DATA LOCALITY OPTIMIZATIONS TO IMPROVE THE EFFICIENCY OF MUTIGRID
METHODS

Christian Weil3 and Hermann Hellwagner
Institut fur Informatik
Technische Universitat Minchen
D-80290 Munchen, Germany

Ulrich Rude
Institut fir Mathematik
Universitat Augsburg
D-86135 Augsburg, Germany

Linda Stals
Department of Mathematical Sciences,
University of Bath
Bath, BA2 7AY, UK

SUMMARY

Current superscalar microprocessors are able to operate at a peak perwhapcto 1
GFlop/sec. However, current main memory technology does not provide the data fiestded
enough to keep the CPU busy. To minimize idle times of the GRldhesare used to speed
up accesses to frequently used data. To exploit caches, the software mustreé®bBthem and
reuse data in the cache before it is being replaced. Unfortunately, all camvanmultigrid
codes are not cache-aware and hence exploit less than 10 percent of the peak pedaima
cache based machines.

Our studies with linear PDEs with constant coefficients show that it is Iplestsi speed up
the execution of our multigrid method by a large factor and hence solve a Poissont®erqua
with one million unknowns in less than 3 seconds. The optimized reuse of data iadhe c
allows us to exploit 30 percent of the peak performance of the CPU, in contrasjdévfor
instance, which achieves less than 5 percent on the same machine. Teahisewe used
several techniques like@op unrollingandloop fusionto better exploit the memory hierarchy
and the superscalar CPU. We study the effects of these techniques on the rumtormagrece
in detail. We also study several tools which guide the optimizations and hedstioicture the
code.

CPU Capacity Bandwidth Latency
- 256 Bytes 24000 MB/s 2ns
- 8 KBytes 16000 MB/s 2ns
2. Level Cache - 96 KBytes 8000 MB/s 6 ns
/ 3. Level Cache \ - 2 MBytes 888 MB/s 24 ns
/ Main Memory \ - 1536 MBytes 1000 MB/s 112 ns

/ Swap Space on Disk\

Figure 1. Memory Hierarchy of the DEC PWS 500au A21164

1. INTRODUCTION

Over the last 10 years the speed of microprocessors has increased at aawtenof 80
percent per yeall|. Through the use of pipelining, fast add-and-multiply operations and other
techniques, a single RISC processor can now reach a peak performance of aroung/$&&F
The continuing evolution is expected to yield further performance increasesrobésd 60 per-
cent annually2]. Relative to the computational speed, the memory access times and throughput
have increased very slowly, only at a rate of 5-10 percent per[ygaso that the typical peak
main memory bandwidth of workstations now is still much smaller than 1 GBgté3|. At
peak CPU speed, however, 24 times as much would be necessary to support (DAEPY
vector operations.

This phenomenon is often calléditting the memory wall”[4]. A common approach to
at least mitigate its effects is to usar@mory hierarchy There are many different ways of
implementing this concept, but the consistent theme is that there is a large, sk@v memory
at the bottom of the hierarchy and a small, expensive, high speed memory at thetbep of
hierarchy. This high speed memory is calledaeheand is intended to contain copies of main
memory blocks to speed up accesses to frequently needed data. An example ey me
hierarchy with three levels of caches is shown in figure 1.

However, because of the limited size, caches can only hold copies of tglyacsed data.

To exploit caches, the software must be aware of them and reuse data in théetaredt is
being replaced. The effectiveness of data locality optimizations has bdkedenenstrated in
LAPACK [5], alinear algebra package for dense matrices, and FFT algorithms (see fglexam
[6]). However, little work in that direction has been done for iterativétégues and research
into more advanced iterative methods such as multigrid has only just begin

The difficulty with iterative methods can be seen in the following examplee program
mgd9v{9] is a robust Fortran 77 multigrid program designed to solve 2D elliptic parfi@rdn-
tial equations and is optimized for vector computers. We compiled the progrdnaggtressive
optimizations enabled and solved Poisson’s equation @i & 513 grid so that thel., norm
of the residual was less than«< 10~%. The obtained results on a SGI Power Indigo based on
a 75 MHz clocked MIPS R8000 CPU (300 MFlops/sec), a SGI Origin 2000 node based on a

| | Time | MFlops/sec| % Peak]

