
DATA LOCALITY OPTIMIZATIONS TO IMPROVE THE EFFICIENCY OF MULTIGRID
METHODS

Christian Weiß and Hermann Hellwagner
Institut für Informatik

Technische Universität München
D-80290 München, Germany

Ulrich Rüde
Institut für Mathematik
Universität Augsburg

D-86135 Augsburg, Germany

Linda Stals
Department of Mathematical Sciences,

University of Bath
Bath, BA2 7AY, UK

SUMMARY

Current superscalar microprocessors are able to operate at a peak performance of up to 1
GFlop/sec. However, current main memory technology does not provide the data neededfast
enough to keep the CPU busy. To minimize idle times of the CPU,cachesare used to speed
up accesses to frequently used data. To exploit caches, the software must be aware of them and
reuse data in the cache before it is being replaced. Unfortunately, all conventional multigrid
codes are not cache-aware and hence exploit less than 10 percent of the peak performance of
cache based machines.

Our studies with linear PDEs with constant coefficients show that it is possible to speed up
the execution of our multigrid method by a large factor and hence solve a Poisson’s equation
with one million unknowns in less than 3 seconds. The optimized reuse of data in the cache
allows us to exploit 30 percent of the peak performance of the CPU, in contrast tomgd9vfor
instance, which achieves less than 5 percent on the same machine. To achieve this, we used
several techniques likeloop unrollingand loop fusionto better exploit the memory hierarchy
and the superscalar CPU. We study the effects of these techniques on the runtime performance
in detail. We also study several tools which guide the optimizations and help torestructure the
code.

256 Bytes

8 KBytes

96 KBytes

2 MBytes

1536 MBytes

CPU

Registers

1. Level Cache

2. Level Cache

3. Level Cache

Main Memory

Latency

2 ns

2 ns

6 ns

112 ns

24 ns

Bandwidth

8000 MB/s

24000 MB/s

16000 MB/s

1000 MB/s

888 MB/s

Swap Space on Disk

Capacity

Figure 1: Memory Hierarchy of the DEC PWS 500au A21164

1. INTRODUCTION

Over the last 10 years the speed of microprocessors has increased at a rate ofaround 80
percent per year[1]. Through the use of pipelining, fast add-and-multiply operations and other
techniques, a single RISC processor can now reach a peak performance of around 1 GFlop/sec.
The continuing evolution is expected to yield further performance increases of estimated 60 per-
cent annually[2]. Relative to the computational speed, the memory access times and throughput
have increased very slowly, only at a rate of 5-10 percent per year[1], so that the typical peak
main memory bandwidth of workstations now is still much smaller than 1 GByte/sec[3]. At
peak CPU speed, however, 24 times as much would be necessary to support (DAXPY-type)
vector operations.

This phenomenon is often called“hitting the memory wall” [4]. A common approach to
at least mitigate its effects is to use amemory hierarchy. There are many different ways of
implementing this concept, but the consistent theme is that there is a large, cheap, slow memory
at the bottom of the hierarchy and a small, expensive, high speed memory at the top ofthe
hierarchy. This high speed memory is called acacheand is intended to contain copies of main
memory blocks to speed up accesses to frequently needed data. An example of a memory
hierarchy with three levels of caches is shown in figure 1.

However, because of the limited size, caches can only hold copies of the recently used data.
To exploit caches, the software must be aware of them and reuse data in the cachebefore it is
being replaced. The effectiveness of data locality optimizations has been well demonstrated in
LAPACK [5], a linear algebra package for dense matrices, and FFT algorithms (see for example[6]). However, little work in that direction has been done for iterative techniques and research
into more advanced iterative methods such as multigrid has only just begun[7; 8].

