
Fast Communication Mechanisms – Coupling Hardware
Distributed Shared Memory and User-Level Messaging

Hermann Hellwagner, Wolfgang Karl, Markus Leberecht

Lehr- und Forschungseinheit Informatik X,
Rechnertechnik und Rechnerorganisation /
Parallelerechnerarchitektur (LRR-TUM)

Institut für Informatik der Technischen Universität München
Arcisstr. 21, D-80290 München, Germany

Tel.: +49-89-28928278, Fax: +49-89-28928232
Email: fhellwagn j karlw j leberechg @ informatik.tu-muenchen.de

Abstract Low latencies for small messages are an im-
portant factor of efficient fine-grained parallel compu-
tation. The Active Messages concept provides this mini-
mal overhead by eliminating certain parts of the critical
path of sending and receiving messages, that is the con-
text switch into the operating system kernel when using
user-mode I/O, and multiple buffering in the network
layer. Hardware-supported distributed shared mem-
ory (DSM) architectures exhibit various properties that
make them particularly useful for an implementation of
the aforementioned messaging mechanisms. This pa-
per thus describes the concept, implementation, and the
performance of a DSM-based Active Messages layer.

Keywords: Distributed Shared Memory, Active
Messages, User-Level Communication, Scalable
Coherent Interface

1 Introduction and Motivation

Networks of workstations (NOWs) have become
increasingly popular as widely available facilities
for parallel processing. This has been fostered
by the availability of public domain packages like
PVM [3] or NXLib [10] as well as implementa-
tions of MPI [4], which allow a NOW to be utilized
as a virtual parallel computer. In particular, small
and medium enterprises, universities, and research
labs follow this approach, thereby saving their ex-

isting investments in desktop machines. On the
other hand, parallel computing with NOWs bears
the drawbacks of insufficient communications per-
formance over today’s LANs and message passing
as the only programming model.

With its technical features and applications, the
Scalable Coherent Interface (SCI, ANSI/IEEE Std
1596-1992) [7] offers an approach to solve the
problems mentioned above. SCI defines a high-
speed and scalable interconnect technology. In ad-
dition to I/O style communication, SCI facilitates
communication via distributed shared memory. Its
protocols provide bus-like services in a fully dis-
tributed manner. The shared memory communi-
cation allows for low latency data transfers be-
cause read or write operations are automatically
turned into remote accesses. The increased hard-
ware communication performance can be exploited
using a user-level communication layer without the
need of invoking system calls, but can also be ex-
ploited using load and stores only, into appropri-
ately mapped remote memory regions.

By exploiting the potential of SCI, the SMiLE
(Shared Memory in a LAN-like Environment) [5]
project at LRR-TUM tries to meet the demands
of a low-cost, technically advanced, and power-
ful parallel computer. As clusters of worksta-
tions connected via SCI promise to deliver high
performance, we decided to set up such a sys-
tem with distributed shared memory within the



SMiLE project. We developed and implemented
our own PCI-SCI bridge [1] which is targeted to
plug into the PCI bus of a PC. Pentium-PCs to be
equipped with our PCI-SCI adapter will be inter-
connected to a cluster of computing nodes with
distributed shared memory, the SMiLE multipro-
cessor system. An Active Messages layer [11] on
top of SCI shared memory transactions has been
implemented on a testbed of a SCI-cluster of SUN
SPARC workstation as an user-level communica-
tion layer achieving extremely low-latencies. Later
on, it will be ported on the SMiLE multiprocessor
system.

The paper gives an overview of the SMiLE
project at LRR-TUM and its objectives. It de-
scribes the architecture of the PCI-SCI bridge and
presents first performance results. We describe our
Active Messages implementation and show that
this communication architecture only adds an in-
significiant amount of latency to the raw latency of
SCI.

2 The SMiLE Multiprocessor Sys-
tem

The SMiLE multiprocessor to be built up with
industry-standard PCs interconnected by SCI tech-
nology will serve as main research vehicle. The
long-term objective of research is to design and im-
plement an appropriate distributed shared memory
programming model and to investigate the efficient
use of a parallel computer with NUMA character-
istics (non-uniform memory access).

We started our own hardware and system soft-
ware developments because commercial available
PCI-SCI adapters do not provide the flexibility and
extendability required for our research (e.g. moni-
toring functionality).

