
Appeared in:
International Conference on Massively Parallel Processing - Applications and Development

MPP´94, June 21-23 1994, Delft, The Netherlands

PPOST - A Persistent Parallel Object STore1

L. Böszörményi and K.-H. Eder and C. Weich

Institut für Informatik, Universität Klagenfurt, Universitätsstraße 65 - 67, A-9020
Klagenfurt, Austria, e-mail: {laszlo,charly,carsten} @ ifi.uni-klu.ac.at

Keywords: parallel, memory-resident, object-oriented database management system, object
store, database architecture

1. INTRODUCTION

An architecture for a memory-resident, parallel and persistent objectstore (PPOST) is
suggested. Several object-oriented databases might be built on top of PPOST. The term
memory-resident (or main memory based) means that the primary storage device is main
memory. Persistence is guaranteed automatically by managing secondary and stable storage
devices (such as main memory with uninterrupted power supply, discs and tapes).

The main application area of massively parallel processing is to make large (scientific)
computations faster. Some efforts have been made to port existing databases, (such as
Oracle) on parallel machines (such as nCube or KSR). Much less effort has been made in
finding good architectures for database management systems, which are inherently parallel
and thus can take full advantage of parallelism.

Main memory-resident databases [1, 2, 3] are often considered obsolete, because of their
limited capacity of memory and their unability to scale up with growing needs. This
objection is not true any more, if a memory-resident database is implemented on a parallel
architecture, which not only can incorporate substantially large main memory (possibly
several Gigabytes or even Terabytes), but scales even better than disc-resident databases.
Adding new nodes adds not only more storage capacity, but corresponding processing power
as well.

Another advantage of using parallelism in a memory-resident database is, that logging,
checkpointing and archiving can be made in parallel with ordinary transactions serving the
users. We make the explicit assumption that applications served by PPOST have substantially
more read than update operations (this assumption defines a sufficiently large class of
applications). With this assumption, transactions can be processed actually with the speed of
the main memory, access to secondary storage can be done in background. In the case of
object-oriented databases, we have the additional advantage that methods of a retrieved
object can be immediately executed in its primary storage.

1 The implementation environment is partly supported by Digital Equipment Corporation (EERP contract
number AU-035).

1.2. Goals
High performance is achieved due to storing all data in main memory and due to
intensive use of parallelism.

Safety and simplicity: Simplicity due to the fact that the objectstore is freed from
sophisticated disc optimizations. Safety is achieved by using a clean, type-safe
object-oriented language by separating the conceptual schema from the external
schemas and by simplicity.

Flexibility: Flexibility means on the one hand, that applications of PPOST may control
the degree of parallelism. On the other hand, the architecture can be implemented on
different systems, can be adapted to different processing and communication
parameters.

Cost effectiveness: The architecture does not insist on special hardware, it can be
implemented on any work-station cluster. It can, however, take advantage of special
hardware, such as stable main memory or any high-performance MIMD machine

1.3. Data model

1.3.1. Separation of types and classes
PPOST supports an object-oriented data model. It consists of types, objects, typed object
sets, classes, views and generic operations. The main idea is a clear separation between types
and classes [4, 5]. Types specify the intensional aspect of objects while classes describe the
extensional point of view. Classes and views are based on sets. Sets are well understood and
their significance in hierarchical or relational database systems is well known. In addition,
sets are inherently parallel.

An object is an instance of exactly one object type. Objects may be grouped in
collections. In PPOST typed object sets build the base for all collections. A typed object set
is a set of objects with base type specification. A class is an object container. Classes build a
hierarchy. If an object is inserted into a subclass, it automatically becomes a member of all
superclasses (instance inheritance).

1.3.2. Separation of conceptual schema and external schemas
Object-oriented databases generally do not separate conceptual and external schemas. In
PPOST, however the traditional layered architecture of databases is used [5]. The objects of
the conceptual schema are stored in the objectstore of PPOST. The applications access the
data via external schemas (views). A view is a named, derived virtual class, and for that
reason a specialization of a class. Views are not materialized, i.e. objects are not stored
physically in views. Therefore views require production rules to determine which objects
exist virtually in them. These production rules must be declared at view definition time.
These rules operate on a so called base, which can either be a class or again a view.

