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ABSTRACT

Software Defined Networking (SDN) and Named Data Net-
working (NDN) are two topics which have received lots of at-
tention in the networking research community in recent years.
While both have emerged independently from each other we
believe that their core features can be well aligned to each
other. Hence combining both may hold potential benefits for
network operators. In this paper we investigate the advan-
tage of having a central SDN controller which is aware of
the complete topology of an underlying NDN network. In
our approach we use the controller for routing Interests for
names unknown to the forwarding elements and to find alter-
native routes in case of link congestion. Another advantage
of SDN is the ability to analyze and control the network on an
application-layer component which communicates with the
controller. This allows the development of application-aware
networks that support the specific needs of the applications
that use them. As an example use case we assumed a net-
work whose main purpose is to disseminate multimedia con-
tent with Zipf-distributed popularity among users. Having an
application layer which knows about content popularity statis-
tics we improve the dissemination of multimedia content by
instructing dedicated nodes in the network to prefetch content
which is expected to become popular in their geographical re-
gion or autonomous system (AS) in the near future. The aim
of this approach is to reduce the distance to potential con-
sumers and reduce the load of the core network.

Index Terms— Information Centric Networking, Named
Data Networking, Software Defined Networking, Routing,
Forwarding, Caching

1. INTRODUCTION

Named Data Networking (NDN) is an approach to network-
ing whose ultimate goal is to replace the current IP-based In-
ternet architecture. The main concept of NDN is based on
the observation that nowaday’s Internet traffic is primarily fo-
cused on the content itself rather than on the direct commu-
nication between hosts [1]. In NDN, for example, if a client
wants to consume a certain video over the network it does

not care about which server provides the appropriate content.
Instead, it sends an Interest, which contains the name of the
requested content, to the network rather than directly address-
ing the server which provides the content. An important as-
pect of NDN is the inherent caching of data. This means that
every forwarding element, i.e., router, in NDN is able to cache
chunks of data which are identified by the name of the con-
tent they belong to. Whenever a router receives an Interest
for a chunk already available in its cache, it can directly send
back the chunk instead of forwarding the Interest to the origin
of the content. Another crucial concept of NDN is the sep-
aration of routing and forwarding, i.e., forwarding decisions
for incoming Interests can be done independently from the
routing protocols used by routers, as opposed to IP networks
where forwarding is strictly determined by routing in order to
avoid loops.

Currently there are still a number of open research ques-
tions in the area of NDN. One major topic is the issue of
scalability. Since in NDN content is addressed rather than
hosts this leads to a bigger address space which makes it dif-
ficult for routers to find routes and maintain their forwarding
tables. This is where Software Defined Networking (SDN)
comes into play. SDN aims at reducing the complexity of
networking elements such as routers and switches by moving
the control plane to a centralized controller [2]. This way, net-
working elements are reduced to simple forwarding elements
which receive forwarding rules from the central controller via
a so called southbound (SB) interface. This enables easy pro-
grammability of networks since changes can be specified at
a single location, as opposed to reconfiguring every device
within the network separately via their proprietary interfaces.
This programmability in combination with the holistic view
on the network provided by the controller enables network
operators to dynamically react to events such as an increase
of overall traffic load or failing links.

In this paper we focus on the use case of disseminating
multimedia content with Zipf-distributed content popularity,
i.e., where the major amount of network traffic is caused by
a small number of popular multimedia content items, as de-
scribed in [3]. Therefore, we extend the SDN approach to



proactively cache popular multimedia content such that it is
stored as near as possible to the clients that will request the
specific content. We compare our approach to the pure SDN
approach which only re-computes routes to the multimedia
content and a pure NDN based forwarding approach in terms
of Interest satisfaction ratio and the round trip time of Inter-
ests.
The remainder of this paper is structured as follows. In Sec-
tion 2 we provide an overview of related work in the area of
combining SDN with Named Data Networking (NDN) [4],
a concrete implementation of NDN. Section 3 contains de-
tailed information about our approach of using SDN in order
to allow efficient and reactive routing and forwarding in NDN
networks. Section 4 describes how statistics regarding content
popularity gathered on the SDN application layer can be used
to proactively instruct nodes in the network to request certain
content items in order to bring them nearer to potential con-
sumers. We give an overview of our evaluation methodology
and the results obtained by our approach in Section 5 before
we conclude the paper and outline our plans for our future
work in Section 6.

