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of 620 �s can be achieved on SCI clusters. These �gures are signi�cantly better(by a factor of 3 to 4) than those attainable on typical Ethernet LAN's. More-over, our experiments were conducted with �rst generation SCI hardware, betadevice drivers, and relatively slow workstations. We expect that in the verynear future, SCI networks will be capable of delivering several tens of MBytes/sbandwidth and a few tens of microseconds latencies, and will signi�cantly en-hance the viability of cluster computing.1 IntroductionCluster computing refers to the use of interconnected collections of workstations asa uni�ed concurrent computing resource. Such network-based computing platformshave become widely prevalent, and have evolved into very e�ective and viable environ-ments for high performance scienti�c computations, general purpose data processing,replicated web and internet servers, and for commercial and business applications.Typically, these computing environments are based upon hardware consisting of acollection of (homogeneous or heterogeneous) workstations interconnected by a lo-cal area network, and software libraries and tools that o�er di�erent types of pro-gramming models. The most common software frameworks are those that present aprocess-oriented message-passing interface, e.g. PVM [1] or MPI/P4 [6]. While thecomputers and software in clusters have established a pattern of growth and enhance-ment, the interconnection networks are only now undergoing major changes, with theadvent of various technologies such as ATM, FDDI, fast Ethernet, DQDB networks,and SCI.The Scalable Coherent Interface (SCI) standard is a point-to-point technology thato�ers backplane bus services and that can, in fact, serve as a high speed interconnectfor LAN-based high-performance cluster computing [3]. An IEEE standard since 1992[4] [5], SCI proposes innovative solutions to the bus signaling and bottleneck problemsand to the cache-coherence problem, and is capable of delivering 1Gbit/s bandwidthand latencies in the 10 �s range in local networks. These characteristics, coupled withthe potential for inexpensive hardware implementations, make SCI very attractivefor clusters, especially since most of the other high-speed interconnect technologiessuch as ATM and FCS only improve current bandwidth and latency by one order ofmagnitude or less. SCI, on the other hand, is designed to be two orders of magnitudesuperior, both in terms of latency and bandwidth. Further, the SCI architecture isscalable, and the bus-adapter model can be realized in an inexpensive manner.In order to perform an early exploration of the potential for SCI-based clusters,
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we have undertaken an experimental project to implement and test a message passingsystem on SCI. The system chosen is PVM, a widely used standard software frame-work for parallel and distributed computing on networked computing environments.PVM was selected because of its high portability and reliability, and the existenceof a very large user base and application pool. Our project goals are to extend andenhance PVM, in several modular phases, to operate over an SCI interconnectionnetwork, and to measure its e�ectiveness in terms of functionality and performance.We have completed the �rst major phase of this project, and our experiences andresults are described in this paper. We include some background material on SCI,a description of the key features of our implementation, performance results, and adiscussion on our �ndings.1.1 The SCI StandardThe Scalable Coherent Interface (SCI) emerged from an attempt in the late 1980sto design and standardize a very high performance computer bus (\Superbus") forthe next generation of high-end workstations and multiprocessor servers. To addressscalability and signaling limitations, a distributed solution was adopted, and is cur-rently manifested as SCI. The SCI interconnect technology has a number of attractivecharacteristics and capabilities, including:� Scaling: SCI supports traditional computer bus-like services, yet in a fully dis-tributed manner, enabling scalability and alleviating the need of central clocks.� SCI is based on unidirectional, point-to-point links only, avoiding any back-propagating ow control { allowing high speeds, large distances, and di�eren-tial signaling. Currently, the standard de�nes 1 Gbit/s and 1 Gbyte/s linkbandwidth, using bit serial and 16-bit parallel transmission, respectively. Withparallel �ber optic links, 2 Gbytes/s transmission rates over distances of up to100 meters have been demonstrated [7].� SCI is based on split-transaction protocols and packet switching. Multiple inde-pendent transfers can be in transit in a SCI system simultaneously, emanatingfrom di�erent nodes or pipelined into the network from a single node. Thestandard speci�es that each node may have up to 64 outstanding transactions.� SCI uses a 64-bit addressing model, with the most signi�cant 16 bits addressinga SCI node, and the remaining 48 bits representing the address o�set withinthe node. Thus, up to 64k nodes can be included in a SCI system. A SCI nodemay be a full desktop or multiprocessor machine, a processor (together with