2. ARCHITECTURE OF PPOST

PPOST's main components are (figure 1):
Objectstore (consisting of a number of object machines)
Log machine
Checkpoint machine
Archive machine
Users (consisting of a number of user machines)

The "machines" are logical
processors with their own address
space. They can be mapped on
heavy-weight processes or on
physical processors. The machines
are able to manage light-weight
threads inside the same address
space.

PPOST's main purpose is to store
and manage a large number of
objects. The primary copy of the
data are held in main memory. A
backup image of the primary data
and some log information are held
on nonvolatile storage. The backup
contains normally an older, but
consistent state of the database.
Applying the log information on the
backup leads to a new consistent
state of the primary image.

PPOST is transaction-oriented. Transactions are initiated by the user machines and processed
by the objectstore. Issues of persistence are handled by the log, checkpoint and archive
machines. The usual transaction properties (atomicity, consistency, isolation and durability)
must hold.
Parallelism is used for three different, partly controversial purposes:

"Spatial" extensibility (storing capacity can be enlarged by adding nodes)

"Time-scale" extensibility (higher speed can be achieved by parallel algorithms)

Fast backup (secondary devices are managed in background)
The first two purposes regard to the object store (called "horizontal" parallelism), the last
aspect regards to the pipe-lined backup ("vertical" parallelism). The first two points are in a
way controversial: Spatial extensibility requires a reasonably compact storing scheme,
time-scale extensibility requires many redundant physical processors. This is a form of the
usual time-space trade-off.

2.1. Horizontal parallelism

In this section we want to demonstrate the feasibility of a distributed main memory object
store: It is possible within certain limits to enhance throughput and speed of operations on the
object store. That means we can manipulate larger sets of objects within the same time by
adding new compute nodes, or on the other hand, do the same operation within shorter time.

2.1.1. Distribution of data
We organize sets of typecompatible objects in classes. Classes serve as object container
(putting an object into a class to make it persistent) and as the starting point of any operation
that reads or manipulates more than one of the objects stored. Classes in our object-oriented
store have the same role as tables in a relational database.

When we spread the data of the class among several nodes having all the methods
available on every node we call it data distribution. Operations like selecting certain objects

figure 1

of the class or starting a method of all objects in a class can be done in parallel when we
distribute the data: The operation can be started on every node that holds data of the class.

2.1.2. Costs of Distributions
Distribution of the data of a class makes it possible to accelerate operations that work on
every object in the class. Typical operations that need to look at every single object are
selecting objects that meet a certain criteria, computing a sum of a single attribute of every
object and the like. The enhenced speed gained by parallelism has to make up for the time
needed for communication. As we will see, every operation has - depending on the size of
the class - an optimum number of nodes with which it runs fastest. Adding more nodes will
decrease performance because the time gained by parallelism is less than the time needed for
the additional network traffic. If either the class is too small or the network is too slow this
optimum number of nodes is one: To distribute such a class with a given operation does not
make sense.

A different problem is the increase of the size of a class. If the class is too large to fit in a
single node, we have to distribute it among several nodes. We now want to know the number
of nodes necessary to run our operations without degrading performance by network
overhead. To calculate the number of nodes necessary for a given class with a given
operation in order to meet a certain performance goal we have to know several parameters of
the system, the class and the operation:

Size of the class (i. e. number of objects in it),

Time needed to process a single object in main memory,

Time needed to transmit the parameters of the operation to a single node that holds part
of the data,

Time needed to transmit that part of the result that has been produced by a single node
to the caller of the operation.

Example
Let us look at a typical operation upon a distributed class: A method shall be started on every
object of the class. It has some constant parameters and produces some single valued scalar
result. Such an operation might be to calculate a sum of a certain attribute of every object
that meets a given criteria.

t part part

t meth

t meth

t meth

t result

t result

t result

par

apply

application

node-1

node-2

node-k

T

figure 2 Time needed for a distributed operation

Figure 2 shows the expense necessary for this operation. The parameters (together with
the order to start the operation) have to be transmitted to all the nodes that hold part of the
data of the class (tpar). As soon as a node has received these it will start its part of the
operation in its main memory (tmeth). Afterwards every node will transmit its part of the
result (tres). The operation is finished when the last nodes has transmitted its result. We call
the time needed for the operation Tapply.