2. RELATED WORK

There is already existing work that focuses on how to real-
ize Information Centric Networking in Software Defined Net-
works, such as in [5][6][7][8]. In these papers the authors
mainly describe concrete implementations and demonstrate
prototypes for realizing NDN over SDN. In each of these
papers, OpenFlow [9], the most popular SDN standard, was
used since its concept of flows and pushing rules to forward-
ing hardware translates well to routing and forwarding in cur-
rent NDN approaches. One of the key challenges regarding
the implementation of NDN using OpenFlow is that Open-
Flow switches only operate on the packet header of incom-
ing IP packets and are not aware of current NDN protocols.
Therefore, the authors of [8] propose to map NDN names to
fields which can be inspected by OpenFlow, such as the IP
address or port number. A different approach proposed by
[6] is to parse the content of NDN packets at the controller in
order to gain access to the fields of the respective NDN proto-
col fields. However, as this approach would require frequent
deep packet inspection (DPI) on the controller doing so could
potentially cause scalability issues.

3. CONTROLLER-AIDED ROUTING AND
FORWARDING IN NAMED DATA NETWORKING

In this section we briefly revisit the design of an SDN
controller-aided routing and forwarding approach in the con-
text of Named Data Networking (NDN) [4]. A current re-
search topic in NDN is the scalability of the forwarding plane.
In contrast to IP-based networks, where hosts are addressed,
NDN follows the principle that content items are addressed

(”named”). This results in a bigger address space which
makes it difficult for NDN routers to discover paths for un-
known Interest names and maintain their forwarding tables.
With our proposed approach, we try to benefit from a number
of potential advantages of having a central SDN controller
which is aware of the complete network topology.

First, as described in [7], having a central controller can
help overcome the scalability issue of maintaining a name-
based forwarding table within each NDN router. Figure 1
illustrates the basic principle of our controller-aided routing
and forwarding. Our architecture consists of a network of

Fig. 1. SD-NDN Routing Example.

NDN routers which communicate with a central controller
over a southbound (SB) Interface. In our approach, all con-
tent providers have to advertise their available content names
to the controller in order for it to know about the content lo-
cations (cf. Figure 1, step 0). Whenever a client wants to
consume content it sends an Interest with the content name to
the next NDN router (step 1). Whenever a router receives an
Interest for which the content name is unknown, the Interest is
forwarded to the controller via the SB interface (step 2). Upon
reception of such Interests, the controller calculates possible
routes from the router to the location of the content (step 3).
During this step, the controller can also take the current status
of the links between the network nodes into account in order
to find the best route based on given metrics. These metrics
may be delay, bandwidth, hop count and/or reliability. In this
context we define the reliability as the fraction of satisfied
Interests sent via a link and the total number of Interests re-
ceived for a given content item. As soon as the controller has
calculated one or more possible routes to the content location,
it will push the appropriate rules, i.e., flow entries to all nodes
which lie on the possible paths via the SB interface (step 4).
In our approach, a flow entry consists of an Interest prefix,
a list of possible faces over which matching Interests can be
forwarded and the costs for each face (i.e., hop count).