R8000 | 19.7 sec 13.8 4.6
R10000| 6.2 sec 43.7 11.2
DEC 7.2 sec 36.6 3.6

Table 1: Solving Poisson’s Equation wittgd9v

195 MHz clocked MIPS R10000 CPU (390 MFlops/sec) and a DEC PWS 500au based on a
500 MHz clocked Alpha 21164 (1 GFlop/sec) are shown in table 1. On all machiveeprd-

gram only achieves a small fraction of the peak performance. However, dastest machine

- the DEC PWS 500au - the program is even less efficient than on the SGI Origin Aade.
analysis with tools likgperfex[10] and DCPI [11] reveals that the limiting factor for iterative
methods is not the numerical computation but memory access. As the above exaiigates,

the efficiency of these methods may even decrease with increasing prosgssdr

We started our data locality studies with a straightforward implememtaf the multigrid
method inC assuming that the finite difference stencil is constant on each grid leves T
restricts the discussion in the paper to linear PDEs with constant ceatficithough clearly
many of the basic ideas can be carried over to more general situationsonsieler the finite
difference approximation of Poisson’s equation defined on the square domain withl€&liri
boundary conditions. Consistent with the multigrid algorithm, we use a nested seqfence
uniform gridsM; ¢ M, C --- C M,, with the grid spacing on level beingh? = h} =
2~k In this paper we will use the compact 9-poMehrstellenstencil. We implemented a V-
cycle and a FMV scheme and applied several in-caahe out-of-cacheoptimizations to the
smoother and the overall algorithm and studied the effects on the performanceGrPower
Indigo based on a 75 MHz clocked R8000 CPU. In this paper we only present the restlits f
V-cycle scheme. The results for the FMV scheme as well as results for anbgpencil version
can be found iri12].

The remainder of the paper is structured as follows. Section 2 discussebexa@ented
red-black Gauss Seidel smoother. Section 3 explains how the components of a \&lggele
rithm are combined to a cache-oriented multigrid program and section 4 praodesconclu-
sions.

2. RED-BLACK GAUSS SEIDEL

We use the red-black Gauss Seidel to smooth the equations on each grid leville As
smoother is one of the most computationally expensive parts of the multigrid algotigiall
be described in some detail.

Figure 2 shows the MFlops/sec rate for different implementations of the re#d-kauss
Seidel algorithm. The line labele@d black (1)is the result of what we would consider to

lIn-cache means that the amount of data is small enough to fully fit in the cache.
2Qut-of-cache means that the total amount of data is too large to fit in the sadhat parts of the data need
to be copied more than once from main memory into the cache.

180
gl _fed black(2) +— -
o redblack(4) =

140 | | |

120 | e y :

. |
100 ! \
L ! i
\

MFlops/sec
£

G
|

wr i S

20 b

4 16 64 256 1024
grid size

Figure 2: MFlops/sec Rate for Different Implementations of Red-Black Gaeskel.

be a standard implementation of the red-black Gauss Seidel method. The linlesl lzide
black (2)andred black (4)were obtained by using an optimization technique similar to loop
unrolling (see figure 3 di 3] for a more detailed description of the technique). Clearly this tech-
nigue is effective in improving the in-cache performance as it more then dohig@saximum
MFlops/sec rate. The reason for this is that loop unrolling can introduce additr@talction
level parallelism and hence help to improve the utilization of the functionés$ of superscalar
CPUS14].

However the out-of-cache performance is not affected at all. Figure 2\yckdaows the
cache effect for small grids. Once the grid is too large to fit in the cach@56 x 256), the
performance decreases dramatically. The reason for this is that a cemaptite performs two
global sweeps through the whole grid. Assuming that the grid does not fit in the cache ahe dat
of the lower part of the grid is no longer in the cache after the red update swesydedbe data
was replaced by the grid points in the upper part of the grid. Hence, the data must b loade
from the slower main memory into the cache again. Doing this they replace the pgapef
the grid points in the cache and as a consequence they have to be loaded from maig memor
once more.