The difficulty with iterative methods can be seen in the following example.The program
mgd9v[9] is a robust Fortran 77 multigrid program designed to solve 2D elliptic partial differen-
tial equations and is optimized for vector computers. We compiled the program with aggressive
optimizations enabled and solved Poisson’s equation on a513 � 513 grid so that theL2 norm
of the residual was less than4 � 10�8. The obtained results on a SGI Power Indigo based on
a 75 MHz clocked MIPS R8000 CPU (300 MFlops/sec), a SGI Origin 2000 node based on a

Time MFlops/sec % Peak

R8000 19.7 sec 13.8 4.6
R10000 6.2 sec 43.7 11.2
DEC 7.2 sec 36.6 3.6

Table 1: Solving Poisson’s Equation withmgd9v

195 MHz clocked MIPS R10000 CPU (390 MFlops/sec) and a DEC PWS 500au based on a
500 MHz clocked Alpha 21164 (1 GFlop/sec) are shown in table 1. On all machines, the pro-
gram only achieves a small fraction of the peak performance. However, on thefastest machine
- the DEC PWS 500au - the program is even less efficient than on the SGI Origin node.An
analysis with tools likeperfex[10] andDCPI [11] reveals that the limiting factor for iterative
methods is not the numerical computation but memory access. As the above example indicates,
the efficiency of these methods may even decrease with increasing processorspeed.

We started our data locality studies with a straightforward implementation of the multigrid
method inC assuming that the finite difference stencil is constant on each grid level. This
restricts the discussion in the paper to linear PDEs with constant coefficients, though clearly
many of the basic ideas can be carried over to more general situations. We consider the finite
difference approximation of Poisson’s equation defined on the square domain with Dirichlet
boundary conditions. Consistent with the multigrid algorithm, we use a nested sequenceof
uniform gridsM1 � M2 � � � � � Mn, with the grid spacing on levelk beinghkx = hky =2�k. In this paper we will use the compact 9-pointMehrstellen-stencil. We implemented a V-
cycle and a FMV scheme and applied several in-cache1 and out-of-cache2 optimizations to the
smoother and the overall algorithm and studied the effects on the performance on aSGI Power
Indigo based on a 75 MHz clocked R8000 CPU. In this paper we only present the results for the
V-cycle scheme. The results for the FMV scheme as well as results for a 5-point stencil version
can be found in[12].

The remainder of the paper is structured as follows. Section 2 discusses a cache-oriented
red-black Gauss Seidel smoother. Section 3 explains how the components of a V-Cyclealgo-
rithm are combined to a cache-oriented multigrid program and section 4 providessome conclu-
sions.

2. RED-BLACK GAUSS SEIDEL

We use the red-black Gauss Seidel to smooth the equations on each grid level. Asthe
smoother is one of the most computationally expensive parts of the multigrid algorithm it shall
be described in some detail.

Figure 2 shows the MFlops/sec rate for different implementations of the red-black Gauss
Seidel algorithm. The line labeledred black (1)is the result of what we would consider to1In-cache means that the amount of data is small enough to fully fit in the cache.2Out-of-cache means that the total amount of data is too large to fit in the cache so that parts of the data need
to be copied more than once from main memory into the cache.

0

20

40

60

80

100

120

140

160

180

4 16 64 256 1024

M
F

lo
ps

/s
ec

grid size

red black(1)
red black(2)
red black(4)

Figure 2: MFlops/sec Rate for Different Implementations of Red-Black GaussSeidel.

be a standard implementation of the red-black Gauss Seidel method. The lines labeled red
black (2)andred black (4)were obtained by using an optimization technique similar to loop
unrolling (see figure 3 or[13] for a more detailed description of the technique). Clearly this tech-
nique is effective in improving the in-cache performance as it more then doubles the maximum
MFlops/sec rate. The reason for this is that loop unrolling can introduce additionalinstruction
level parallelism and hence help to improve the utilization of the functionalunits of superscalar
CPUs[14].

However the out-of-cache performance is not affected at all. Figure 2 clearly shows the
cache effect for small grids. Once the grid is too large to fit in the cache (> 256 � 256), the
performance decreases dramatically. The reason for this is that a complete update performs two
global sweeps through the whole grid. Assuming that the grid does not fit in the cache, the data
of the lower part of the grid is no longer in the cache after the red update sweep because the data
was replaced by the grid points in the upper part of the grid. Hence, the data must be loaded
from the slower main memory into the cache again. Doing this they replace the upper part of
the grid points in the cache and as a consequence they have to be loaded from main memory
once more.