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its caches), a memory module, a switch, an I/O controller or I/O device, or abridge to other buses or interconnects. A standard node interface structure isde�ned by SCI.� The SCI standard particularly supports distributed shared memory (DSM) sys-tems. Nodes may share memory segments across node boundaries and per-form remote memory accesses employing hardware mechanisms only. Since nooperating system or network protocol software is involved, this type of com-munication has very low latencies (in the low �s range), even In a distributedsystem. Atomic read-modify-write transactions (e.g. compare&swap) are spec-i�ed to support e�cient synchronization when DSM is used in a multiprocessorsystem.� To support local caching of remote data, SCI provides sophisticated cache co-herence mechanisms based on a distributed directory scheme (sharing lists). Itmust be noted that these mechanisms are optional and do not sacri�ce perfor-mance of accesses to non-cacheable memory regions.� The basic topological building block of a SCI network is a small ring (a ringlet),containing a few (for instance, eight) nodes. Using ringlets, arbitrary networkand switch topologies can be constructed for large systems, e.g. rings of rings,but multistage interconnection networks as well.� SCI de�nes additional elaborate protocols for e.g. broadcast transactions, ringbandwidth allocation (the SCI equivalent to bus arbitration), and error detec-tion and containment. Packets are protected by CRCs and, in case they arelost or transmitted with errors, are recommended to be re-sent using hardwaremechanisms. All protocols are designed to avoid deadlocks, provide fairness,and guarantee forward progress.Owing to its unique characteristics, SCI can be applied to a wide range of inter-connect problems in the design of high performance computing systems. For exam-ple, RAM interfaces, which link memory closely to processors for very high memorybandwidth required by future microprocessors, can exploit SCI. Similarly, in tightlycoupled, cache coherent multiprocessors, SCI typically interfaces to and extends theprocessor-memory bus/interconnect of the nodes to connect them into a scalableshared-memory cluster (SMC) e.g. as in the Convex Exemplar SPP 1000/1200. SCIis also e�ective in data acquisition systems and I/O subsystem interconnects.SCI can also be very valuable in situations not traditionally in the realm of hard-ware buses. In loosely coupled, non-cache coherent compute clusters, SCI typically
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attaches to the I/O bus to interconnect nodes in a way similar to a traditional LAN.This permits very high speed clusters and facilitates e�cient concurrent computingin network environments. Apart from SCI's higher bandwidth, the major di�erenceis that SCI can be used to set up DSM segments among participating nodes, therebyproviding the low latency communication option mentioned above. Boards to inter-face SCI to standard I/O buses like the SBus or PCI are or will soon be availableon the market, e.g. from Dolphin Interconnect Solutions (see [8]). These allow o�-the-shelf workstations or even PCs to be clustered into high performance parallelcomputing devices.2 The SCI Experimental TestbedThe testbed for SCI software development that was used in this project is a SCI\ring" of two SPARCstation-2 (SS-2) machines, interconnected by commercial 25MHz Dolphin SBus-SCI adapter cards and SCI copper cable from Dolphin Intercon-nect Solutions, Oslo, Norway[8]. The device driver for this product (V1.4a, May 1995)supports two elementary software interfaces.The raw channel interface (message-passing) provides system calls for establish-ing and controlling connections between processes on di�erent machines. Data canthen be transferred across connections using write and read system calls. Raw I/Ochannels are simplex; separate unidirectional connections are created if both com-municating processes wish to send and receive messages from each other. The SCIadapter uses programmed I/O for messages smaller than 64 bytes, or if the message isnot aligned on a 64-byte boundary. For larger messages (if properly aligned), a DMAengine conducts the data transfer and enables high throughputs to be achieved. It isemphasized by the vendor that, to achieve low latencies, only a single intermediatekernel bu�er (at the receiver side) and thus only a single intermediate copy operationis involved in a data transfer.The shared-memory interface consists of system calls for constructing shared-memory segments as well as setting up address mappings in the interface so thatremote segments can be accessed transparently. Processes can include shared seg-ments in their virtual address spaces using the mmap system call. Processes can movedata transparently from the local memory of one machine to local memories on othermachines by simple assignment operations onto shared segments. This is e�ected bythe DMA engine; no system call or intermediate kernel bu�er is involved in this kindof data transfer. The SCI links are nominally rated at 1 Gbit/s bandwidth, while theinterface cards deliver sustained application throughput of 10 Mbytes/s.