We have developed a PCI-SCI bridge, which
serves as the interface between the PC’s I/O bus,
the PCI bus, and the SCI network. SCI nodes are
interconnected via the input and output links, so
that ring-like connections are built with the output
of one node providing the input to the input link of
the neighbour node.

The SCI standard defines packet switched com-

munication protocols. SCI split transactions re-
quire a request packet to be sent from one SCI node
to another node and a response packet transmitted
from the remote node back to the source node in
order to complete the transaction. The PCI-SCI
interface generates packets for remote SCI nodes,
transmits incoming packets via the output link to
the neighbour SCI node or directs them to the local
user node. PCI address spaces of the bridge can be
mapped into SCI, allowing PCI read/write accesses
to any of the mapped SCI resources. The PCI-SCI
interface is responsible for potentially required ad-
dress translations and request/response packet gen-
eration. Such a transparent access is the key feature
required for implementing shared memory applica-
tions.

As depicted in Figure 1, the PCI-SCI bridge is
divided into three logical parts, the PCI unit, the
Dual-Ported RAM (DPR), and the SCI unit. The
PCI unit interfaces to the PCI bus of the local PC
host, and the SCI unit interfaces to the SCI net-
work. Data is transferred between the PCI unit and
the SCI unit across the Dual Ported RAM (DPR),
and control information is passed on the handshake
bus. For the interface to the PCI bus, the PCI9060
chip from PLX Technology is used, which trans-
lates read/write operations into internal bus opera-
tions and vice versa. The PCI unit is connected to
the DPR via a 32 bit wide internal bus, the DPR
bus. The DPR and the SCI unit are connected via
the B-Link, a 64 bit wide synchronous bus. The B-
Link is the back side of the interface chip to the SCI
network, the Link-Controller LC1 from Dolphin.
The Link-Controller LC1 implements the physical
layer and parts of the logical layer of SCI. Two
functional units are responsable for the coordina-
tion and communication between the PCI and SCI
units. These two functional units are implemented
for chips of the Xilinx 4000E FPGA series.

2.1 The PCI Unit

The PCI unit (Figure 2) has to translate PCI
read/write transactions into bridge internal bus op-
erations and vice versa. For this task, the PCI9060
chip from PLX Technologies [9] is used, which
provides a PCI bus master interface for adapters.



D32

4Kx32 2Kx64

A

PCI Unit SCI Unit

64D

A
PCI

SCI out

SCI In

Handshake Bus

DPR B-LinkDPR bus

Figure 1: PCI-SCI bridge architecture

The chip’s local bus follows the Intel i960 micro-
processor’s bus protocol. Using the i960 bus as
the PCI unit’s local bus simplifies the design of the
control logic considerably. No complex PCI com-
pliant control logic is necessary. The PCI9060 sup-
ports both multiplexed and non-multiplexed local
buses. Operating with the multiplexed bus mode
for addresses and data can be exploited for the
generation of SCI packets. The PCI9060 can act
both as target and as initiator on both of its sides,
thus supporting bidirectional transactions forward-
ing. Two independent bi-directional DMA chan-
nels are integrated, allowing direct memory trans-
fers between PCI and SCI initiated by the PCI-SCI
bridge. The PCI9060 local bus interface runs from
a local TTL clock and generates the necessary in-
ternal clocks. This clock runs asynchronously to
the PCI clock. This feature simplifies the imple-
mentation, because the internal bridge bus can op-
erate at a different speed than the PCI bus.

The SCI Upload and Packet EncodeR Man-
agement Unit (SUPER MAN) is responsible for
controlling and coordinating the translation of
read/write accesses into B-Link packets and vice
versa. Simultaneously, the ATC devices provide
address translation from PCI’s 32-Bit addressing
scheme to SCI’s 64-Bit addressing while the dual-
ported RAM (DPR) serves as the main buffer and
scratchpad memory for outgoing and incoming
transactions.

2.2 The SCI Unit

The SCI Unit (Figure 3) is connected to the DPR
via the B-Link. The B-link Access and Transac-
tion MANager (BAT MAN) controls B-Link arbi-

DPR

AA

4Kx32 2Kx64

PCI9060

AD

D D

FPGA#1

(SUPER_MAN)

EEPROM

BUF

PCI A

D

IO IO

Local Clock

ATC

RAM
8Kx24

12

24

CNTRL

32
i960
local
bus DPR

bus

32

PCI Unit
handshake bus

Figure 2: Block diagram of the PCI Unit

tration, reading or writing the DPR (on SCI unit
side), and drives the B-Link control signals. It is
also implemented on a FPGA chip.