It may seem unnecessary to spend time on improving the in-cache performanceverhe
are mainly interested in the results for large grids, however all methadgowbving the out-of-
cache performance involve some sort of blocking technique. That is, we try th thedarge
grids up into smaller grids. So if the performance for the small grids is poor, tlierpence
for the large grids will be poor as well.

When implementing the standard red-black Gauss Seidel algorithm, the ususleisito
do one complete sweep of the grid from bottom to top updating all of the red nodes and then
one complete sweep updating all of the black nodes. The first point to note is thatascalee
in row i is updated the black node in raw 1 directly underneath it may also be updated. If
a 9-point stencil is placed over one of the black points (see figure 4) then we ctirasak of
the red points it touches are up to date (as long as the red node above it is up.to date)

— Standard Update — — Update w. loop unrolling (factor 2) —

/l red nodes: /l red nodes:
doi =1,n-1 doi =1,n-1
doj =2-i9%2,n-1,2 doj =2-1i9%2,n-1,4
Rel ax(u(i,j)) Rel ax(u(i,j))
endo Rel ax(u(i,j+2))
endo endo
endo

// black nodes:
doi =1,n-1 // black nodes similar
doj =1+i % ,n-1,2
Rel ax(u(i,j))
endo
endo

Figure 3: Simplified Loop Unrolling in the Case of Red-Black Relaxation

@ Dlack point

(O red point

Figure 4: Data Dependencies in Red-Black Relaxation Algorithm

180

160 fused (1, 1) -+ -
fused (2, 2) =

140 | e iused (4, 0)

R X

120 t " 1

=

100

MFlops/sec
a

60 | 7 e
40 v .

20 b

4 16 64 256 1024
grid size

Figure 5: MFlops/sec Rate for Different Implementations of Red-Black Gaegkel.

) ®-©
PP«
6@ ©-®

Y YW &

Figure 6: Example of fusing two sweeps together. Each circle around a node showsangw m
times it has been updated.

Consequently, we work in pairs of rows; once all of the red nodes in one row have been
updated, all of the black nodes in the previous row are updated. So instead of doing @egpd sw
and then a black sweep, we just do one sweep of the grid updating the red and black nodes
as we move through. The line labelaged(1,1)n figure 5 shows how this can improve the
MFlops/sec rate. The consequence is that the grid must be transfered fronrmeraiory to
cache only once per update sweep instead of twice, as long as at least four timeegiid fit in
the cache. Three lines must fit in the cache to provide the data for the update ofcthpdalats
and one additional line for the update of the red points in the line above the three lines.

In the next step we melt the sweeps together. For example, instead of doing égpssw
and updating the nodes once during each sweep, we do one sweep and update the nodes twice.
Because of the complex data dependencies, it is difficult to describe this ih thetgefore we
refer the reader t¢12] for a more thorough discussion and just try to present the basic ideas
here. Loosely speaking we copy a section of the grid into the cache and then updatde¢ke
as many times as is allowed without violating the data dependencies (as dsfitexistandard
red-black Gauss Seidel algorithm).

We start in a situation where we have updated some of the rows once (see figfirgidd).

Before we continue the first update sweep in iowe are able to update the red points in row
i - 3 the second time. Once all of the red nodes in roWwave been updated, all of the black
nodes in row - 1 can be updated. Then all red nodes in linre are updated the second time
and as a consequence also the black nodes im r@are updated the second time (situation in
figure 6 on the right side). Then we update the red points inire and cascade down three
rows as described and so on. The technique can be generalized so that the nodesgpdateoe
u times in one sweep through the grid obtaining the same results we would,gstwéeps of
the standard red-black Gauss Seidel algorithm were applied.