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It must be noted that the device driver functionality is far from complete. For theraw channel interface, only a minimal and slow implementation of the poll system callis available. The shared memory interface lacks atomic, SCI-based read-modify-writetransactions to build e�cient locks or semaphores across node boundaries. No fastsignaling mechanism over SCI is available. These de�ciencies have a severe impacton the implementations of the packages and, in particular, on their performance.3 ImplementationThe PVM system provides a general library-based message passing interface to en-able distributed memory concurrent computing on heterogeneous clusters. Messageexchange as well as synchronization, process management, virtual machine manage-ment, and other miscellaneous functions are accomplished by this library in conjunc-tion with PVM daemons that execute on a user de�ned host pool and cooperate toemulate a parallel computer.Data transfer in PVM is accomplished with the pvm send and pvm recv calls thatsupport messages containing multiple datatypes but require explicit pvm pk<type>and pvm upk<type> calls for bu�er construction and extraction. Alternatively thepvm psend and pvm precv calls may be used for the transfer of single data typebu�ers. Both methods account for data representation di�erences, and both useprocess \taskid" and message tags for addressing and discrimination. In addition,a runtime option allows message exchange to use direct process-to-process stream(i.e. TCP) connections, rather than transfer data via the daemons as is the default.Therefore, pvm psend and pvm precv with the \direct routing" option is the fastestcommunication method in PVM. Our project to implement PVM over the SBus-SCIinterface consists of several phases:� Implement the equivalent of pvm psend/pvm precv as a non-intrusive libraryover SCI using raw I/O interface (DMA), i.e message passing. Complete thisimplementation to incorporate heterogeneity, fragmentation/reassembly, For-tran stubs, optimization and �ne tuning.� Incorporate the use of SCI shared memory for data transfers into this implemen-tation. Tune this implementation by utilizing shared memory communicationor message passing, respectively, where most e�cient.� Implement the native PVM send/receive calls with intelligent decision makingto utilize SCI when available and to fall through to default protocols otherwise.
