ wmax, (3)

where wt is the window size at time t, dal is the average
download speed of data of the active layers, bal is the
cumulative bitrate of the active layers, and k is a positive value
that, starting from 1, increases by 0.1 for every 10 stalls. The
window will never be smaller that a pre-defined size b (i.e.,
the player’s buffer size in pieces), and never larger than the
maximum preferred window size, wmax, to avoid retrieving
all the remaining pieces in-order.
While the right end point of the sliding window is the

same for all layers, the starting point is the same only for
the active layers, as it might vary when Deftpack decides
to increase quality. When increasing quality, it is unlikely to
perform a smooth quality switch for the time slot immediately
following the current playback position. Therefore, we move
forward the window’s starting point for the target layer,
defined as the layer we are moving to, reducing bandwidth
waste and increasing the probability of a successful quality
switch. Deftpack will attempt to increase playback quality if
the current download rate is higher than the target bitrate,
defined as the playback bitrate that is achieved if the quality
switch occurs. If the current download rate is 20% higher
than the target bitrate, the window of the target layer will
start one time slot after the current playback position, if it is
between 10% and 20% higher, it starts two time slots later,
and otherwise, it starts three time slots later. If the download
speed suddenly increases, offering enough capacity to support
an increase in quality of more than one layer, the same policy
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is applied to all the desired layers.
Figure 3 presents an example of Deftpack increasing the

quality from EL1 to EL2, the target layer. Here, the download
rate is between 10% and 20% higher than the playback rate
of BL+EL1+EL2, and therefore a gap of two time slots is set.
As a second example, if in Figure 3 at instant t, the download
rate would support the playback of all four layers, the window
for EL2 will start at t+3, while the window for EL3 will start
at t+5. This behaviour ensures a minimum amount of wasted
bandwidth when increasing quality.

C. Meeting the Design Goals

This section describes how the problems described in Sec-
tion II are addressed by Deftpack.

The occurrence of stalling events has been greatly reduced
by prioritizing the base layer, and by adjusting the size of
the sliding window. This behaviour ensures that a continuous
playback is guaranteed even when the available download
bandwidth is low. Additionally, it increases the availability of
pieces from the base layer in the swarm, reducing the risk
of stalling caused by the high competition that can occur with
rare pieces. Deftpack optimizes the bandwidth usage of a peer
by avoiding investing available bandwidth beyond the active
layers, which might risk downloading pieces that might never
be used for playback. As the algorithm downloads not only the
pieces within the high-priority set, but also uses the remaining
bandwidth to download pieces from the sets presented in
Section IV-A, the download link’s capacity is always fully
used. This behaviour reduces the overall bandwidth waste
of a peer. Furthermore, it is also reduced by the fact that
our piece-picking algorithm only downloads pieces that can
be realistically downloaded in time for playback. Frequent
quality changes are avoided when possible as our piece-
picking algorithm monitors the download bandwidth and only
decides to switch to higher layers if the next enhancement
layer can be sustainably downloaded. Utilizing this conserva-
tive approach, switches to higher qualities occur rarely and
only when sufficient download bandwidth is available, while
switches to lower layers only occur if the download bandwidth
suddenly decreases.

Finally, it should be noted that Deftpack does not try
to find the best possible solution considering each of the
problems separately. Instead, the algorithm tries to find a
feasible solution for each of the problems while ensuring that
all of the other problems are still considered.

V. EXPERIMENTAL SETUP

In this section we describe the experimental setup used to
evaluate the performance of our Deftpack algorithm and for
comparing it to three existing algorithms, ZigZag, KP-based,
and NS-Core, described in Section III.

