
JavaSet { extending Java by persistent setsMarkus Schordan, Harald Kosch and Laszl�o B�osz�orm�enyiInstitute of Information Technology, University of Klagenfurt,Klagenfurt, Austriaemail: markuss,harald,laszlo@i�.uni-klu.ac.attel: 0043-0463-2700-513 ; fax: 0043-0463-2700-505AbstractWe introduce an extension of the programming language Java (called JavaSet) bypolymorph sets of objects, which can be both transient or persistent. JavaSet providestransparent persistence, i.e. the handling of persistence is purely declarative. Theextension is type-safe and upwards compatible. Due to the integration into the languagethe compilation system can take advantage of database optimization and parallelizationtechniques. The compilation process incorporates the mapping to an e�cient objectalgebra, the optimization of set expressions and the generation of an execution plan.1 IntroductionGeneral-purpose programming languages still support the "empty-computer model", i.e. theymake the (rather unconscious) assumption that programs are loaded into an empty computer,in order to make there some computations. After having loaded the program, the code isavailable, however, the program has to make major e�orts to get its data into main memoryat proper place in proper structure. In reality, most of our computations are done not in anempty, but rather in a huge context, which is typically persistent. The more surprising is thefact that general-purpose programming languages typically have no notion of persistence.One of the reasons for the lack of persistence is the lack of proper abstractions. Actuallyall programming languages support arrays, which are excellent abstractions for matrix-basedmathematical algorithms but de�nitely bad for huge amount of persistent data. For latter weneed a kind of associative store in which we can search e�ciently driven by content and notby index (as in an array). For this, the set model has always been used by databases. Theconcept of sets is a well-understood mathematical notion. Beside the basic set operations,query languages de�ne powerful search operations based on sets. Sets are per de�nitionunordered, therefore, if we apply an operation on all elements of a set, we are not allowedto make any assumption about the order of the execution. This feature make sets inherentlyparallel data structures.These considerations led us to extend Java1 - as a clean and type-safe general-purposeprogramming language - with the notion of polymorphic object sets. They can be bothtransient or persistent. The extended language (called JavaSet) is upwards compatible withJava. Due to the integration into the language object sets are type safe and set expressions(including complex queries) can be automatically optimized and parallelized in a relativelyeasy way (compared e.g. to nested-loop parallelization in parallel programming languages).1JavaTM

JavaSet is based on previous work [1] in the course of which Modula-3 was extended bypersistent and distributed polymorphic object sets. JavaSet has much more functionalityregarding persistence and optimization. Distribution is subject for further study.Next section 2 discusses related works. Section 3 introduces the speci�cation of thelanguage. In section 4 the compiler and its strong cooperation with the optimizer will beshown. The connection between persistent variables and the corresponding persistent storeswill be also described. Section 5 concludes the paper and points to future works.2 Related worksPersistence in object-oriented programming languages gains more and more interest (for per-sistence in Java there exists even a special workshop series [2]). Persistence is in most casesunderstood as �le persistence, i.e. objects are stored in �les with the help of a serializationfunction [3]. File persistence can be easily implemented in Java, because the serializationfunction is a standard component from the starting of JDK. However, such simple persistenceallows obviously only very restrictive object operations and is not appropriate for the man-agement of large amounts of persistent objects. Recently, more sophisticated approaches topersistent Java object stores have been proposed. Some approaches as the PSE [4] obtain afaster access to the persistent objects by using smaller serialization unites, another prototype(PJama [5]) extends the Interpreter JVM in the scope to allow a more exible access to thepersistent objects. None of these prototypes provide querying concepts.Persistence and more general full database functionality (inclusive query optimization)in an object-oriented programming language can be achieved by the means of a combinationof a database- with a programming language. The most popular example is the OQL C++binding [6] (designed by the Object Data Management Group ODMG) implemented e.g. inO2 [7] or Poet [8]. This combination supplies to the programmer full database functionality,however the resulting language volume is quite large [3]. Furthermore, the programmer needsgood database knowledges to work e�ciently with this combined database- and programminglanguages. Recently, the ODMG published a �rst design proposal for a OQL Java binding(see chapter 7 of the book [6]). This binding supports the class hierarchies, objects andreferences. Up-to date this proposal is not maturated, but growing interest in such kind ofbinding is signalized by industrials. However, as in the case of the OQL C++ binding, wedoubt if the complex binding concepts can be used by non-database specialist.Database functionality in programming language can also be provided by theJDBC/ODBC Application Interface (API) [9]. Querying a database is done through thepassing of a string (contains the query command literally) to a Java method. This obviousmismatch between programming- and database language renders di�cult the programmingof persistent sets.In this context, some authors have recognized that the concept of sets o�er a high ab-straction to process persistent objects without augmenting the volume of a language. Severalapproaches to integrate persistent sets into a programming language have been yet under-taken. First propositions are the (parallel) database programming languages FAD [10] andSVP [11]. These languages are very restricted compared to modern object-oriented program-ming languages. Later approaches, like ParSet [12] implemented on the top of the ShoreObject Store do not o�er direct language support.A part from the attempt to integrate persistence in object-oriented programming lan-guages set-oriented languages have been designed : SetL [13] operations on sets are similarto those proposed in JavaSet, however they operate only on transient sets. The StarSet [14]programming language supports persistent sets, but the set access is however not transparent