If the class is distributed among k nodes the parameter messages have to be retransmitted
k times and k result messages have to be collected. As soon as the second parameter is
transmitted, the first node starts to work. Assuming that each node needs approximately the
same time for its part of the operation, the resulting time is:

(1)Tapply
k = ktpar + n

k
tmeth + tres

The acceleration due to parallelism is (n-n/k)tmeth, the additional communication effort is
(k-1)tpar. To describe the latency of our network we introduce a parameter L as the ratio of
netcommunication-speed to process-speed in main memory:

(2)L = tpar

tmeth

A large value of L means slow communication. A smaller value means faster communication
or expensive methods. L is the number of objects that can be processed in a node before a
single parameter message can be transmitted.

Optimal number of nodes:
If we want to know the number of nodes with which a certain operation with a given class
size runs fastest, we get:

(3)ATapply
1 = Tapply

k ⇒ A = n+L
kL+n

k

(A is the acceleration of the operation with data distribution compared with the operation
running on a single node). Figure 3 shows that with comparatively large class sizes and

1

2

3

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12 14 16 18 20 22 24

Figure 3
acceleration with
increasing
node number

n=500.000

n=50.000

n=5.000

A

k

L=1000 the performance of the operation is increased first of all when we add nodes to the
data distribution. But beyond a certain number of nodes the operation becomes slower when
we add more nodes.

Scalability:
A distributed main memory data store is able to keep the performance of a operation in spite
of increasing class size by adding nodes to the distribution of the class. Let us look at the
formulas above from a different point of view:

(4)∆k =

n

k
−Lk

 ±
Lk−n

k

2

−4n(m−1)L

2L

Given a data distribution for an operation upon a class of size n spread among k nodes: is∆k
the number of nodes we have to add to maintain the speed of the operation if the class size is
increased by factor m. The range of values of m for which a can be given depends on∆k
how optimal the original distribution was. If the original class was distributed among a
number of nodes that is close to the optimum, increasing the class size is very expensive (∆k
becomes large) and soon impossible without loosing performance. If the original distribution
was less than optimal, we can add nodes to keep the performance of the original operation.
Figure 4 shows values for in dependency of the relative increase of a class with n=500.000,
L=1000 for different distributions. The optimal distribution of that class is k=22.

2.2. Vertical parallelism
The idea of vertical parallelism is to decouple normal transaction processing from issues of
transaction undo and redo. This separation can be done not only conceptually but also
physically. Normal transaction processing is done in the object store. Issues of transaction
undo and redo are handled by the log machine, checkpoint machine and the archive machine.

2.2.1. Transaction undo
For transaction undo we use before-images or shadow copies in volatile storage. In the case
of a system crash, the primary copy of the database is lost anyway. All not-yet-committed

1

3

5

7

9

11

13

15

17

1 1.5 2 2.5 3 3.5 4

Figure 4
Scalablility of
distributed classes

k=1

k=2

k=10

k=15

k=4

m

∆∆k

transactions are trivially "undone". Therefore, transaction undo is in accordance with the
concept of a memory-resident database.

2.2.2. Transaction redo
In the case of a system crash an automatic recovery procedure must restore the content of the
database.

Parallel logging
The necessary log information (see later) is sent to the log machine. The log machine would
ideally store the log-tail in stable main memory. In this case, transactions whose log
information arrived in the log machine can be committed immediately. We do not insist,
however, on the existence of a stable main memory. In the lack of this, we precommit [3, 6]
the corresponding transactions and let run other transactions (locks are released). In the
meantime, the log information is stored on disc in the form of simple sequential files (this
can be done at full disc-speed). After that, precommitted transactions may be committed. In
the case of a system crash precommitted transactions are handled as not-yet-committed.

Parallel checkpointing and archiving
The task of the checkpoint machine is to apply the logs on the last valid backup image [7].
After processing a certain amount of log information, a new backup is created, and the
corresponding log files are deleted. Checkpointing is done by a separate machine, therefore
its speed has no influence on the response time of the transactions. If the database is more or
less quiescent, then the backup may come very close to (or even the same as) the primary
copy. In the case of a heavy load, the backup might become relatively "old". In this case, the
log files may become long and a restart maybe expensive. This is unlikely, however, because
a database rarely has a constant heavy load over a long period of time (i. e. days). The newest
backup generated by the checkpointer can be archived on additional nonvolatile storage (such
as tapes). Archiving is considered as a normal activity, which does not reduce the response
time of normal transactions.