A. Simulator Setup

To perform an evaluation of our algorithm and compare
it with the existing solutions, we have modified the discrete
event-based Microsoft Research BitTorrent simulator [4, 7],

TABLE I: Peers bandwidth distribution

Class Distribution [%] Downlink [kbit/s] Uplink [kbit/s]

DSL1 21.4 768 128

DSL2 23.3 1500 348

Cable1 18 3000 768

Cable2 37.7 10000 5000

TABLE II: Layer scheme used in simulations

Layer Layer bitrate [kbit/s] Cumulative bitrate [kbit/s]

BL 400 400

EL1 400 800

EL2 800 1600

EL3 1600 3200

implementing only the investigated piece-picking algorithms.
For the results presented in this paper we assume that all peers
are connected to each other and that for all the investigated
algorithms the playback will start as soon as an initial set of
pieces has been downloaded. Throughout the rest of the paper
we will refer to this initial set of pieces as the buffer.

For the peers participating in the swarm we show in Table
I the distribution of their network capacities, dividing them
into classes. The bandwidth distribution in Table I is based
on the results of measurements [5, 8] and traces [13]. Peers
slower than DSL1 connections have been omitted, adding their
ratio to DSL1 peers, since recent measurements from public
and private communities [10] have shown that the average
Internet connection speed has increased significantly in the
last few years. In Table II we show the bitrates of the layers
used in the simulations.

B. Scenarios

In our simulations, we assume a peer leaves the swarm
if either it has completely downloaded all the layers, if its
playback has reached the end of the stream, or if its overall
participation time in the swarm since its playback started
exceeds the video duration by 50%. This occurs especially
with slow peers when they experience too many stalls during
the playback. If a peer experiences more than 50% of stalling
time but its playback is currently progressing, it will leave the
swarm at the next stall occurrence.

We focus on the behaviour of the investigated algorithms in
scenarios with only one seeder, the initial content provider,
forcing the peers to cooperate with each other. We also
present results of running over-seeded scenarios, in which the
initial seeders can support the swarm bandwidth demand. The
scenarios we use to evaluate the performance of Deftpack can
be grouped into three categories, depending on the peer arrival
distribution and arrival rate.

In the steady state scenario, 500 peers join the system ac-
cording to an exponential interarrival-time distribution during
the first 30 minutes with an arrival rate of 0.11 peers per
second. After that time, every peer that leaves is immediately
replaced by a peer of the same class, thus maintaining a

289



TABLE III: Simulation settings

Parameter Value

Video duration 60 minutes

Piece size 128 KB

Upload slots 5

Initial window size 20 pieces

Maximum window size 50 pieces

Buffer size 10 pieces

Seeders upload capacity 6 Mbit/s

constant number of peers. In this scenario, the content provider
is the only initial seeder, causing the need for peers to
collaborate with each other. We simulate 10 hours of operation,
which gives results that are sufficient to draw conclusions.

In the flashcrowd scenario, the content provider is the only
initial seeder, and peers arrive at an exponentially decaying
rate, starting at a very high arrival rate. This scenario simulates
a critical situation for a P2P system with a large number of
peers joining at roughly the same time, e.g., to consume the
broadcast of a live event. The arrival rate is given by:

λ(t) = λ0e
−γt. (4)

In our simulations we set λ0 = 10 and γ = 1/150. With these
parameter values, 1500 peers join the swarm during the first
50 minutes.

In the over-seeded scenarios, hundreds of seeders never
leave the system, reducing the need for collaboration between
peers. The first two of these are equal to the steady-state
scenario but with 150 and 300 seeders instead of 1. The third
of these is equal to the flashcrowd scenario but with 150 initial
seeders.

The common properties of all the scenarios are presented
in Table III. When simulating the same scenario with the four
algorithms, we use the exact same arrival pattern of peers.
Furthermore, the three algorithms against which we compare
will download pieces in a rarest-first fashion from the entire
stream if no piece can be selected from the sliding window.

C. Performance Metrics

In our performance evaluation, we use the following met-
rics. The total playback bitrate is defined as the cumulative
playback bitrate of all the peers viewing the content at every
second of the simulation run. The total wasted bitrate is
defined as the bandwidth spent downloading data from the
enhancement layers that is never displayed, which occurs when
during playback a piece of an enhancement layer is needed
but has only been partially downloaded. We only consider the
wasted bandwidth for pieces from the sliding window, ignoring
partial pieces that have been selected the from other sets.