to the programmer, as for loading and writing sets the programmer has to employ specialfunctions.3 Language de�nitionThe integration of sets in JDK1.2 shows that this programming concept is important. WithJavaSet we introduce a more sophisticated concept than that proposed in JDK1.2. JavaSetcontains a powerful select-expression which allows the access to multiple sets in a databasequery like way based on an elegant mathematical formalism. Furthermore, a complete paletteof set operations are introduced allowing a more exible dealing with the notion of sets than inJDK. Sets in JDK1.2 are only transient, JavaSet extends to persistent sets At the same time,we render transparent the set reading and writing, as the connection to the concrete persistentstore. Querying persistent sets is made very e�ective through an algebraic optimization ofselect-expressions. Therefore, the e�cient utilization of persistent data in an object-orientedprogramming language like Java is made possible.Set Type. All the elements of a set have the same type, called the element type of theset. If the element type of a set is T , then the type of the set itself is written Tfg. We call avariable of type set a set variable. A set's size is not part of its type. All the members fromclass Object are inherited and additionally the methods size() and isEmpty() are providedfor transient and persistent sets. The element type must be of type reference type. Sets aredynamically created objects and can be assigned variables of type Object.Set Variables. A variable of set type holds a reference to an object. Declaring a variableof set type does not create a set object or allocate any space for set elements.Set Creation. A set is created by a set creation expression, a set initializer or a selectexpression.A set initializer may be speci�ed in a declaration, creating a set and providing some initialvalues. In JavaSet an additional information can be given to de�ne whether the set is boundto a persistent store or is kept transient.(1) f V ariableinitializersopt,opt g @ PSIdentifier(2) f V ariableinitializersopt,opt gPSIdentifier (1) is a string which uniquely identi�es the external representation of thepersistent set. When speci�ed, the set is bound to a persistent store. This information isused during compilation to optimize set expressions. By the object creation, the connectionto the persistent store is established if it has not yet been connected. If the set does not existin the persistent store, it is created and initialized with the given Variableinitializers. Ifthe set already exists in the database it is overwritten with the new initialization. Existingsets in the persistent store, i.e. sets created by a previous program run or more general byother programs, can be accessed by a variable declaration without initialization. In this casethe persistent set is loaded and the set variable is bound to this set.Student stud=new Student("John");Personfg persons=fnew Person("Mary"), studg @ "db1:pers1";In the above example the variable persons is bound to the set db1:pers1 in the persistentstore. If the set has not yet been created in the persistent store, a new polymorph set iscreated consisting of two elements. For all elements of a set holds that the type is assignmentcompatible to the element type of the set (see �gure 1). If another program want to access