In addition to sending Interests to the controller and re-



Algorithm 1 Face Selection from Local Forwarding Table
(executed on each Router)
1: Input: inFace, prefix
2: Output: Forward Interest or send Nack to inFace
3: excl = [inFace] //list of faces which must

not be selected for forwarding
4: nrTriedFaces = 0
5: nrFaces = flowTable[prefix].size()
6: while nrTriedFaces < nrFaces do
7: if reliableFaceAvailable() then
8: face = GetCheapestReliableFace

(prefix, excl)
9: else

10: face = GetRandomFace (prefix, excl)
11: end if
12: if face != null & face.bandwidthTokens > 0

then
13: ForwardInterest(face)
14: return
15: else if face != null then
16: excl.add(face)
17: else if face == null then
18: reliableAvailable = false
19: end if
20: nrTriedFaces++
21: end while
22: SendNack(inFace)
23: return

ceiving rules, we further extend the SDN principle such that
routers are allowed to report prefix-based content statistics
(i.e., link congestion, reliability) to the controller. The strat-
egy we have implemented in our approach extends the flow
entries received by the controller with a value indicating the
reliability of each face within the flow entry.

Our mechanism of pushing rules to forwarding elements
within the network is similar to the OpenFlow standard [9],
which is one of the most widely used standards in the SDN
area. One difference however is that OpenFlow switches
strictly forward incoming packets to all ports listed in the out-
put action part of the matching rule for the incoming packet.
On the contrary, in our approach, routers can choose one or
more faces among the list of possible faces for matching In-
terests on their own. This way, routers are able to make more
informed forwarding decisions.

The face selection of our forwarding strategy is outlined
in Algorithm 1.

When Interests are received, the NDN router tries to find
the cheapest face based on the cost metric (in our case the
hop count) whose reliability is also above a certain predefined
threshold (cf. Algorithm 1, line 8). This is done by calling the
function GetCheapestReliableFace(), which, in ad-
dition to the Interest prefix, also takes a list of faces which
shall be excluded (line 3). This list initially only contains the
face on which the Interest has been received to avoid loops. If

such a face is found and the necessary bandwidth on this face
for the received prefix is available, the router forwards the In-
terest via this face (lines 12-13). If no bandwidth is available,
the router tries to find another face where bandwidth is avail-
able. If no valid face has been found the router also takes
faces into account where the reliability is below the specified
threshold (line 10). This way, a certain amount of traffic still
goes through faces previously marked as unreliable in order
to test if they have become more reliable in the meantime. If
no face with available bandwidth has been found the router
sends back a NACK to the incoming face (line 22).

The router which receives the NACK then updates its re-
liability value for the prefix of the sent Interest on the face
where the NACK has been received. If the reliability value
drops below a certain threshold, it indicates the link for this
face is congested and informs the controller. The controller
will then try to find an alternative route.

4. PROACTIVE CACHING

In Software Defined Networks, controllers can communicate
with an application-layer component via a northbound (NB)
interface [2]. This enables network operators to develop
application-aware networks which can be tailored to the spe-
cific needs of the application the network is intended for. For
example, a network whose main purpose is to disseminate
Zipf-distributed multimedia content might benefit from dif-
ferent options in terms of routing and/or caching than a net-
work which is mostly used for exchanging a large variety of
small documents between clients.

In order to support the former use case we have investi-
gated the potential benefits of proactive caching of multime-
dia content in order to bring popular content nearer to poten-
tial consumers before they start to request it. This is achieved
by gathering statistical data in terms of overall network load
as well as content types requested by users of certain geo-
graphical regions. This information is analysed on the appli-
cation layer which tries to identify recurring network traffic
patterns. Examples for recurring traffic patterns include pe-
riods where the overall network load is low and periods with
high load where the content popularity distribution can be ap-
proximated by a Zipf-distribution [3]. If such patterns are
found, the application commands special dedicated caching
nodes to request content which is likely to become popular
within their geographical region in the near future if the cur-
rent network load is below a certain threshold (or if enough
overall bandwidth is available). How these periods are de-
fined is described in more detail in Section 5. The dedicated
caching nodes will be referred to as SDNDN-cache in the
remainder of this paper. As soon as an SDNDN-cache has
finished downloading the content for the next period, it ad-
vertises itself as provider for this content to the controller, as
described in Section 3. Algorithm 2 illustrates this principle
in a simplified form. The periods are stored in an array where