If a peer does not download a base layer piece before its
deadline, the playback will stall. For every stall occurrence,
the playback pauses and resumes only after the initial buffer
has been restored. We also monitor the stalling time, defined
as the time spent by a peer waiting for the playback to resume
from a stall. We report the occurrence of stalls over time

to show how it influences the playback bitrate and pieces
availability in the swarm. As stall occurrences are closely
related to the availability of pieces of the base layer to be
processed by the decoder, we monitor the piece availability
of these pieces within the sliding window. Finally, we define
the abort percentage as the percentage of peers aborting the
download because they stalled for 50% of the video duration.
We consider this as the most important metric to determine
the QoE.

VI. EXPERIMENTAL RESULTS

In this section we evaluate the performances of Deftpack
by means of simulations. In Section VI-A we present the
results for the steady state scenario, in Section VI-B for the
flashcrowd scenario, and in Section VI-C for the over-seeded
scenarios.

A. Steady State Scenario

Figure 4 presents the behaviour of the algorithms in a steady
state. Figure 4(a) shows the cumulative playback bitrate for
all the peers participating in the swarm for every second
of the simulation run. Without the condition for moving
to a higher quality, Deftpack would drastically outperform
the other algorithms, but this would come at the cost of
more frequent quality changes, and therefore, a more unstable
playback. Figure 4(b) shows the average playback bitrate of
all the peers in the swarm. It is interesting to noti how the
ZigZag and the KP-based algorithms start at very high rates,
1.6 and 3.2 Mbit/s respectively, as all the layers are retrieved
before the initial buffer is filled, and then quickly stabilize
at lower rates. On the other hand, the NS-Core and Deftpack
algorithms start at a lower rate, 400 Kbit/s, but reach a higher
stable rate during the steady state. We do not show the wasted
bandwidth, as it turns out to be very minimal (0.3% for the
NS-Core and KP-based algorithms, 0.2% for Deftpack, and
1.1% for the ZigZag algorithm).

In Figure 4(b) shows that with Deftpack, the availability
of pieces of the base layer in the high-priority set is much
higher than with the other algorithms, leading to a much lower
number of stalled peers over time (Figure 4(c)), a (much)
lower total number of stalls (Figure 4(e)), and much less time
spent by the peers refilling their buffers after stall occurrences
(Figure 4(f)). Figure 4(g) shows the average start-up delay,
while Figure 4(h) shows the percentage of peers leaving the
swarm after waiting for more than 50% of the video duration.

It has to be noted that the KP-based algorithm provides
the best playback quality to fast peers, but the poorest quality
to slow peers. The main idea behind Deftpack is to be able
to serve a broader audience, even if fast peers consume the
content at a lower quality, giving a greater chance of a decent
playback to slow peers.

Clearly, Deftpack outperforms the compared algorithms,
optimizing the distribution of the base layer (Figure 4(c)),
reducing the time for resuming the playback (Figure 4(f)), and
therefore having the largest number of peers reaching the end
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Fig. 4: The performance of the four investigated algorithm in the steady state scenario. Deftpack ( + ) ;
KP-Based ( + ); ZigZag ( ++ ); NS-Core ( �� ).

of the stream (Figure 4(h)), while still providing the highest
QoE (Figures 4(a) and 4(b)).

B. Flashcrowd Scenario

Figure 5 shows how the investigated algorithms perform in
the flashcrowd scenario; only four graphs are showed for the
lack of space. Figure 5(a) shows the cumulative playback rate
of all the peers in the swarm. During the first 50 minutes,
after which no more peers join the swarm as then the arrival
rate is effectively equal to zero, the KP-based and the ZigZag
algorithms reach a high playback rate. This behaviour is
caused by the way the buffer is filled before the playback can
resume after a stall, as those two algorithms will download
pieces from enhancement layers before the buffer has been
successfully filled. As a consequence, during the same time
period, they present 70% more stalls than Deftpack and the
NS-Core algorithm.