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� Investigate the feasibility and desirability of implementing PVM control func-tionality and the collective communication routines over SCI.� Enhance the functionality and performance of the library using a threads-basedparallelism model.� Port the above to PC-based compute clusters interconnected via the forthcom-ing PCI-SCI interface card.In the initial phase of this project (the �rst two action items), pvm scisend andpvm scirecv counterparts to direct routed pvm psend and pvm precv have been de-signed and implemented as a non-intrusive library to PVM. In the interest of compat-ibility, the argument lists and semantics of pvm scisend and pvm scirecv have beentaken to be identical to psend/precv; thereby programs may be trivially translatedto use either of the two mechanisms. The argument list for pvm scisend consists ofthe destination taskid (multicast is not currently supported), a message tag, a typedbu�er, the number of items to be sent, and a coded datatype indicator:int info = pvm_scisend (int tid, int msgtag, char *buf, int len,int datatype)The routine pvm scisend is asynchronous, so computation on the sending pro-cessor (i.e. return of control to the invoking process) can resume as soon as the usersend bu�er is safe for reuse. This routine does not a�ect the active send bu�er and themessages sent by this routine can be only received by the pvm scirecv routine. The�rst �ve parameters to pvm scirecv are identical, with the exception that wildcardsare allowed for the source taskid and message tags; in addition, there are three outputparameters for the return of the actual taskid, message tag, and message length:int info = pvm_scirecv (int tid, int msgtag, char *buf, int len,int datatype, int *atid, int *alen, int *atag)The routine pvm scirecv is a blocking call; therefore, the invoking process issuspended until a message matching the user speci�ed tid and msgtag arrives on oneof the SCI-PVM connections. If the message has already arrived then pvm scirecvreturns immediately with the message. This routine also does not a�ect the activereceive bu�er. Return values from both calls are identical to those for psend/precv.
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3.1 Implementation ModelThe SCI-PVM library presents an API and is the application task's interface to thelocal PVM daemon and to other tasks. As depicted in Figure 1, the SCI-PVM li-brary consists of two functional parts: the message queue (and associated routines) tostore received messages, and the communication driver to choose the route and sendoutgoing messages. The route via the PVM daemon is used to exchange control mes-sages, and also for regular messages in case the SCI connection is not operational ornot installed. This \fallthrough" is accomplished by utilizing the pvm send/pvm recvPVM calls, using a special message tag in a reserved range. To distinguish regularmessages from control messages, additional internal tags are used.
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Figure 1: SCI-PVM Implementation modelFor the actual data transfer over SCI channels, the SCI-PVM library transparentlyemploys whatever SCI communication mechanism is most e�cient. For large datatransfers, raw channel access to the SCI interconnect (i.e. message passing usingthe write/read system calls) is chosen in order to achieve high throughput. Small
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messages, for which low latency is of primary importance, are transferred via a sharedmemory segment, at the user level. Performance evaluation has indicated that athreshold of 1024 bytes is best suited to switch between these SCI routes. Basedon this parameter, the sender chooses the route and transmits messages by writingdirectly to the active end of the connection. For each message, a header containing thespeci�c information for the particular route is �rst sent to permit the destination toprepare for reception; the actual message is then written, with fragmentation carriedout when needed.Implementation of the pvm scirecv function involves accepting connections, andsubsequently reading headers and data from the passive end of the connection. Inaddition, the receiver library performs multiplexing among many incoming SCI-PVMcommunication routes (channels), performs discrimination based on source and mes-sage tags, and also reads in and bu�ers early messages. To preserve PVM source/tag�ltering semantics and to avoid retries and possible deadlocks, all incoming messagesare �rst read in and bu�ered whenever the pvm scisend/pvm scirecv libraries getprogram control.The connection queue keeps track of SCI established connections between thetwo tasks, as well as connections between the tasks that do not have SCI capability(i.e. card not installed or operational). Each descriptor contains the peer's PVMtask identi�er, the SCI node number, the SCI kernel bu�er key, and the SCI sharedmemory segment key. It also contains a pointer to the shared memory segment, itssize, a �le descriptor and a pointer to the message being currently received. Negativevalues in the SCI node number �eld indicate the receiving connection descriptor orthe sending connection descriptor to a task without SCI interconnect.The message queue stores messages until they are moved to the user receive bu�er.All information needed to reassemble the message are kept in the message structure,which is �lled from the header of the message and contains the sender PVM taskidenti�er, a message tag, a data type, a pointer to the message bu�er, a pointerto the current fragment and a ag indicating if the message is completely received.When the message is complete, the message structure is removed from the connectionqueue and other messages from the same sender can now be received.3.2 Communication ModelThe SCI-PVM routines have been designed to operate on any node, even on thosewithout an SCI interconnect. Therefore, as depicted in Figure 2, six logical commu-nication routes must be handled. SCI channels are used whenever possible. At the
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�rst transmission attempt (using pvm scisend) for a speci�c source-destination pair,a special connection request message is sent via the default PVM mechanism. Thecorresponding pvm scirecv either accepts or rejects this connection request.