The physical layer and part of the logical layer
of SCI are implemented by Dolphin’s Link Con-
troller (LC). The LC provides the SCI input and
output links on the SCI side. On the “back side”
(non-SCI link side) of the chip is the B-Link.

(BAT_MAN)

DPR

A A

D D LC-1

4Kx32 2Kx64

FPGA#2

handshake bus

SCI-IN

SCI-OUT

B-Link

64

SCI-Clock

SCI Unit

B-Link CNTRL

Figure 3: Block diagram of the SCI Unit

The development of the PCI-SCI bridge has
been completed and the prototype is now being
tested. For the measurements, the prototype op-



erates in a loopback mode. The system clock cur-
rently runs at 18 MHz, while the SCI network runs
at 50 MHz. The latency for a write transaction is
3.1 �s. The bridge is being tuned to run at a system
clock of 25 MHz. Thus, we expect performance
to improve by about 40 %. With the DMA block
transfer feature of the PCI-SCI bridge, a bandwith
of about 10 MB/s can be achieved when transfer-
ing 1024 Bytes (in 16 64bytes packets) at a clock
rate of 12 MHz. When running at 25 MHz, a band-
width of about 20 MB/s can be expected for a sin-
gle node. The bandwidth of an SCI ring is 125
MB/s (1 Gb/s). In the final version of the paper
we will be able present the performance data of an
optimized design.

The SMiLE multiprocessor will be built using
the PCI-SCI bridges. For a running system, addi-
tional work has to be performed. This work com-
prises the development of a device driver for Linux
providing transparent memory accesses and mes-
sage passing style communication, and the devel-
opment of a device driver for Windows NT.

In the next section, we present an Active Mes-
sages layer implementation for low-latency, user-
level communication layer for the SMiLE multi-
processor system.

3 Active Messages and SMiLE

3.1 Active Messages and User-Level Com-
munication

Analysing the high message setup times in com-
mon communication packages on parallel and dis-
tributed systems, researchers at UC Berkeley dis-
covered that a relatively high amount of copying is
responsible for not making use of increased hard-
ware communication performance [11]. The as-
sociated strategies of multiple buffering allow for
complex protocol stacks, asynchronous messaging,
and mutual protection of concurrent processes us-
ing the communication layer.

Active Messages reduce the setup latency of
sending and receiving messages by one or sev-
eral orders of magnitude on some systems. This
is achieved through a different understanding of a
message which not only contains the relevant data

but also a function pointer indicating a so-called
handler function. Upon receipt of a message, this
function is called with the transported data as its
parameter, thus effectively removing the message
from the communication layer. Through this tech-
nique, buffering is reduced to the absolute mini-
mum and thus allows for minimal latencies.

Architectures that allow user-level access to the
network interface (NI) benefit the most from the
Active Message concept: The second source of
increased latency in common communication lay-
ers is the context switch into the operating sys-
tem kernel, necessary to maintain synchronization
and protection of resource accesses among the pro-
cesses. If these tasks are instead performed by a
user-level communication layer it is possible to al-
low for all properties of a conventional communi-
cation layer while achieving extremely low laten-
cies.

The Scalable Coherent Interface is such a com-
munication architecture allowing for user-level ac-
cess not only to the network interface but–through
remote memory transactions–direct access to re-
mote node’s local memories. The Active Mes-
sage layer within the SMiLE project attempts to
close this possible security loophole by implement-
ing the Active Message specification 2.0 [8] which
extends the original definition with the notion
of communication endpoints and bundles through
which protection and shared access to the network
interface are provided.

By this definition, an endpoint consists of

� a send pool for outbound messages,

� a receive pool for incoming messages,

� a handler table mapping function pointers to
handler indizes,

� a virtual memory segment of the application
for bulk transfers, and

� some additional management information.

An endpoint bundle is the combination of one
process’ several endpoints and consists of

� a synchronization variable, indicating an end-
point’s communication event,



� a suitable event mask, and

� an access mode flag (concurrent or sequential)
indicating the way the endpoints or the bundle
are used.