While the cumulative playback rate decreases as peers are
leaving the system (Figure 5(a)), the average playback bitrate
increases as the initial seeder can support their bandwidth
request (Figure 5(c)). Figure 5(b) shows how almost all the
peers leave the swarm because of waiting too long when
using the KP-base and the ZigZag algorithms. The NS-Core
algorithm performs well compared to Deftpack, reaching a
higher average playback rate (Figure 5(c)), but with a relatively
higher bandwidth waste (40%), and for fewer peers (Figure
5(a)). In comparison to Deftpack, the NS-Core algorithm has
a lower number of stall events (10%), but they last longer

(Figure 5(d)), which causes roughly double the number of
peers to leave the system before completing their playback
(Figure 5(b)).

C. Over-seeded Scenario

In this section, the simulation results for the over-seeded
scenario are presented to show how Deftpack performs in
comparison to the other algorithms in non-critical situations.
The results of those simulations are presented in Table IV. The
most important results are the cumulative playback bitrate and
the abort rate (columns PlaybackBW and Abort in Table IV).

Deftpack clearly outperforms the other algorithms in steady
state over-seeded scenarios. In the flashcrowd scenario with
150 seeders, Deftpack seems to perform generally worse than
the other algorithms as it has a lower cumulative playback
bitrate and longer start-up times. However, these results are
misleading as with Deft pack, most of the peers actually reach
the end of the stream (see the Abort column in Table IV), even
if displaying a lower quality. This scenario can be compared
with the one presented in Section VI-B where it is explained
how this behaviour provides a higher QoE for the viewer.

VII. CONCLUSION

In this paper we present a new piece-picking algorithm
for downloading layered content in P2P networks, called
Deftpack, which reduces stalling of the video playback while
ensuring that the user receives the best possible quality. In
our simulations, Deftpack is compared to other piece-picking
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Scenario Algorithm PlaybackBW [Mb/s] WastedBW [%] Stalls [x1000] Stall time [x1000s] Abort [%] Start-up [s]

Steady State
Deftpack 325 / 348 0.21 / 0.34 15 / 12 622 / 485 7 / 5 36 / 32
KP-Based 251 / 257 0.39 / 0.35 129 / 95 4177 / 3940 44 / 60 105 / 142

150 / 300 seeders
ZigZag 198 / 233 1.77 / 1.36 76 / 55 4439 / 3747 62 / 63 119 / 129
NS-Core 280 / 303 0.31 / 0.29 21 / 17 1237 / 905 22 / 17 36 / 32

Flashcrowd
Deftpack 369 / 622 0.21 / 0.10 15 / 8 657 / 358 10 / 4 68 / 43
KP-Based 572 / 763 0.53 / 0.30 75 / 44 3056 / 2301 93 / 62 211 / 188

150 / 300 seeders
ZigZag 654 / 631 0.48 / 1.14 13 / 18 805 / 2148 19 / 61 54 / 167
NS-Core 605 / 504 0.43 / 0.17 12 / 11 789 / 568 38 / 14 46 / 43

TABLE IV: Simulation results of the four investigated algorithms in the over-seeded scenarios. (Best results are highlighted.)
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Fig. 5: The performance of the four investigated algorithm in
the flashcrowd scenario. Deftpack ( + ) ;

KP-Based ( + ); ZigZag ( ++ ); NS-Core ( �� )
.

algorithms in cases in which the content is under- and over-
provisioned. In the under-provisioned scenarios, simulating
real-world situations, Deftpack outperforms the other algo-
rithms by reducing stalls and providing the highest QoE to
most of the peers. For the over-provisioned scenarios, in which
multiple seeders provide more than sufficient bandwidth to all
peers, Deftpack clearly outperforms the other algorithms by
providing the best average playback bandwidth while having
the majority of the peers reaching the end of the playback.