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S C I Figure 2: SCI-PVM Communication routesWhen both tasks have SCI interconnects, the receiver (or passive task) allocatesa port number, creates a shared memory segment, maps the shared memory segmentinto its virtual address space, creates a connection descriptor, and sends an acknowl-edgment message to the requester (i.e. the sender or initiator of the connection).This control message contains the SCI node identi�er, the SCI port number, andthe SCI shared memory key. The requester does not wait for an acknowledgment; itpolls all SCI-PVM routes and bu�ers new incoming messages from other tasks in themessage queue. On receipt of the acknowledgment message, the sender connects tothe remote SCI node, maps the SCI shared memory segment into its virtual addressspace, creates its connection descriptor, and sends the message using one of the SCIinterfaces.If for any reason there are problems obtaining resources, i.e. �le descriptors, the
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message will be routed through the PVM daemon. In such a circumstance, the senderdoes not request a SCI connection. If the sender successfully obtains SCI resourcesbut the receiver does not, the connection is rejected by sending an appropriate con-trol message back to the requester. However, an optimistic approach is adopted {subsequent SCI requests will repeatedly attempt to establish a connection over theSCI interconnect. Finally, in the case that two tasks simultaneously try to establishan SCI connection to each other, a simple convention (lower PVM task identi�er ispassive) is used to avoid a potential deadlock situation.With reference to Figure 2, the message passing mechanisms for various othercases are now clari�ed. Tasks B and C reside on the same machine; message exchangebetween them is performed over the PVM daemon. When a message is to be sent tooneself (task C), only a local copy from the user send bu�er to the message queuesu�ces. If C attempts a SCI connection to D, the latter will reject the request with anappropriate message, indicating that SCI interconnect is not installed on that node.In this instance, the sender will create a special descriptor for this connection andwill refrain from future attempts to set up a SCI channel to this receiver. When aprocessor does not have SCI interconnect, a connection attempt is not requested; themessage is immediately sent over the PVM daemon. This is the case when task Dsends a message to E, or when task E sends a message to F. To improve performancefor long bursts of sustained message sending, the last receiver task identi�er is keptby the sender, so that these messages can be sent without consulting the connectionqueue.3.3 Raw Channel RouteThe SCI-PVM library uses the SCI driver write and read system calls for the transferof large messages. The write system call copies the content of the user send bu�er tothe remote kernel receive bu�er, and the read system call reads data from this kernelbu�er (from the reader's point of view it is local) to the user receive bu�er. Whendata are properly aligned, a DMA conducts data transfer; otherwise, programmedI/O is performed.In the current (1996, Solaris 2) version of the SCI driver, a DMA transfer takesplace only when three conditions are met: (a) the user send bu�er must be alignedat a 64-byte boundary address; (b) the size of the message must be a multiple of 64bytes; and (c) the start address in the remote kernel bu�er must also be aligned on a64-byte boundary. To ensure that these conditions are ful�lled, our implementationdivides the message into three parts, and writes it, as shown in Figure 3.