It may seem unnecessary to spend time on improving the in-cache performance when we
are mainly interested in the results for large grids, however all methods ofimproving the out-of-
cache performance involve some sort of blocking technique. That is, we try to break the large
grids up into smaller grids. So if the performance for the small grids is poor, the performance
for the large grids will be poor as well.

When implementing the standard red-black Gauss Seidel algorithm, the usual practice is to
do one complete sweep of the grid from bottom to top updating all of the red nodes and then
one complete sweep updating all of the black nodes. The first point to note is that as a red node
in row i is updated the black node in rowi-1 directly underneath it may also be updated. If
a 9-point stencil is placed over one of the black points (see figure 4) then we can seethat all of
the red points it touches are up to date (as long as the red node above it is up to date).

— Standard Update —
// red nodes:
do i = 1 , n-1

do j = 2-i%2 , n-1 , 2
Relax(u(i,j))

endo
endo

// black nodes:
do i = 1 , n-1

do j = 1+i%2 , n-1 , 2
Relax(u(i,j))

endo
endo

— Update w. loop unrolling (factor 2) —
// red nodes:
do i = 1 , n-1

do j = 2-i%2 , n-1 , 4
Relax(u(i,j))
Relax(u(i,j+2))

endo
endo

// black nodes similar

Figure 3: Simplified Loop Unrolling in the Case of Red-Black Relaxation

���
���
���
���

red point

black point
����

����

������

���� ����

i-1

i

i-2

Figure 4: Data Dependencies in Red-Black Relaxation Algorithm

0

20

40

60

80

100

120

140

160

180

4 16 64 256 1024

M
F

lo
ps

/s
ec

grid size

red black(4)
fused (1, 1)
fused (2, 2)
fused (4, 0)

Figure 5: MFlops/sec Rate for Different Implementations of Red-Black GaussSeidel.

i

i-1

i-2

i-3

i+1

����

����

������

����

����

����

����

���� ����������

������ ���� ����

����

����

��������������

���� ����������

����

������������

������

����

����

����

����

i

i-1

i-2

i-3

i+1

Figure 6: Example of fusing two sweeps together. Each circle around a node shows how many
times it has been updated.

Consequently, we work in pairs of rows; once all of the red nodes in one row have been
updated, all of the black nodes in the previous row are updated. So instead of doing a red sweep
and then a black sweep, we just do one sweep of the grid updating the red and black nodes
as we move through. The line labeledfused(1,1)in figure 5 shows how this can improve the
MFlops/sec rate. The consequence is that the grid must be transfered from mainmemory to
cache only once per update sweep instead of twice, as long as at least four lines ofthe grid fit in
the cache. Three lines must fit in the cache to provide the data for the update of the black points
and one additional line for the update of the red points in the line above the three lines.

In the next step we melt the sweeps together. For example, instead of doing two sweeps,
and updating the nodes once during each sweep, we do one sweep and update the nodes twice.
Because of the complex data dependencies, it is difficult to describe this in detail, therefore we
refer the reader to[12] for a more thorough discussion and just try to present the basic ideas
here. Loosely speaking we copy a section of the grid into the cache and then update thenodes
as many times as is allowed without violating the data dependencies (as definedby the standard
red-black Gauss Seidel algorithm).

We start in a situation where we have updated some of the rows once (see figure 6 left side).
Before we continue the first update sweep in rowi we are able to update the red points in row
i-3 the second time. Once all of the red nodes in rowi have been updated, all of the black
nodes in rowi-1 can be updated. Then all red nodes in linei-2 are updated the second time
and as a consequence also the black nodes in rowi-3 are updated the second time (situation in
figure 6 on the right side). Then we update the red points in rowi+1 and cascade down three
rows as described and so on. The technique can be generalized so that the nodes can beupdated� times in one sweep through the grid obtaining the same results we would get if� sweeps of
the standard red-black Gauss Seidel algorithm were applied.

