
ADVANCED TRANSPORT OPTIONS FOR THE
DYNAMIC ADAPTIVE STREAMING OVER HTTP

Christian Timmerer†,‡ and Alan Bertoni†

†Alpen-Adria-Universität Klagenfurt, Institute of Information Technology (ITEC), Austria

{firsname.lastname}@itec.aau.at

‡bitmovin Inc., Palo Alto, USA and Klagenfurt, Austria, https://bitmovin.com/
christian.timmerer@bitmovin.com

ABSTRACT

Multimedia streaming over HTTP is no longer a niche
research topic as it has entered our daily live. The common
assumption is that it is deployed on top of the existing
infrastructure utilizing application (HTTP) and transport
(TCP) layer protocols as is. Interestingly, standards like
MPEG’s Dynamic Adaptive Streaming over HTTP (DASH)
do not mandate the usage of any specific transport protocol
allowing for sufficient deployment flexibility which is further
supported by emerging developments within both protocol
layers. This paper investigates and evaluates the usage of
advanced transport options for the dynamic adaptive
streaming over HTTP. We utilize a common test setup to
evaluate HTTP/2.0 and Google’s Quick UDP Internet
Connections (QUIC) protocol in the context of DASH-based
services.

Index Terms— Adaptive Media Streaming, HTTP/2.0,
QUIC, MPEG-DASH, Evaluation

1. INTRODUCTION

Adaptive multimedia streaming over-the-top of the existing
infrastructure using HTTP is a major driver for innovation
within both industry and academia. The MPEG standard
Dynamic Adaptive Streaming over HTTP (DASH) provides
interoperable representation formats in terms of media
presentation description (MPD) and segments based on the
ISO base media file format and MPEG-2 transport stream
[1]. Interestingly, the standard mandates the usage of HTTP-
URLs for locating segments but not how they are actually
delivered to the client. The general assumption is that a
standard HTTP infrastructure is used which is deployed on
top of TCP for the delivery of both MPD and segments. In
practice, however, various (transport) protocols could be
used such as in 3GPP which specifies DASH over
(e)MBMS/FLUTE in a mobile broadcast environment [2].
Another option for DASH is the recently proposed version 2
of HTTP – written as HTTP/2.0 – which is based on
Google’s SPDY [3]. HTTP/2.0 comes with an interesting
pool of features that could be exploited in the context of
DASH. For instance, Wei and Swaminathan propose k-push

(i.e., k segments are pushed to the client using one request)
to reduce both latency and the number of segment requests
using the HTTP/2.0 server push feature [4]. Others use
HTTP chunked transfer encoding to achieve similar latency
requirements [5][6].

While HTTP/2.0 is tightly coupled with TCP, earlier
versions of HTTP actually do not mandate the usage of TCP
although almost all implementations assume TCP to be
used, specifically its means for reliable transport. The
performance of TCP for media streaming applications has
been analytically assessed in [7] concluding that the
bandwidth requirement is about twice the media bitrate.
Various improvements – both at the HTTP and the TCP
layer – have shown significant performance gain,
specifically when adopting persistent connections and
pipelined requests as defined within HTTP/1.1 [8]. These
features definitely provide a performance boost but suffers
from the Head-of-Line (HoL) blocking problem and
together with TCP’s streaming inflexibility this has lead to
ad-hoc developments such as Google’s Quick UDP Internet
Connections (QUIC) protocol [9] and also SPDY; the latter
being turned into HTTP/2.0 at the time of writing this paper.
While the performance of HTTP/2.0 in the context of DASH
has been assessed already (i.e., compared with selected
features of HTTP/1.0 and HTTP/1.1) its combination with
QUIC has not yet been evaluated to the best of our
knowledge.