The line labeledused(2,2)n figure 5 shows the result of two calls to the melt algorithm
with 1 = 2. We simulate the case in the multigrid algorithm where we do a pre and post
smoothing sweep with the number of both the pre and post smoothers being equal to 2. The line
labeledfused(4,0)n figure 5 shows what happens if we mglt= 4 sweeps together.

It is interesting to note that there is the same number of operatiofssed(2,2)and in
fused(4,0) but the MFlops/sec rate fdused(4,0)s far better. This is because it makes fewer
sweeps through the grid (1 compared to 2) and thus reduces the number of times the data mus
be copied into the cache.

180

160 | melt(2, 2) - 1
melt(3, 3) &
140 melt(4, 4) -
s
120 |t e) .
e 2R
8 / AN
@ 100 R L
[80 i 1
=
60 - B 1
40 B b
20F = 1
0 Il Il Il Il Il
4 16 64 256 1024
grid size

Figure 7: MFlops/sec Rate for Different Implementations of the V-cycle.

3. V-CYCLE

As mentioned above, we use the red-black Gauss Seidel algorithm as a smodtieer in
multigrid algorithm. The interpolation operator is bilinear interpolation andrésériction op-
erator is given by the transpose of the interpolation operator. The multigrid tdgoused here
is the standard V-cycle.

To optimize the residual and restriction calculations we used a loop unroétignique
similar to the one used for red-black Gauss Seidel (52§ The results for two pre and post
smoothers is given by the line labeleptimized RBn figure 7. This step is designed to improve
the in-cache performance.

When the different components of the multigrid algorithm are put together, the perfoema
again drops dramatically when the data does not fit in the cache anymore. The opeoators
used in the multigrid method can be grouped into pre coarse grid operations (smuestiueral
calculation and restriction) and post coarse grid operations (interpolatiosrandther). To
improve the out-of-cache performance, we melted the pre coarse grid opetatetiser and
the post coarse grid operations together.

The other lines in figure 7, labeled withelt(.q,.2), show the results with; pre smoothers
andyu; post smoothers. Melting the operations together is a non-trivial task, but it doesfpay of
by the increased out-of-cache performance.

The reason why the MFlops/sec rates are improved as the number of pre and pokesmoot
is increased is that more work is done before moving down to the coarse grids. Néen
algorithm moves down to the coarse grids, any fine grid information is eviobeathe cache.
These results are interesting because increasing the number of pre and post srasthe
increases the convergence rate and thus gives a more efficient algorithm.

The pre coarse grid operations are melted by smoothing ovews, then calculating the
residual forp rows, and finally applying the restriction operatorgtgows. The size op is

350

unrolled RB -
fused RB —+-
T e melt(2, 2) =-
300 |- e x> melt(3, 3) ~
o melt(4, 4) -« -
250 |- A |
(&]
[}
Q
& 200} i
o
L
s
150 |- i
100 | i
50 L L 1 I |
64 128 256 512 1024

grid size

Figure 8: MFlops/sec Rate for Different Implementations of the V-cycle on@ B®/S 500au.

% Cycles
time | MFlops/sec| D-Miss Stall\ Execution
unrolled RB| 1.8 sec 98 53.2 26.6
fused RB | 1.3 sec 142 31.7 31.7
melt (2,2) | 1.1 sec 162 28.6 38.5

Table 2: Performance Evaluation on a DEC PWS 500au: Where have all the cycles gone?

chosen at compile time so thatrows will fit into the cache. The melted code is simply build
upon the straightforward code. However, the calculations of the restrictist lag2 « (1, + 1)
rows behind the smoother to observe the data dependencies.