The line labeledfused(2,2)in figure 5 shows the result of two calls to the melt algorithm
with � = 2. We simulate the case in the multigrid algorithm where we do a pre and post
smoothing sweep with the number of both the pre and post smoothers being equal to 2. The line
labeledfused(4,0)in figure 5 shows what happens if we melt� = 4 sweeps together.

It is interesting to note that there is the same number of operations infused(2,2)and in
fused(4,0), but the MFlops/sec rate forfused(4,0)is far better. This is because it makes fewer
sweeps through the grid (1 compared to 2) and thus reduces the number of times the data must
be copied into the cache.

0

20

40

60

80

100

120

140

160

180

4 16 64 256 1024

M
F

lo
ps

/s
ec

grid size

optimized RB
melt(2, 2)
melt(3, 3)
melt(4, 4)

Figure 7: MFlops/sec Rate for Different Implementations of the V-cycle.

3. V-CYCLE

As mentioned above, we use the red-black Gauss Seidel algorithm as a smoother inthe
multigrid algorithm. The interpolation operator is bilinear interpolation and therestriction op-
erator is given by the transpose of the interpolation operator. The multigrid algorithm used here
is the standard V-cycle.

To optimize the residual and restriction calculations we used a loop unrolling technique
similar to the one used for red-black Gauss Seidel (see[12]). The results for two pre and post
smoothers is given by the line labeledoptimized RBin figure 7. This step is designed to improve
the in-cache performance.

When the different components of the multigrid algorithm are put together, the performance
again drops dramatically when the data does not fit in the cache anymore. The variousoperators
used in the multigrid method can be grouped into pre coarse grid operations (smoother,residual
calculation and restriction) and post coarse grid operations (interpolation andsmoother). To
improve the out-of-cache performance, we melted the pre coarse grid operationstogether and
the post coarse grid operations together.

The other lines in figure 7, labeled withmelt(�1,�2), show the results with�1 pre smoothers
and�2 post smoothers. Melting the operations together is a non-trivial task, but it does pay off
by the increased out-of-cache performance.

The reason why the MFlops/sec rates are improved as the number of pre and post smoothers
is increased is that more work is done before moving down to the coarse grids. Whenthe
algorithm moves down to the coarse grids, any fine grid information is evictedfrom the cache.
These results are interesting because increasing the number of pre and post smoothers also
increases the convergence rate and thus gives a more efficient algorithm.

The pre coarse grid operations are melted by smoothing overp rows, then calculating the
residual forp rows, and finally applying the restriction operator top rows. The size ofp is

50

100

150

200

250

300

350

64 128 256 512 1024

M
F

lo
ps

/s
ec

grid size

unrolled RB
fused RB
melt(2, 2)
melt(3, 3)
melt(4, 4)

Figure 8: MFlops/sec Rate for Different Implementations of the V-cycle on a DEC PWS 500au.

% Cycles
time MFlops/sec D-Miss Stall Execution

unrolled RB 1.8 sec 98 53.2 26.6
fused RB 1.3 sec 142 31.7 31.7
melt (2,2) 1.1 sec 162 28.6 38.5

Table 2: Performance Evaluation on a DEC PWS 500au: Where have all the cycles gone?

chosen at compile time so thatp rows will fit into the cache. The melted code is simply build
upon the straightforward code. However, the calculations of the restriction must lag2� (�1+1)
rows behind the smoother to observe the data dependencies.

The post grid operations are melted together by interpolating several coarse grid rows and
then applying the post smoother. This idea is similar to the approach for the pre coarse grid
operations described before. Namely, we apply the interpolation top rows and then smoothp
rows. Again, the smoother must lag two rows behind the coarse grid correction because of the
data dependencies. For a more detailed discussion of the approaches see[12].