The aim of this paper is to provide a baseline
performance assessment of DASH-based services with
advanced transport options both at the application and
transport layer. At the application layer, we investigate the
usage of SPDY/HTTP/2.0 and HTTP/1.1 (with persistent
connection and pipelined requests enabled); at the transport
layer, we consider TCP and QUIC. For the actual evaluation
we examine the protocol overhead, link utilization, and
adaptation performance for the following combinations: (a)
HTTP/2.0 over TCP, (b) HTTP/2.0 over SSL (and TCP), (c)
HTTP/1.1 over QUIC, and (d) SPDY over QUIC. Please
note that HTTP/2.0 and SPDY share the same principles
despite minor format differences but this shall not impact its
performance. In this paper we adopt MPEG-DASH for the
actual streaming format but results are also applicable for

other formats sharing the same principles (e.g., Apple HTTP
Live Streaming). The evaluation setup is compliant with [3]
to enable cross-validation with both results, e.g., when
targeting future enhancements.

The remainder of the paper is as follows. Section 2
provides a brief overview of MPEG-DASH and Section 3
describes advanced transport options, i.e., HTTP/2.0 and
QUIC. Section 4 describes the experimental evaluation
setup and discusses the evaluation results. The paper
concludes with Section 5 highlighting also future work.

2. MPEG-DASH

MPEG-DASH and related formats sharing the same
principles (e.g., Adobe HDS, Apple HLS, Microsoft Smooth
Streaming) enable adaptive HTTP streaming by providing
multiple, time-aligned versions (e.g., different bitrate,
resolution, codec, language) of segmented media files (e.g.,
2-10 seconds) on ordinary Web servers which clients
individually request in a dynamic and adaptive way
depending on its usage environment (e.g., available
bandwidth, display resolution, codec support, language
preference of the user). Sodagar gives a most recent
overview of the MPEG-DASH standard [1] which provides
a specification for the MPD and segment formats based on
ISO base media file format and MPEG-2 transport stream.

A major requirement of the standard was to support the
usage of standard Web servers without the need for any
media- or streaming-specific extensions to enable reuse of
the existing infrastructure deployed for the provisioning and
delivery of regular Web traffic. The common assumption is
that the intelligence is solely within the client
implementation which requests segments – as described in
the MPD – based on its context conditions. This adaptive
client behavior and the supported media codecs are not
normatively defined within the standard. The DASH
Industry Forum (DASH-IF; http://dashif.org/) provides
interoperability points going beyond the MPEG
specification including recommendations for selected media
codecs, test vectors, and conformance software.

A detailed state of the art and open issues can be found
in the tutorial of Timmerer and Begen [10].

3. ADVANCED TRANSPORT OPTIONS:
SPDY/HTTP/2.0 AND QUIC

3.1. SPDY and HTTP/2.0

This section describes HTTP/2.0 which is based on
Google’s SPDY protocol and at the time of writing of this
paper available as Internet draft by the IETF [12].

The protocol is mandating the Transmission Control
Protocol (TCP) and maintains a single persistent connection
for each session. During a session, multiple streams can be
opened between the client and the server in full-duplex
mode. Typically, only one HTTP/2.0 connection between a

server and a client exists until the client navigates to another
server. The servers should leave connections open as long as
possible until a given threshold timeout or when a client
initiates a connection close.

The advantage of HTTP/2.0 is that it is fully compatible
with HTTP/1.1 and can be integrated as a session layer
between HTTP and TCP, hence, enabling incremental
deployment. The HTTP request will be mapped into a
HTTP/2.0 frame and vice versa for the HTTP response.
Additionally, it is also possible to send multiple requests in
parallel to support pipelining. Therefore, HTTP/2.0 offers an
interface for HTTP, which simplifies its integration for
already existing HTTP applications. After this handover
from HTTP/1.1 to HTTP/2.0 the whole communication will
be handled on the HTTP/2.0 framing layer until a response
arrives which will be passed to the HTTP/1.1 layer.

Google further developed SPDY which is currently
available as Draft 3.1 and still maintains two frame types for
control and data frames but with similar functionality as
within HTTP/2.0.

3.2 QUIC

Quick UDP Internet Connections (QUIC) is an
experimental, UDP-based transport layer network protocol,
which aims at reduced connection latency, congestion
control, multiplexed/pipelined requests without head-of-line
blocking, FEC, and connection migration [13].