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bcopy Figure 3: Raw channel data transferTo permit the destination to prepare for reception, a header containing the mes-sage tag, the number of items to be sent, a data type indicator, the preample (thepart of the message to the �rst alignment), the residue, their sizes, and some padding,is �rst sent. At the other end of the connection, the receiver polls all receiving �ledescriptors in the connection queue. On receipt of the header it creates a messagestructure and �lls it with information from the header, allocates a bu�er for the mes-sage, copies the two (unaligned) parts of the message into the bu�er, and labels themessage \not complete". After receiving the header, the receiver does not wait forthe rest of the message; rather it continues polling on all SCI-PVM routes.In a SCI-PVM implementation catering to parallel programs where each processcommunicates with multiple partners, polling must be arti�cially implemented toavoid inde�nite delays and deadlocks. Because of the limited space of the kernelbu�er (128 kbytes), writes could potentially block, perhaps unnecessarily holding upthe sender. In this version, we have circumvented this problem by marking the SCI�le descriptors as non-blocking and fragmenting the message in pieces of 42 kbytes.Instead of waiting for the reader to empty the bu�er when it is full, the writer does also
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polling on all incoming routes and bu�ers early messages. This is combined with anexponential backo� scheme { delaying the writer by successively increasing amountsof time. A potential deadlock occurring when two tasks are sending large messages toeach other at the same time is prevented using this method. An alternative methodwould have been to use tokens.Completely received messages are moved from the connection queue and resideonly in the message queue, wherefrom they are copied to the user receive bu�er. Ifonly SCI raw channel interfaces were used, small messages (less than 128 bytes) couldbe piggybacked onto headers to avoid multiple system calls and context switches.3.4 Shared Memory RouteData transfer over the SCI raw channel interface su�ers from one major drawback; thetransmission latency for small messages is very high. This is primarily caused by thesystem calls and context switches involved in every data transfer. Also, aligning thesend bu�er entails additional copy overhead in the library, and the need to transferdummy bytes decreases performance as well. In order to improve performance forsmall messages, shared memory segments are used to emulate message passing. Asdepicted in Figure 4, each shared memory segment contains variables to ensure mutualexclusion, variables for the management of bu�er usage, and the message store. Twosolutions, described below, have been implemented for synchronization.
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The �rst solution to achieve mutual exclusion between two processes uses aninteger variable turn and requires that two processes strictly alternate in enteringthe shared memory segment. The variable turn keeps track of whose turn it is toenter the segment. Entering the segment, the process �rst examines turn. If it is itsturn, the process enters the segment; if it is not, the process continuously examines(spinning on) turn, waiting for its value to be changed. When leaving the segmentthe process sets turn and allows the other to enter the segment. Using this solution,the sender writes a message in the segment and waits for the receiver to read it.When the message is read the sender is allowed to write the next message. No bu�ermanagement variables are needed in this scheme; however, it works only when bothprocesses are equally matched in terms of speed.Using Peterson's solution [11] to achieve mutual exclusion, the number and sizeof the messages are only limited by the size of the shared segment. The writer andreader variables indicate the interest of the processes to enter the segment. If only oneprocess is interested in entering the segment, it indicates that by setting its interestvariable and placing its process number (writer 0, reader 1) into the variable turn,and enters the segment because the other has not shown an interest by setting itsvariable. The variable turn arbitrates when both processes try to enter the segmentat the same time. The process who �rst stores its process number into variable turnwill win the conict and enters the segment. The other loops until the �rst one leavesand resets its interest variable.In both solutions processes waste processor time, spinning on the variable beforethey are allowed to enter the shared segment. In the case of the writer, the spinning isdone on the remote segment, and interferes with the reader's local memory accesses.Both previous algorithms can be improved to reduce remote spinning, by introducingadditional local variables on the writer's side, that can be accessed by the reader.Also, due to the lack of e�cient SCI-based locking mechanisms, other synchronizationprimitives are very expensive to implement.The current SCI-PVM implementation uses Peterson's solution to achieve mutualexclusion. Sending and receiving messages using the shared memory route is similarto the scheme used by the raw channel route. The only di�erence is that no alignmentis needed, and so the header does not contain any part of the message. Message andqueue management are also done in a similar fashion. When the shared segment isfull, the sender does not wait for the receiver to empty it but does polling on allincoming SCI-PVM routes, bu�ers early messages and takes action in connectionestablishment requests. On the other end of the channel, the reader does not wait forthe message to be completely sent, rather then does the polling as well. Polling onthe shared memory route is simply accomplished by checking shared variable empty.