We have also done some preliminary experiments with our algorithm on a DEC PWS 500au.
The results of the experiments are shown in figure 8. The line labeledunrolled RBrepresents
the results for the V-cycle scheme without out-of-cache optimizations and two preand post
smoothers. The line labeledfused RBrepresents the results obtained with the out-of-cache
optimized version of the smoother. The other lines represent the results for the version with
melted pre and post coarse grid operations. The results are comparable to the results on the
SGI Power Indigo. However, the achieved fraction of the peak performance iseven smaller.
Table 2 summarizes an evaluation of the code with the profiling toolDCPI [11]. The evaluation
was performed while solving Poisson’s equation on a1025 � 1025 grid with two pre and post
smoothers. The cycling was stopped as soon as theL2 norm of the residual was less than

4 � 10�8. Running the unoptimized version of the code, the CPU was stalled for more than 70
percent of all cycles. 53.2 percent of all stall cycles were caused by data cache misses. Our
optimizations were able to nearly halve the amount of stalls due to data cache misses.

4. CONCLUSIONS

This article demonstrates the need for data locality optimizations for multigrid methods.
Also, it introduces techniques to improve multigrid performance by restructuring the data ac-
cesses such that all data dependencies are preserved and identical resultsto the standard algo-
rithm are obtained. So far, the techniques have been designed for and applied to a restricted set
of problems. However, we believe that similar techniques can be applied to the core routines
of more complex multigrid methods as well. Therefore, our current research aims to develop
a more general multigrid code and extend the optimization techniques for this code. Wealso
investigate further performance profiling tools to be able to study the effectsof code transfor-
mations in more detail.

ACKNOWLEDGMENT

This research is supported by the Deutsche Forschungsgemeinschaft, project Ru 422/7-1.

REFERENCES

[1] D. C. Burger, J. R. Goodman, and A. Kägi. The Declining Effectiveness of Dynamic
Caching for General-Purpose Microprocessors. Technical Report TR-95-1261, Univer-
sity of Wisconsin, Dept. of Computer Science, Madison, 1995.[2] D. Patterson. Microprocessors in 2020.Scientific American, September 1995.[3] Linley Gwennap, editor.Microprocessor Report, volume 11. MicroDesign Resources,
October 1997.[4] Wm. A. Wulf and Sally A McKee. Hitting the Memory Wall: Implication of the Obvious.
Computer Architecture News, 23(1):20–24, March 1995.[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson.LAPACK User’s Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

[6] D. Bailey. RISC Microprocessors and Scientific Computing. RNR Technical Report 93-
004, NASA Ames Research Center, March 1993.[7] Craig C. Douglas. Caching in With Multigrid Algorithms: Problems in Two Dimensions.
Parallel Algorithms and Applications, 9:195–204, 1996.[8] Craig C. Douglas, Ulrich Rüde, Jonathan Hu, and Marco Bittencourt. A Guide toDe-
signing Cache Aware Multigrid Algorithms. InConcepts of Numerical Software, Notes
on Numerical Fluid Mechanics. Vieweg-Verlag, 1998. To appear.[9] P. M. De Zeeuw. Matrix–Dependent Prolongations and Restrictions in a Blackbox Multi-
grid Solver.J. Comput. Appl. Math., 33:1–27, 1990.[10] Perfex - A Command Line Interface to R10000 Counters. Manual Page SGI Irix 6.4.[11] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? InProceedings of the 16th ACM Symposium on Oper-
ating system Principles, St. Malo, France, October 1997.[12] Linda Stals and Ulrich Rüde. Data Local Iterative Methods for the Efficient Solution of
Partial Differential Equations. Technical Report MRR97-038, School of Mathematical
Sciences, Australian National University, October 1997.[13] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High-Perform-
ance Computing.ACM Computing Surveys, 26(4), December 1994.[14] S. Goedecker and A. Hoise. Achieving High Performance in Numerical Computations
on RISC Workstations and Parallel Systems. Technical Report, Max-Planck Institute for
Solid State Research, Stutgart, Germany, June 1997.