this created set (identi�ed by the string "db1:pers1") in the persistent store, it should declarea variable without an initialization (otherwise it would overwrite the set) as in the followingexample declaration : Personfg persons2= @ "db1:pers1";.Assignment. When a set is assigned to a set variable, the reference to the set is over-written. But the information regarding the location of the set is not overwritten because itis bound to the variable. Reference semantics hold for sets but not for persistence. Thus,new sets can be easily created and made persistent. Also the modi�cation of persistent setscan be achieved by expressions and assignments.Studentfg stud3=fg @ "db1:students1";Studentfg stud4;stud4=stud3;A set with the element type Student is created and initialized with an empty set. Theconnection to the persistent store db1 is established. This object is assigned to the variablestud3. If another set is assigned to stud3 then this set becomes persistent and overwritesthe previously bound set. When the assignement stud4=stud3 has been executed, then thevariable stud4 can be used to access all objects that are referenced by stud3. Thus, using anassignment, sets can be made transient or persistent.A set variable stands for more than just a simple reference. More formally we can de�nea tuple < L;R > which represents the reference of a set variable to the persistent store andto its root, where :L is either a reference to a persistent store or it is left null and the set is transient.R is the root of the set. This reference can be modi�ed and provides reference semanticsfor the life time of the variable.Using this notation, the assignment and its semantics in JavaSet are de�ned as follows :Variable Initialization. When a set variable is initialized, then the L (location) is set to thepersistent store and the root R refers to the elements of the set. If no PSIdentifier isspeci�ed, then L is left null and the set is transient.Assignment. An assignment only e�ects R, the reference to the elements of a set. Let usassume two variables v1 and v2 have been declared and initialized. We have two tuples< L1; R1 > and < L2; R2 >. After an assignment v1 = v2 has been executed, R1 hasbeen overwritten by R2 and v1 is < L1; R2 >.Set Operations and the Extended Set Creation Expression. Additionally to theset creation expression using new we provide an extended set creation expression. With thisexpression we can add and remove elements easily from a set. The expression is similar tothe syntax of the set initialization expression, but must involve at least one element. Theresult type is the type of the most general type of the given elements. The operations setunion, intersection and di�erence are binary expressions that only operate on exactly two setvalues or as for '+', '*' and '-' semantics are already de�ned in Java.persons=persons+fvarg+stud3;persons+=fvarg+stud3;fvarg creates a set consisting of one element. A new set union consisting of the elementreferenced by var, stud3 and persons is created and assigned to persons. Set operations are

optimized to ensure that a minimum of temporary intermediate sets are created to evaluateset expressions. In the second version of the example above the object var and the set stud3are added to the set persons. It is not necessary to create any temporary sets. Hence, setoperations can be written as assignments and simple set operations but optimizations avoidthe ine�cient creation of unnecessary intermediate sets.The type of the result for set union is the more general one, for intersection the morespeci�c one, and for di�erence the type of the �rst operand.class Lecture f class Student extends Person fpublic String title; ... public Lecture lect;g Student(String name)f...g ...class Person f gprotected String name; class Pair fprotected Address address; private Person p1,p2;Person(String name, String adr)f...g Pair(Person p1, Person p2) fpublic Address adr() f...g... ...g ...g gPersonfg persons = fg @ "db1:persons1";Studentfg stud1 = fg @ "db1:students1";Studentfg stud2 = fg @ "db1:students2";Figure 1: Class De�nition and Program Fragment.Selection. The central operation in JavaSet is the select-expression. It allows one toexpress queries similar to OQL queries [6]. The select-expression takes a number of sets anda boolean expression as input and produces a new set. The new set can be generated in twoways : object-creating or object-conserving. Sets are written similar to the mathematicalformulation. The general form is :fSelector j id1 in set1,...,idn in setn :: expression gThe identi�ers Bi (1 � i � n) must be distinct, while the same set may occur more thanonce. Selector can be an identi�er, a constructor of a class or a path expression. An objectis added to the result set when the boolean condition expression holds for any objects of thegiven sets. The type of Selector is the element type of the result set of the select-expression.The expressions seti are arbitrary set expressions. Hence, select-expressions can be nested.(1) fpjp in persons :: p.adr()==nullg;(2) fst1j st1 in stud1, st2 in stud2 :: st1.adr().equals(st2.adr())g;(3) fPair(st1,st2)j st1 in stud1, st2 in stud2 :: st1.adr().equals(st2.adr())g;In example 1 all persons without a valid address are selected. The semi-join (2) selectsall students of the set stud1 that have the same address as any of the students from stud2.The result is of type Studentfg. The join-expression (3) creates all pairs of students from twoinput sets having the same address. The selector is the constructor of the class Pair. Theresult is a set of type Pairfg.Foreach.We extend Java by an additional loop statement which applies a statement (sequence)on each member of a set.foreach (Identifier in SetExpression) Statement

Each element of the result set of SetExpression is bound to the identi�er and Statement2is executed. The order of these bindings is not �xed as a set is an unordered collection ofelements. The scope of Identifier is the foreach statement itself.Miscellaneous Expressions. Additionally we provide universal and existential quanti-�ers and an expression for testing the membership of an object. Although these expressionscan be formulated by other JavaSet expressions as well, we integrated them into the languagede�nition because their explicit appearing allows the application of more e�cient optimiza-tions. (1) all Identifier in SetExpression :: BoolExpression(2) any Identifier in SetExpression :: BoolExpression(3) Expression in SetExpressionSetExpression is an expression that must be of type set type, BoolExpression must be oftype boolean. The result type of all three expressions is boolean. The universal quanti�erexpression (1) checks whether all objects of the result set of SetExpression satisfy a conditionspeci�ed by BoolExpression; analogous for the existential quanti�er and the condition musthold for at least one element. The test for the membership3 (3) of an object is true if theobject that is the result of Expression is contained in the set speci�ed by SetExpression.4 CompilationJavaSet is a superset of Java. Pure Java expressions, set operations and the select-expressionswill be compiled separately from each other (see �gure 2). The reason is to achieve a compilemodule granularity which is the best for optimization. The set operations are transformedto a normal-form which is optimized according to the well-known mathematical properties.The select-expression is translated into an object-algebra expression and then optimized withthe support of a cost model (see section 4.1 on the next page).
Java