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3.5 PVM Daemon RouteThis implementation uses the PVM daemon to exchange control messages, as wellas regular messages when the SCI connection is broken or not installed at all. Thesending and receiving scheme is the same as in the other cases. The header andthe message are sent using pvm send and pvm pk<type> calls with a message tagin a reserved range. Polling is done by using the pvm nrecv call; the pvm bufinfocall gives the PVM task identi�er of the sender. To distinguish control messagesfrom regular ones, additional internal tags such as, \connection request", \connectionacknowledge", \connection rejected" and \SCI not installed" are used.
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Figure 5: Raw channel throughput4 Performance ResultsThe primary objective of the performance studies was to compare direct data transferover SCI using pvm scisend and pvm scirecv routines and Ethernet using pvm psend
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and pvm precv routines with the direct route option. The latter are the fastestcommunication mechanisms available in standard PVM. However, in order to pro-vide some insight into the performance potential and some artifacts of the SBus-SCIadapter as well, results for the raw channel and shared memory interface (withoutthe PVM API) are also included.
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Figure 6: Raw channel latencyThe raw channel interface was tested using the write and read system call tothe SCI driver, and throughput performance results are given in Figure 5; Figure 6depicts latency results for the same test. The measurement was done using a simpletimer-write-timer program on the sender's side and a timer-read-timer program on thereceiver`s side for one and one thousand iterations (sustained performance). Messagesare properly aligned, and the message size was chosen to be a multiple of 64 bytes, butthe message header was not sent. For large messages, provided the requisite conditionsare met, throughput for one iteration of up to 9.5 MBytes/s was observed. Sustainedthroughput for the same test of up to 7.1 MBytes/s could also be achieved. Forcomparison, if one of the conditions is not ful�lled, the throughput peaks at only 160kbytes/s. For small messages, a minimum latency of 1.1 ms using one iteration couldbe achieved. The raw channel interface was also tested using a roundtrip measurement
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Figure 7: Shared memory Latency - alternationprogram, consisting of a simple timer-write-read-timer program on the sender's sideand a timer-read-write-timer program on the receiver's side (ping-pong) for one andone thousand iterations, too. Maximum throughput of 5.7 MBytes/s for one iterationand maximum throughput of 7.1 MBytes/s for sustained ping-pong message exchangecould be attained. Minimum small message latency was 3 milliseconds.The shared memory interface was tested, according to Figure 4 using load andstore instructions for both strict alternation and Peterson's solution implementationsof the synchronization mechanism. Latency results are shown in Figures 7 and 8.Simple timer-store-timer and timer-load-timer programs were used for one and onethousand iterations. The minimum latency achieved with the �rst algorithm was 23�s, while that attainable with Peterson's solution was 92 �s. Using timer-store-load-timer and timer-load-store-timer (ping-pong) programs a minimum latency of 48 �swith the �rst algorithm and 193 �s by the second were observed. For large messages,the di�erence between the two algorithms diminishes, and maximum throughput forboth peaks at about 800 kbytes/s. The better performance of the strict alternationalgorithm was achieved because of the nature of the test program where the speed of
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Figure 8: Shared memory latency - Peterson's algorithmthe writer and reader is equal, an unrealistic condition in real applications.For the �nal throughput comparison test, simple sustained timer-send-timer andtimer-receive-timer programs were used. Figure 9 shows results with several variantsof the send/receive functions, message lengths and interconnect media. Experimentswere conducted with one thousand iterations of sending and receiving messages. Forlarge messages, sustained throughput over 3.4 Mbytes/s could be attained { a threeto four-fold improvement over the fastest Ethernet implementation. However this isonly about 50% of the performance that SCI can sustain using the write and readsystem calls (7.1 MBytes/s). Clearly, performance is diminished by the improvedfunctionality of the SCI-PVM library (e.g. multiplexing, bu�ering, additional headertransmission). However, major causes for the degradation are the de�ciencies ofthe �rst-generation of the SCI interface hardware and software, such as the criticalalignment requirement and an incomplete implementation of the poll system call.The communication route over shared memory segments is clearly superior tothe raw channel interface for small data transfers, up to 1 kbyte. Although notshown in our graphs, this e�ect was even more pronounced when fewer messages (i.e.