Algorithm 2 Planning of Proactive Caching on the controller
1: Input: periods, caches
2: Output: Instruct caches to prefetch content if possible
3: i = 0;
4: while i < periods.length - 1 do
5: if periods[i].load == ’low’ then
6: for region in periods[i+1].regions do
7: if periods[i+1].contentDistribution ==

’zipf’ then
8: caches[region.id].download

(region.mostPopularContent)
9: end if

10: end for
11: end if
12: waitForNextPeriod()
13: i++
14: end while

each entry indicates whether the overall network load is low
or high. Further, each entry contains an array of statistics of
each region which indicates if the content popularity is Zipf-
distributed (cf. Algorithm 2, lines 4-6). At the beginning of
each period, the expected network load is evaluated (line 5).
If the expected load is low, the controller checks if the con-
tent popularity for the next period is Zipf-distributed (line 7).
If this is the case, it instructs the SDNDN-cache in the re-
spective region to prefetch the content which is expected to
become most popular. As our aim is to investigate the benefit
of proactive caching multimedia content in NDN, we assume
that our application layer is already aware of the recurring
patterns in the network and their time of occurrence.
The expected outcome of this approach is to move the load

from the core of the network to the connected autonomous
systems (AS). Further, the inherent caching in NDN aids in
relieving the link which connects the SDNDN-cache to the
network since a portion of the previously downloaded con-
tent will be available in the router caches within the AS. This
should ultimately result in a higher overall satisfaction rate,
as well as a decrease in the round-trip-time (RTT) for the In-
terests sent into the network.

5. EVALUATION

To evaluate the approaches described in Sections 3 and 4 we
have implemented a controller-based NDN using the ndnSIM
1.0 simulator [10]. In order to calculate routes for incoming
Interests, the controller stores the network topology including
link properties such as available bandwidth, delay and relia-
bility in a Neo4J Graph Database [11]. In this database, net-
work nodes are represented by graph nodes and the links be-
tween network nodes are represented by graph edges. Neo4J
provides a REST interface which can be used by the con-
troller in order to get the shortest paths based on the previ-
ously mentioned link properties (e.g., hop count, bandwidth,

Fig. 2. Example Topology.

delay). Further, the REST interface is used to regularly update
the status of the network (e.g., when a node in the network in-
forms the controller about a detected link congestion).

For our simulation scenarios we used the network topol-
ogy generator BRITE [12]. BRITE was configured to create
five autonomous systems (ASs), each consisting of 20 nodes.
Among these autonomous systems we randomly distributed
ten servers where each server provided different content and
20 clients. Furthermore, one SDNDN-cache was installed per
AS. Figure 2 depicts an example of a topology used in the
evaluation. Each simulation run was divided into four peri-
ods of 80 seconds each. Each period was further divided into
a 40 seconds phase with high network load and another 40
seconds phase where the network load was low. During the
high load phase the clients were configured to request content
with the size of 5 MB with a constant rate of 30 Interests per
second, which corresponds to a bitrate of 1 Mbps. During
the low phase only the SDNDN-caches proactively request
content. The bandwidth capacities of the links within the net-
work were configured such that congestion was likely to oc-
cur. More specifically, the link bandwidths between the ASs
were uniformly distributed between 2 and 4 Mbps. Band-
widths within an AS were uniformly distributed between 1
and 2 Mbps. The probability of selecting a certain content
for each client was specified by a configuration which con-
tains the Zipf-distributed popularity values of the contents for
each period for the AS of the respective client. This simulates
the behavior of having a small number of contents that are
popular within a certain geographical region during a certain
time of the day. During our simulations we assumed that the
controller, or, more specifically, the application layer in SDN-
related terminology, is already aware of these popularity val-
ues as well as when the network load is expected to be high



(a) Overall Average Interest Satisfaction Rate (b) Overall Average RTT

Fig. 3. Simulation Results for Overall Average Interest Satisfaction Rate and RTT with 95% CI for alpha ∈ {1, 2, 3, 4}.