During the connection establishment, the client
speculatively assumes to have acceptable cryptographic
credentials for at least a preliminary encryption of a request.
In case the server does not accept the credentials, additional
negotiations may be needed but, conceptually, all
handshakes have a zero-RTT in QUIC.

The variable length (2-19 bytes) packet header
comprises public/private flags, connection identifier, version
information, sequence number, and FEC data. Streams are
independent sequences of bi-directional data packets, which
can be created both by the client and the server. For the
congestion control, QUIC comes with two different
approaches: (a) to mimic the TCP CUBIC algorithm, and (b)
an inter-arrival scheme based on WebRTC.

SPDY and QUIC are designed to work independent
from each other but when SPDY is implemented over
QUIC, the QUIC layer handles most of the stream
management. In particular, SPDY streams IDs are replaced
by QUIC stream IDs without explicit framing and the data
sent over the QUIC stream simply consists of SPDY headers
followed by the body.

4. EXPERIMENTAL EVALUATION

4.1 Evaluation Setup

The test content for the evaluation is Big Buck Bunny which
has been encoded and segmented into 14 representations

using x264 and MP4Box, respectively. The segment size is
2 seconds and the bitrate varies from 100 to 4,500 kbps as
follows: 100, 200, 350, 500, 700, 900, 1100, 1300, 1600,
1900, 2300, 2800, 3400, and 4500. We use a constant frame
rate of 30 fps and constant resolution of 640x360 pixels as
we are mainly focusing on changes in the actual bitrate.
Therefore, the resolution is not that important.

The test environment comprises a sever component
(hosting HTTP and QUIC servers) and the DASH client
connected through a network emulator responsible for
bandwidth shaping (token bucket filter and traffic control
program) and network delay emulation (netem program) [3].
The server hosts a standard Apache Web server (v2.4.7)
with nghttp2 proxy for the HTTP/2.0 delivery. Moreover, it
runs the QUIC prototype server, which supports versions 15
to 19 of the QUIC protocol, to deliver media content using
HTTP/1.1 directly over QUIC or using SPDY over QUIC.
The DASH client is based on the QTSamplePlayer that
comes with libdash which has been enhanced with
SPDY/HTTP/2.0/QUIC capabilities and a simple adaptation
logic referred to DASH-JS [11].

For each subsequent evaluation, five runs have been
conducted and the mean value is presented. Note that
differences between individual runs are so marginal that we
refrain from showing confidence intervals.

4.2 Protocol Overhead

The protocol overhead is first computed based on the
underlying specifications and summarized in Table 2. HTTP
is based on TCP, which introduces an overhead of 20 bytes
for the TCP header and additional 12 bytes for the optional
header fields. QUIC is based on UDP, which introduces an
overhead of 8 bytes. The remaining overhead is the same for
both approaches, e.g., using 20 bytes for the IP header and
additional 14 bytes for the Ethernet at the link layer.

HTTP/2.0 and QUIC adopt an additional framing layer
above TCP and UPD. For HTTP/2.0, each frame has an 8-
byte header to carry the length, stream identifier, type and
corresponding flags. For QUIC, the frame header does not
have a fixed length but varies between 2 and 19 bytes.

The actual protocol overhead is finally measured for the
14 different representations in a DASH scenario as
1− media bytes

total bytes received and depicted in Figure 1. The horizontal

axis shows the quality level of the encoded representation

Table 1. Average Link Utilization at Different Round-
Trip-Time.

Protocol Link Utilization [%]
0ms 50ms 150ms

HTTP/2.0 over TCP 95.3 92.9 88.4
HTTP/2.0 over SSL 95.1 92.6 88.0
HTTP/1.1 over QUIC 94.0 91.8 87.2
SPDY over QUIC 93.9 91.7 87.2

Table 2. Overhead Analysis for HTTP/2.0 and QUIC.