Throughout all the simulations, it is shown how Deftpack
allows peers with heterogeneous connections to share the same
content in an efficient way. Overall, Deftpack significantly
outperforms existing solutions, reducing the number of stalls,
and providing the best overall QoE to the user. Furthermore,
Deftpack has been integrated into the Next-Share system [12],
which is to our knowledge the first open-source P2P system

with full SVC support.

ACKNOWLEDGMENT

This work is supported in part by the European Commission
in the context of the P2P-Next project (FP7-ICT-216217) [22].

REFERENCES

[1] Akamai. http://www.akamai.com.
[2] Cisco. Cisco visual networking index: Forecast and methodology, 2009-

2014. White paper, June 2009. http://www.cisco.com.
[3] B. Cohen. Bittorrent protocol 1.0. http://www.bittorrent.org.
[4] A. R. Bharambe et al. Analyzing and improving a BitTorrent networks

performance mechanisms. In Proc. of INFOCOM’06, April 2006.
[5] C. Huang et al. Can internet video-on-demand be profitable? SIGCOMM

Comput. Commun. Rev., 37:133–144, August 2007.
[6] K. Lin et al. An optimized P2P based algorithm using SVC for media

streaming. ChinaCom2008-MCS, May 2008.
[7] L. D’Acunto et al. Peer selection strategies for improved qos in

heterogeneous bittorrent-like vod systems. ISM ’10, pages 89–96,
Washington, DC, USA, 2010.

[8] M. Dischinger et al. Characterizing residential broadband networks. In
Proc. of IMC’07, IMC ’07, pages 43–56, NY, USA, 2007. ACM.

[9] M. Eberhard et al. Knapsack problem-based piece-picking algorithms
for layered content in peer-to-peer networks. In AVSTP2P’10 WS Proc.,
AVSTP2P ’10, pages 71–76, New York, NY, USA, 2010. ACM.

[10] M. Meulpolder et al. Public and private BitTorrent communities: a
measurement study. In Proc. of IPTPS’10, IPTPS’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

[11] M. Zink et al. Subjective impression of variations in layer encoded
videos. In Intl. WS on QoS, pages 137–154, 2003.

[12] N. Capovilla et al. An architecture for distributing scalable content over
peer-to-peer networks. In MMEDIA’10, pages 1–6, June 2010.

[13] S. S. Krishna et al. A measurement study of peer-to-peer file sharing
systems. In Proc. of MMCN’02, 2002.

[14] T. C. Lee et al. Live video streaming using P2P and SVC. In Proc. of
MMNS08, pages 104–113, 2008.

[15] Y. Borghol et al. Toward efficient on-demand streaming with BitTorrent.
In Proc. IFIP/TC6 Networking’10, May 2010.

[16] Y. Ding et al. Peer-to-peer video-on-demand with scalable video coding.
Computer Communications, 33(14):1589–1597, September 2010.

[17] Z. Liu et al. LayerP2P: Using layered video chunks in P2P live
streaming. IEEE Trans. on MM, 11(7):1340–1352, August 2009.

[18] S. Martello and P. Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[19] S. Mirshokraie and M. Hefeeda. Live peer-to-peer streaming with
scalable video coding and networking coding. In Proc. of MMSys10,
pages 123–132, 2010.

[20] K. Mokhtarian and M. Hefeeda. Efficient allocation of seed servers
in peer-to-peer streaming systems with scalable videos. In IWQoS’09,
pages 1–9. Charleston, July 2010.

[21] PPSTream. http://www.ppstream.com.
[22] The P2P-Next Project. Fp7-ict-216217. http://www.p2p-next.org.
[23] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered streaming.

In NOSSDAV’03 Proc., NOSSDAV ’03, pages 153–161, New York, NY,
USA, 2003. ACM.

[24] SOPCast. http://www.sopcast.org.
[25] TVAnts. http://www.tvants.com.

292