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Figure 9: Sustained throughput - comparisonsmaller number of benchmark iterations) are sent. Therefore, the SCI-PVM librarytransparently uses the shared memory route for the messages up to 1024 bytes, andthe raw channel route for larger messages. In a ping-pong program, based on shared-memory transfer, latencies of about 620 �s were observed. The maximum throughputand minimum latency comparison results for the previous tests are shown in Figures10 and 11.5 DiscussionWhile the implementation scheme is, for the most part, straightforward, several sig-ni�cant issues should be considered { most pertaining to the current version of theSBus-SCI device drivers. The �rst, and most critical, is the incompletely imple-mented poll system call for the SCI device (support for this has not been \o�cial",a beta version of the driver was made available). The driver does not implement\pollwakeup" as a result of a \data ready" interrupt, and the \pollwakeup" will only
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Figure 10: Maximum throughput - comparison
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Figure 11: Minimum latency - comparisontake place as a result of a driver timeout function. In the ping-pong program, in thecase when both drivers doing the poll system call at the same time, performance canbe substantially decreased. This problem can be circumvented by marking the SCI�le descriptors non-blocking and attempting to read, with the result values used todetermine readiness.The given throughput results are in line with what was recently reported for100 Mbits/s ATM LANs [9] [10] whereas our latency �gures are signi�cantly better.While the results so far are promising, they do not reach the full potential of the SCItechnology. Problems and shortcomings of the �rst-generation products, in particularthe device driver, still limit both ease of use and performance of the SCI interconnect.At the time of writing, Dolphin has indicated that an SBus-2 adapter card for SCIwill soon become available and will signi�cAntly increase the bandwidth available toapplications (30Mbytes/s throughput). Improvements in device driver functionality
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and performance will also become available.6 Further WorkThe design and implementation of PVM extensions and enhancements to permitoperation over SCI networks have proven to be both successful and enlightening. Wehave understood in greater depth, a number of issues concerning the SCI interfaceand operation methods, as well as factors relating to the implementation of messagepassing over SCI. Our performance results have been very encouraging, especiallyconsidering that only early versions of the hardware and drivers were available. Thesepositive experiences strongly motivate further development, and we intend to continueto pursue the PVM-SCI project along several dimensions.One of the �rst enhancements to be undertaken is a multithreaded implementationof PVM-SCI. Currently, the necessity to poll for incoming requests on SCI channels isdisruptive to local processing, and independent threads of control will lead to a moree�cient and elegant implementation. On a related subject, synchronization betweenSCI nodes interacting via shared memory is also expensive, due to the nature ofmutual exclusion implementation. We will investigate schemes to alleviate the busywaiting or remote machine disruption that is currently required.A third modi�cation involves changing both the PVM daemon and library toutilize SCI when possible for control functions within the PVM system. Similarly, re-implementing the native PVM message passing calls, particularly those that deal with"direct routed" messages, to use SCI when possible, would be of great bene�t. Thelatter two extensions are straightforward to implement, but require changes to thePVM system | as emphasized earlier, our �rst phase experimental SCI-PVM systemwas intended to be completely non-intrusive. Finally, some long term work, dependingon the evolution and availability of SCI hardware interfaces, will be undertaken toextend SCI-based cluster computing to personal computers.References[1] V. S. Sunderam, G. A. Geist, J. J. Dongarra, and R. Manchek, \The PVM Concur-rent Computing System: Evolution, Experiences, and Trends", Journal of ParallelComputing, 20(4), pp. 531-546, March 1994.
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