Protocol Stack Overhead
HTTP/2.0 QUIC

Transport Layer TCP (32 bytes) UDP (8 bytes)
Network Layer IP (20 bytes) IP (20 bytes)
Data Link Layer Ethernet (14 b) Ethernet (14 b)
MTU [bytes] 1,514 1,2,42
Total Overhead [%] 4.36% 3.38%

100 350 700 1100 1600 2300 3400

4

5

6

7

8

9

10

11

12

Protocol Overhead

Media Bitrate [kbps]

O
ve

rh
ea

d
[%

]

HTTP/2
HTTP/2 SSL
HTTP/1.1 QUIC
SPDY QUIC

Figure 1. Protocol Overhead at Different Media

Representations (Bitrate).

Available Bandwidth [kbps]

Li
nk

 U
til

iz
at

io
n

[%
]

100 500 900 1600 2300 2800 3400 4500

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

SPDY over QUIC Link Utilization

RTT 0
RTT 50
RTT 150

Figure 2. Link Utilization of SPDY over QUIC.

while the vertical axis shows the protocol overhead in
percentage.

In general, the overhead is below 10% except for QUIC
and very low bitrates at 100 kbps. However, QUIC always
comes with a higher overhead than HTTP/2.0 over TCP.
This result is counter-intuitive since QUIC is running over
UDP, which has a slightly lower protocol overhead than
TCP. Furthermore, keep in mind that QUIC provides a
multiplexed stream protocol on top of UDP and security
comparable with SSL. Comparing the solutions providing
encryption, the average overhead of QUIC is about 1.65%
higher than HTTP/2.0 over SSL.

4.3 Link Utilization

The link utilization has been tested with all representations
using different round trip times (RTTs) of 0ms (local area
networks), 50ms (fixed line/wired network), and 150ms
(wireless/mobile network). The actual link utilization is
calculated as a ratio of the effective throughput and the
available bandwidth. For each individual run, the bandwidth
is restricted to the bitrate of the corresponding
representation. As expected, the higher the RTT, the lower
the link utilization but in all cases it is >80% as shown in
Table 1.

Figure 2 shows the link utilization of SPDY over QUIC
for the different RTTs and the given available bandwidth.
The results are stable over the bandwidth and similar for the
other protocol combinations. A comparison of the link
utilization with RTT 150ms is depicted in Figure 3. The
comparisons of the other RTTs look similar but with a
higher link utilization according to the values shown in
Table 1. Interestingly, the link utilization is not as stable
when using QUIC compared to TCP/SSL configurations.

However, QUIC is becoming more stable with decreased
RTT (not shown here).

4.4 Adaptation Performance

The adaptation performance is evaluated for a given
bandwidth trajectory limiting the available bandwidth
between 1-5 Mbps for the different protocol combinations.
Additionally, the same RTTs as for the link utilization have
been used. The results reveal that the adaptation
performance – average media throughput – is very similar

Available Bandwidth [kbps]

Li
nk

 U
til

iz
at

io
n

[%
]

100 500 900 1600 2300 2800 3400 4500

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Link Utilization Comparison with RTT 150 ms

HTTP/2.0 over TCP
HTTP/2.0 over SSL
HTTP/1.1 over QUIC
SPDY over QUIC

Figure 3. Comparison of Link Utilization with RTT 150ms.

Time [Seconds]

Bi
tra

te
 [k

bp
s]

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

SPDY over QUIC Adaptation Logic with RTT 0

Available Bandwidth
Measured Bitrate
Selected Quality

Figure 4. Adaptation Performance of SPDY over QUIC

with RTT 0ms.

Time [Seconds]

Bi
tra

te
 [k

bp
s]

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

SPDY over QUIC Adaptation Logic with RTT 50

Available Bandwidth
Measured Bitrate
Selected Quality

Figure 5. Adaptation Performance of SPDY over QUIC

with RTT 50ms.

for the different protocol combinations (>2 Mbps in all
cases) and, thus, we focus on SPDY over QUIC for different
RTTs.

For the actual adaptation logic we adopt DASH-JS from
[11] which is based on a simple bandwidth estimation as
shown in Equation (1).

 bn =
w1bn−1+w2bm

w1+w2
 (1)

where bn−1 is the throughput calculated at the n−1th segment,
bm denotes the throughput measured during the download of
the n−1th segment, while w1 and w2 are weighting factors
that adjust the influence of the recently measured segment
download (i.e., w1=0.7 and w2=1.3 according to [11]).