JavaSet

Java−Bytecode

Execution Plan

Object Algebra OptimizerOptimization and
Object choice

Set operations Select−expressions

Figure 2: Compilation of a JavaSet program.The optimized set operations and select-expressions are integrated in the generation ofan execution plan. This execution plan determines the order in which the di�erent optimizedexpressions should be processed. The order is optimized according to a cost model whichrelies on the sizes of the processed sets. However, if the ratio of the sizes di�er at run-time from those estimated at compile-time (especially over a long period of time), then it isnecessary to adapt the operator ordering at run-time (see 4.2 on page 8).2A Statement can be a Block; analogous to the de�nition of for in Java.3The expression is a shorthand for !(fExpressiong � SetExpression).empty()

4.1 OptimizationOur optimization approach builds on an algebraic optimization technique [15]. The select-expression is translated to an algebraic expression over a well-de�ned object-algebra whichoperators represent atomic execution units on the sets. The most important operators are :the Join and the Selection (similar to relational database operators), the implicit Object-JoinOJoin which operates on unique OIDs, moreover the Flatten which attens set of sets and�nally the Mat which materializes one component of a path expression.The select-expression is translated by the compiler to a processing tree : The leaves ofa processing tree represent the sets that participate in the select-expression and intermediatenodes model operators. These latters receive their input intermediate sets via the incomingedges and send the result sets through the outgoing edge to the next operation. The root ofthe tree produces the result of the whole select-expression.The processing tree is an ideal abstraction to represent the order of the object-algebraoperators. The optimizers task is now to �nd the best order according to a cost model. Thecost model we chose bases on the sizes of the intermediate sets, i.e. on the selectivity ofthe di�erent operators. The lowest-cost processing tree is that which processes the lessestset elements. The optimizer utilizes a search strategy to �nd the lowest-cost processing tree.Several approaches have been proposed in related works. For a small number of participatingsets, the dynamic programming approach [16] works the best, it delivers under our specialrequirements always the lowest-cost processing tree. For more complex select-expression,heuristics or randomizes search [17] must be applied. These methods always seek for a goodquality, instead of the best processing tree which would be too time-consuming.Consider as example the following select-expression which returns all students st1 fromstud1 such that there exists students st2 in the set stud2 that have the same address as st1students and are registrated in a lecture with the title "Hardware" (see the class de�nitionof �gure 1 on page 5) :fst1 j st1 in stud1, st2 in stud2, v in st2.lect ::st1.adr().equals(st2.adr()) && v.title.equals("Hardware") gFigure 3 shows two possible processing trees for the example selection-expression. Lefthand displays an execution strategy which requires the Ojoin of the result of the Flattenoperator (it atten the path expression st2.lect()) and the Join operator. The processingtree on the right hand displays a more e�cient execution strategy which leaves out the OJoin.
"Hardware"

Stud1 Stud2

Get()
t1<−

 Get()
 st1<−

Get()
st2<−

st1.adr() =
 st2.adr()

 Join()

Selection()

OJoin()
st2=t1

Stud1

Stud2

 Get()
 st1<−

Get()
st2<−

"Hardware"

Selection()

st1.adr() =
 st2.adr()

 Join()

v.title=

Flatten(t1.lect)
 v<−

v.title=

Flatten(t1.lect)
 v<−

Figure 3: Two possible processing trees for the example select-expression.The processing tree is integrated together with the optimized set operations into an exe-cution plan (see again the �gure 2 on the preceding page). The execution plan is implemented