The post grid operations are melted together by interpolating several coatsews and
then applying the post smoother. This idea is similar to the approach for the pre gvals
operations described before. Namely, we apply the interpolatigiréavs and then smooth
rows. Again, the smoother must lag two rows behind the coarse grid correcttandgeof the
data dependencies. For a more detailed discussion of the approachies.see

We have also done some preliminary experiments with our algorithm on a DEC PWS 500au.
The results of the experiments are shown in figure 8. The line laheleulled RBrepresents
the results for the V-cycle scheme without out-of-cache optimizations and twaratgost
smoothers. The line labelddsed RBrepresents the results obtained with the out-of-cache
optimized version of the smoother. The other lines represent the results foetsiervwith
melted pre and post coarse grid operations. The results are comparable teult® oa the
SGI Power Indigo. However, the achieved fraction of the peak performarmeeis smaller.
Table 2 summarizes an evaluation of the code with the profiling@&@#P1 [11]. The evaluation
was performed while solving Poisson’s equation o925 x 1025 grid with two pre and post
smoothers. The cycling was stopped as soon ad.theorm of the residual was less than

4 % 10, Running the unoptimized version of the code, the CPU was stalled for more than 70
percent of all cycles. 53.2 percent of all stall cycles were caused by ddta oaisses. Our
optimizations were able to nearly halve the amount of stalls due to data casbesmi

4. CONCLUSIONS

This article demonstrates the need for data locality optimizations for gnaltmethods.
Also, it introduces techniques to improve multigrid performance by restrunguhe data ac-
cesses such that all data dependencies are preserved and identicatodbelistandard algo-
rithm are obtained. So far, the techniques have been designed for and appliedtt@teeset
of problems. However, we believe that similar techniques can be appliée tcote routines
of more complex multigrid methods as well. Therefore, our current reseanc$ tai develop
a more general multigrid code and extend the optimization techniques for this codalsaVe
investigate further performance profiling tools to be able to study the eféasde transfor-
mations in more detail.

ACKNOWLEDGMENT

This research is supported by the Deutsche Forschungsgemeinschatft, project Rl.422/7-

REFERENCES

[1] D. C. Burger, J. R. Goodman, and A. Kagi. The Declining Effectiveness of Dynam
Caching for General-Purpose Microprocessors. Technical Report TR-95-1261, Univer
sity of Wisconsin, Dept. of Computer Science, Madison, 1995.

[2] D. Patterson. Microprocessors in 20&xientific AmericanSeptember 1995.

[3] Linley Gwennap, editorMicroprocessor Reportvolume 11. MicroDesign Resources,
October 1997.

[4] Wm. A. Wulf and Sally A McKee. Hitting the Memory Wall: Implication di¢ Obvious.
Computer Architecture New23(1):20-24, March 1995.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, Aertb@um,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorene&ACK User’s Guide
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

[6] D. Bailey. RISC Microprocessors and Scientific Computing. RNR TechnicabR&3-
004, NASA Ames Research Center, March 1993.

[7] Craig C. Douglas. Caching in With Multigrid Algorithms: Problems in Twariinsions.
Parallel Algorithms and Application®:195-204, 1996.

[8] Craig C. Douglas, Ulrich Riide, Jonathan Hu, and Marco Bittencourt. A Guideto
signing Cache Aware Multigrid Algorithms. IGoncepts of Numerical Softwandotes
on Numerical Fluid Mechanics. Vieweg-Verlag, 1998. To appear.

[9] P. M. De Zeeuw. Matrix—Dependent Prolongations and Restrictions in a Blackboix Mult
grid Solver.J. Comput. Appl. Math33:1-27, 1990.

[10] Perfex - A Command Line Interface to R10000 Countelanual Page SGI Irix 6.4.

[11] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? Rroceedings of the 16th ACM Symposium on Oper-
ating system Principles$st. Malo, France, October 1997.

[12] Linda Stals and Ulrich Rude. Data Local Iterative Methods for the EfficBolution of
Partial Differential Equations. Technical Report MRR97-038, School of Matheahat
Sciences, Australian National University, October 1997.

[13] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for Higbrferf
ance ComputingACM Computing Survey26(4), December 1994.

[14] S. Goedecker and A. Hoise. Achieving High Performance in Numerical Conmsat
on RISC Workstations and Parallel Systems. Technical Report, Max-Plasttute for
Solid State Research, Stutgart, Germany, June 1997.