(a) Interest Satisfaction Rate per Period (b) RTT per Period

Fig. 4. Interest Satisfaction Rate and RTT with 95% CI for each Period for alpha = 4.

or low. Due to this circumstance, the controller can instruct
the SDNDN-caches to prefetch the content that is expected to
become the most popular in their AS during the next period.
In order to evaluate the performance of our controller-aided
forwarding strategy we compared it to the BestRoute strat-
egy provided by ndnSIM for different values of the parame-
ter alpha of the Zipf-distribution. Using this strategy, each
node knows all possible routes to the content servers provid-
ing content for a certain prefix, as well as the hop count for
each face for every prefix. The flow tables of the BestRoute
strategy are populated by a global routing helper which cal-
culates all possible routes from each node to every content
server at the beginning of the simulation. At first we eval-
uated how our controller-aided strategy, henceforth denoted
as sdn, without prefetching content to SDNDN-caches com-
pares to BestRoute in terms of overall Interest satisfaction rate
and average RTT (i.e., the time between sending the Inter-
est and receiving the corresponding data packet at the con-

sumer). After obtaining results for this approach we inves-
tigated how our strategy combined with prefetching affects
the measured parameters. The last approach will be referred
to as sdn-cache. To investigate how the content popularity
distribution affects the expected performance gain of the last
approach we made simulation runs for different alpha val-
ues with alpha ∈ {1, 2, 3, 4} for the Zipf-distribution used
to specify the content popularity. The parameter alpha char-
acterizes the distribution, i.e., the higher its value the fewer
items claim the major part of the overall popularity. For each
alpha value we did N = 30 simulation runs per strategy. Fig-
ure 3 (a) and (b) depict the results for the overall average In-
terest satisfaction rate and RTT, respectively. The bars in Fig-
ure 3 indicate the average values for the overall Interest satis-
faction rate and RTT. The 95% confidence intervals (CI) are
depicted as error bars in the charts. The results show that the
sdn-cache yielded significantly better results than BestRoute
in terms of Interest satisfaction rate and RTT.



The average satisfaction rate per period for alpha = 4 is
depicted in Figure 4 (a) to illustrate the effects of our prefetch-
ing approach. The error bars indicate the 95% confidence in-
tervals for the average Interest satisfaction rates of the respec-
tive period. In the first period, no content has been prefetched
by the SDNDN-caches and thus the average satisfaction rate
of sdn-cache is similar to sdn. After the first period, however,
as expected, the use of proactive caching resulted in a signifi-
cant improvement of the average Interest satisfaction rate.

For the Interest RTT a similar trend was observed, i.e.,
sdn-cache resulted in significantly better values than Be-
stRoute after the first period. Due to space constraints, only
the average Interest RTT per period for alpha = 4 is depicted
in Figure 4 (b).

6. CONCLUSION AND FUTURE WORK

In this paper we have investigated the potential benefits of
using features provided by SDN in the context of NDN, espe-
cially regarding dissemination of multimedia content. Specif-
ically, we tried to leverage the holistic view of the network at
the controller in order to quickly react to events such as link
congestion detected by forwarding elements in the network
and thus improve routing of Interest packets. Our evaluations
of a controller-aided forwarding strategy showed promising
results in terms of Interest satisfaction rate and round-trip-
time, however with no significant improvement compared to
the BestRoute strategy provided by ndnSIM. Ultimately, sig-
nificant improvements of these metrics were obtained by us-
ing content popularity statistics known to the SDN application
layer. These statistics were used to instruct special caching
nodes in the networks to proactively fetch content expected to
become popular in their respective geographical region in the
near future.

In this paper we assumed that the content popularity
statistics are already known to the Application Layer. In our
future work we will try to derive these statistics on-line dur-
ing our simulation runs by applying data mining and machine
learning methods. Finally, we will investigate the traffic over-
head caused by the communication between forwarding ele-
ments and the controller.
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