as a data-structure containing all relevant informations of the sets in order to be interpretedat run-time. Relevant informations are beside the name, type, operator orderings. . . , alsothe estimated size of the generated intermediate sets. The latter is veri�ed at run-time. Ifsigni�cant di�erence to the real sizes is detected, a new operator ordering must be computed.4.2 Connection to the persistent storeThe interpretation of the execution plan bases on a physical set interface consisting of op-erators working on the physical implementation of the sets. The interface de�nition is inde-pendent from the underlying persistent store. It contains methods for the management ofall existing sets and methods for their manipulation and querying.Before and during the interpretation of the execution plan at run-time, a control of itsvalidity is done. This control compares the ratio of the estimated set sizes against the realones. In the case of signi�cant di�erences, a re-optimization of the operator ordering istriggered. This re-optimization will be carried out by a rule-based transformation in order toget a better plan within a short time. This approach justi�es as the processing tree computedat compile-time is probably still a good-quality execution strategy.The interpretation of the execution plan could be simpli�ed regarded as step-by-stepmethod calls to the physical set interface. Typical employed methods are the opening ofthe connection to the persistent store, the insertion of elements in a set, the manipulationoperators of the sets and the closing of the connection.Until now two persistent object stores have been utilized to implement the physical op-erator interface. First, Pjama [5] a persistent object store developed in a cooperation ofthe university Glasgow with SUN and second PSE [4] from ObjectStore. Moreover a simpleimplementation based on the JDK serialization is made available.5 Conclusions and further workIt was shown that with the extension of a general-purpose programming language (suchas Java) by proper abstractions (such as sets of objects and the related operations) theaccess to persistent data can be made entirely transparent, and still e�cient. It was alsodemonstrated that by generating appropriate, dynamically adaptable data-structures duringthe compilation, we can take advantage of optimization techniques known from the databasetechnology.The maintenance of the connection between the persistent variables and the correspondingstores must be further investigated. Our last goal is to free the programmer from all concernsof persistence, except the declaration of a variable as persistent. This needs the introductionof a transaction concept, which is still subject of further study.Sets should be also distributable over a number of nodes. At the time being we hope thatwe can achieve this by a general interpretation of the PSIdentifier. This must be, however,still investigated in detail.References[1] L. B�osz�orm�enyi and K.-H. Eder. M3set { a language for handling of distributed andpersistent sets of objects. Parallel Computing, 22(1):1913{1925, January 1997.

[2] M. Jordan and M. Atkinson. First International Workshop on Persistence and Java.Technical Report TR 96-58, Sun Microsystems Laboratories, September 1996.[3] N. Paton, R. Cooper, H. Williams, and P. Trinder. Database Programming Languages.Prentice Hall, London, GB, 1996.[4] G. Landis, C. Lamb, T. Blackman, S. Haradhvala, M. Noyes, and D. Weinreb. Object-store PSE: A Persistent Storage Engine for Java. In Proceedings of the 1st InternationalWorkshop on Persistence for Java, Glasgow, Scotland, September 1996. Sun Microsys-tems, TR 96-58.[5] M.P Atkinson, L. Daynes, M.J. Jordan, T. Printezis, and S. Spence. An OrthogonallyPersistent Java. Sigmod Records, 25(4):68{75, December 1996.[6] R. G. G. Cattell. The Object Database Standard : ODMG 2.0. Morgan Kaufmann,1997.[7] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented DatabaseSystem, the Story of O2. Morgan Kaufmann, 1992.[8] Poet Software cooperation. Poet object oriented database. http://www.poet.com/,1998.[9] G. Hamilton, R. Cattell, and M. Fisher. JDBC Database Access with Java: A Tutorialand Annotated Reference Manual. Addison-Wesley, 1997.[10] Patrick Valduriez. Parallel database systems: open problems and new issues. Distributedand Parallel Databases, 1(2):137{165, 1993.[11] D.S. Parker, E. Simon, and P. Valduriez. SVP - a Model Capturing Sets, Streams, andParallelism. In Proceedings of the International Conference on Very Large Data Bases,Vancouver, British Columbia, Canada, August 1992.[12] D. DeWitt, J. Naughton, J. Shafer, and Sh. Venkataram. Parallelizing OODBMS traver-sals : A performance evaluation. Very Large Databases Journal, 5(1):3{18, 1996.[13] J. Schwartz, R.B.K Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets -An Introduction to SetL. Springer, 1986.[14] M. Gilula. The Set Model for Database and Information Systems. Addison-Wesley, 1994.[15] L. Brunie, H. Kosch, and W. Wohner. From the modeling of parallel relational queryprocessing to query optimization and simulation. Parallel Processing Letters, 8(1):2{14,March 1998.[16] R.S.G. Lanzelotte, P. Valduriez, and M. Za��t. On the e�ectiveness of optimization searchstrategies for parallel execution spaces. In Proceedings of the International Conferenceon Very Large Data Bases, pages 429{445, Dublin, Ireland, August 1993.[17] L. Brunie and H. Kosch. Optimizing complex decision support queries for parallelexecution. In International Conference of PDPTA 97, pages 1123{1133, Las Vegas,USA, July 1997. CSREA Press.