Figure 4 shows the adaptation performance of SPDY
over QUIC with RTT 0ms. The black line shows the
available bandwidth using the bandwidth shaping within the
network emulator. The blue line represents the available
bandwidth measured while downloading the actual segments
and providing the input for the adaptation logic (i.e., DASH-
JS). The red line depicts the output of adaptation logic and
corresponds to the selected quality according to the
available representations within the MPD.

Figure 5 shows the adaptation performance of SPDY
over QUIC with RTT 50ms and Figure 6 with RTT 150. The
results reveal that DASH-JS is robust against different RTTs
and provides an instant reaction to the available/measured
bandwidth. Figure 7 provides the results of the adaptation
behavior of HTTP/1.1 over QUIC with RTT 150ms, which
is indeed very similar to the results of SPDY over QUIC as
shown in Figure 6 and, thus, we can conclude that the
adaptation logic does not impact the underlying protocols.

Finally, a comparison of the average media throughput
of all protocol combinations for the different RTTs is shown

in Figure 8. The black line represents the maximum
throughput and comprises the average value of the given
bandwidth trajectory (i.e., 2.7 Mbps). The results clearly
indicate that all protocol combinations provide roughly the
same adaptation performance whereby the media throughput
decreases with increasing RTT but always is above 2 Mbps.

4.5. Discussion

In this section we want to discuss the results achieved in this
evaluation and compare it with the results reported in a
similar study by Mueller et al. focusing on HTTP/2.0 and

Time [Seconds]

Bi
tra

te
 [k

bp
s]

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

SPDY over QUIC Adaptation Logic with RTT 150

Available Bandwidth
Measured Bitrate
Selected Quality

Figure 6. Adaptation Performance of SPDY over QUIC

with RTT 150ms

Time [Seconds]

Bi
tra

te
 [k

bp
s]

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

HTTP/1.1 over QUIC Adaptation Logic with RTT 150

Available Bandwidth
Measured Bitrate
Selected Quality

Figure 7. Adaptation Performance of HTTP/1.1 over

QUIC with RTT 150ms.

RTT [ms]

M
ed

ia
 T

hr
ou

gh
pu

t [
kb

ps
]

0 25 50 100 150

1500

1750

2000

2250

2500

2750

3000

Adaptation Test Performance Comparison

Max. Throughput
HTTP/2.0 over TCP
HTTP/2.0 over SSL
HTTP/1.1 over QUIC
SPDY over QUIC

Figure 8. Comparison of the Adaptation Performance for

different RTTs.

SPDY only [3]. In fact, the evaluation setup is identical with
that in [3] and, thus, allows for a direct comparison of the
results. In principle, we confirm the results of Mueller et al.
but have not further investigated HTTP/1.0 as we use
consistently HTTP/1.1 including its features like persistent
connections and request pipelining. The bandwidth
trajectory is different but our results show the same behavior
as reported in [3].

In our setup we add QUIC as an alternative to TCP for
the actual transport layer protocol, which – together with
HTTP/2.0 – eliminates the Head-of-Line blocking problem
of pipelined requests in HTTP/1.1. However, using QUIC
instead of TCP does not contribute to the overall streaming
performance in terms of increased or decreased media
throughput at the client.

Interestingly, QUIC, which is based on UDP, comes
with a slightly higher overhead than TCP, specifically for
low bitrates but is still <10% in all cases and <7% in the
majority of the cases.

5. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated advanced transport options for
the dynamic adaptive streaming over HTTP. Therefore, we
evaluated HTTP/1.1/2.0/SPDY over TCP/QUIC using a
predefined evaluation setup. In this context, QUIC comes
with a slightly higher protocol overhead than TCP but is
below 10% except for very low bitrates (≤100kbps). The
link utilization decreases with increasing RTT but is always
>87% of the available bandwidth and remains stable for
different bandwidths. The adaptation algorithm does not
have an impact on the transport scheme used but the media
throughput decreases with increasing RTT. Thus, results
reported in this paper confirm previous results in [3] but
provide additional findings for QUIC.