Recovery
In the case of a system crash, a recovery must be executed. The backup image is loaded in
main memory and the log is applied on it. Note that in this case the actual memory image is
generated with "memory speed" (instead of "disc-speed", as in the case of checkpointing).

Backup database
An interesting possibility of this architecture is to use an existing disc based database as
nonvolatile storage medium. In this case a bidirectional mapping is needed between PPOST
and the external database. The checkpointer must be able to generate appropriate calls to this
database, on the basis of the log information. At recovery, the data extracted from the
database must be mapped on the PPOST primary store image. Such mappings are surely not
trivial to find, and the external database should not be quite different from PPOST - e. g. it
should be preferably an object-oriented one. If such a mapping can be found, then PPOST
could serve as a kind of "supercache" for some existing databases.

3. IMPLEMENTATION

We are implementing a prototype of PPOST on our workstation farm consisting of 12
DEC/ALPHA stations with 128 MByte main memory each. The workstations are connected
by a switching FDDI network. The latency parameter L (see 2.1.2.) was measured between
1000 and 2000 for simple operations. A clean object-oriented language (Modula-3 [8, 9])

was chosen to implement PPOST. It seems to be necessary, however, to extend a general
purpose programming language with constructs that support generic operations on classes.
Such a construct could be sets as first-class citizens.

4. CONCLUSIONS

Traditional limits of memory-resident databases can be mastered by the use of parallelism.
Given a relation between the processing speed of individual nodes and communication, the
minimal size of classes can be stated, from which the memory-resident store scales nearly
linearly. This actually means that we can either add nodes to store and process more
information at constant speed, or we can add nodes to process the same information faster.
Main memory based object-oriented databases have the additional advantage that methods
stored in the database can be executed in their primary store.

Parallelism can be used in providing persistence as well: processing of log information,
creation of disc backups and tape archives can all be done in parallel to normal transactions.
Therefore, normal transactions are entirely decoupled from I/O on nonvolatile storage.

ACKNOWLEDGMENTS

The authors thank J. Eder and M. Dobrovnik for many valuable suggestions, and G. Revesz
for the careful reading.

REFERENCES

1. P. Apers, C. van den Berg, et. al.: "PRISMA/DB: A Parallel, Main Memory Relational
DBMS"; In: IEEE Transactions On Knowledge And Data Engineering, Vol.4, No.6,
December 1992

2. H. Garcia-Molina, K.Salem: "Main Memory Database Systems: An Overview"; In: IEEE
Transactions On Knowledge And Data Engineering, Vol. 4, No. 6, December 1992

3. K. Salem, H. Garcia-Molina: "System M: A Transaction Processing Testbed for Memory
Resident Data"; In: IEEE Transactions On Knowledge And Data Engineering, Vol. 1,
No. 2, March1990

4. M. Dobrovnik, J. Eder: "A Concept of Type Derivation for Object-Oriented Database
Systems"; In: L. Gün et. al. (eds.): Proceedings of the Eight International Symposium on
Computer and Information Sciences (ISCIS VIII), Istanbul, 1993

5. M. Dobrovnik, J. Eder: "View Concepts for Object-Oriented Databases". To appear in:
G. Lasker (ed.): Proceedings of the Fourth International Symposium on Systems
Research, Informatics and Cybernetics, Baden-Baden, 1993

6. J. Gray, A .Reuter: "Transaction Processing - Concepts and Techniques"; 1993; Morgan
Kaufmann Publishers Inc.

7. K. Salem, H. Garcia-Molina: "Checkpointing Memory-Resident Databases"; In:
International Conference On Data Engineering; 1989; Los Angeles; p.452-462

8. G.Nelson: "Systems Programming With Modula-3"; 1991; Prentice-Hall Inc.
9. L.Böszörményi: "A Comparision of Modula-3 and Oberon-2"; In: Structured

Programming, 1993, 14: 15-22; Springer Verlag