Future work includes studying further advanced
transport options such as Akamai’s hybrid HTTP/UDP
approach – as known as Astraeus – which has been
specifically designed for large packet sizes [14]. Therefore,
we will investigate different DASH segment sizes and how
to combine them with such advanced transport options to
increase the overall delivery performance, possibly
including Quality of Experience (QoE) aspects.

12. REFERENCES

[1] I. Sodagar, "The MPEG-DASH Standard for

Multimedia Streaming Over the Internet," IEEE
MultiMedia, vol.18, no.4, pp.62-67, Apr. 2011. doi:
10.1109/MMUL.2011.71

[2] T. Lomar, M. Slessingar, V. Kenehan, S. Puustien,
"Delivering content with LTE Broadcast," Ericsson
Review, Feb. 2013. http://bit.ly/14ywYy9 (last access:
Nov. 2014)

[3] C. Mueller, S. Lederer, C. Timmerer, H. Hellwagner,
"Dynamic Adaptive Streaming over HTTP/2.0," 2013
In Proceedings of IEEE International Conference on
Multimedia and Expo (ICME’13), San Jose, CA, USA,
Jul. 2013. doi: 10.1109/ICME.2013.6607498

[4] S. Wei and V. Swaminathan, "Low Latency Live Video
Streaming over HTTP 2.0," In Proceedings of Network
and Operating System Support on Digital Audio and
Video Workshop (NOSSDAV’14), Singapore, Mar.
2014. doi=10.1145/2578260.2578277

[5] V. Swaminathan, S. Wei, "Low latency live video
streaming using HTTP chunked encoding," In
Proceedings of IEEE 13th International Workshop on
Multimedia Signal Processing (MMSP’11), Hangzhou,
China, Oct. 2011. doi: 10.1109/MMSP.2011.6093825

[6] N. Bouzakaria, C. Concolato, J. Le Feuvre, "Overhead
and performance of low latency live streaming using
MPEG-DASH," In Proceedings of 5th International
Conference on Information, Intelligence, Systems and
Applications (IISA’14), Chania, Greece, Jul. 2014. doi:
10.1109/IISA.2014.6878732

[7] B. Wang, J. Kurose, P. Shenoy, D. Towsley,
"Multimedia Streaming via TCP: An Analytic
Performance Study," ACM Transactions on Multimedia
Computing, Communications, and Applications
(TOMM), vol. 4, no. 2, May 2008.
doi=10.1145/1352012.1352020

[8] C. Müller, S. Lederer, C. Timmerer, "An Evaluation of
Dynamic Adaptive Streaming over HTTP in Vehicular
Environments," In Proceedings of the 4th Workshop on
Mobile Video (MoVid’12), Chapel Hill, NC, USA, Feb
2012. doi=10.1145/2151677.2151686

[9] B. Trammell, J. Hildebrand, "Evolving Transport in the
Internet," IEEE Internet Computing, vol.18, no.5, Sep.-
Oct. 2014. doi: 10.1109/MIC.2014.91

[10] C. Timmerer and A. C. Begen, "Over-the-Top Content
Delivery: State of the Art and Challenges Ahead," In
Proceedings of the ACM International Conference on
Multimedia (MM’14), Orlando, FL, USA, Nov. 2014.
doi=10.1145/2647868.2654849

[11] B. Rainer, S. Lederer, C. Mueller, C. Timmerer, "A
seamless Web integration of adaptive HTTP
streaming," In Proceedings of the 20th European Signal
Processing Conference (EUSIPCO’12), Bucharest,
Romania, Aug. 2012.

[12] M. Belshe, et al., "Hypertext Transfer Protocol version
2.0", draft-ietf-httpbis-http2-14, Oct. 2014,
http://tools.ietf.org/search/draft-ietf-httpbis-http2-15.

[13] QUIC, a multiplexed stream transport over UDP,
http://www.chromium.org/quic

[14] M. Ponec, A. Alness, "Hybrid HTTP and UDP content
delivery," US Patent US20140059168, Feb. 2014.
http://www.google.com/patents/US20140059168