3.2 The SMiLE Active Message Layer
and its Structure

The SMiLE Active Message Layer essentially has
two components:

� The Active Messages daemon, launched on
every physical node of the system and respon-
sible for creating, initializing, and mapping of
the shared memory areas that are provided to
AM libraries, and other daemons.

� The Active Messages (AM) library, linked to
user applications, it contains all data types
and functions of the AM application program-
mer’s interface. Send and receive pools are
naturally being implemented as shared mem-
ory segments.

Shared memory transactions allow for a pos-
sible optimization of an Active Message system:
While remote write accesses can be immediately
acknowledged to the sender and buffered in the
network interface until completion, the same does
not hold for remote read accesses during which the
processor has to wait for completion of the trans-
action and delivery of data. It is thus favourable to
implement buffers that are shared memory pages
on the receiving side of a connection, effectively
using only buffered remote writes as a means of
transporting data. SMiLE’s Active Message layer
is therefore structured as depicted in Fig. 4.

Each receive pool is constructed as a ring buffer
of a configurable number of messages in order to
allow for non-blocking send operations of a multi-
tude of small messages.

Since common SCI hardware does not yet allow
remote signalling, polling was the only way of no-
tifying the receiving side of an incoming message.
Its drawback of a short period of blocking the re-
ceiver node’s processor is offset by the economic
use processing time: an application only works

.

.

.

.

.

.

AM daemon node #1

send/write buffers (rem.)

send/write buffers (rem.)

send/write buffers (rem.)

recv/read buffers (local)

recv/read buffers (local)

recv/read buffers (local)

AM daemon node #2

send/write buffers (rem.)

send/write buffers (rem.)

send/write buffers (rem.)

recv/read buffers (local)

recv/read buffers (local)

recv/read buffers (local)

node #n’s transmit areanode #n’s transmit area

node #3’s transmit area

node #2’s transmit area

node #3’s transmit area

node #1’s transmit area

node #’s 3 ... n (remote) write access

Figure 4: Structure of SMiLE’s Active Message
layer

on “receiving” messages (checking receive pools
and executing handler functions) as soon as it finds
time for it.

4 Experiments and Analysis

Several experiments with this setup have been per-
formed and show the expected behaviour. The
Active Message layer only adds an insignificant
amount of latency to the raw latency of SCI,
while the unoptimized overall bandwidth amounts
to more than 80 % of the network’s raw band-
width. (See Table 1.) While the figures of the
AM version 2.0 are due to our own experiments
on a cluster of eight Ultrasparc Workstations inter-
connected through Dolphin SBus-2 SCI adapters
(four ringlets of two nodes attached to bus-based
switch), the AM version 1.1 results on SCI, the
Meiko CS-2, and a Myrinet NOW were taken from
[6] while the ATM results are taken from [2].

A drawback of the current SCI-focused imple-
mentation should be mentioned, however, which
also holds for other hardware-DSM versions of this
communication paradigm. The fact that the send-
ing node has to determine the location at the re-
ceiving site to which it will store the data, makes
it harder to scale the system: In order to keep la-
tencies low and avoid costly synchronization of a



Table 1: Comparison of roundtrip latencies and
transfer rates (AM Store operation) for different
Active Messages implementations

Machine RT Lat. BW
SCI NOW / AM 2.0 (switched) 15 �s 21 MB/s
SCI NOW / AM 1.1 (switched) 16.5 �s 13 MB/s
Meiko CS-2 23 �s 32 MB/s
Myrinet NOW 28.9 �s 34 MB/s
U-Net (ATM NOW, True Zero Copy) 71 �s 14 MB/s

8

25

20

15

10

5

0

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

[Bytes]

[MB/s]

Nachrichtenlänge

Transferrate

Figure 5: Message throughput versus message size
for AM Store operations

shared receive buffer, it is necessary to partition
buffer space among multiple connections. This ef-
fectively forces the receiving node to scan every
possible buffer at the reception of a message. Con-
sequently, as can be seen from Fig. 6, the amount
of time spent for checking the buffers grows lin-
early with the number of nodes.

80

40

10

20

5

25612864321682 4

Polling
Latency (usec)

Number of
Connections

0.625

1.25

2.5

Figure 6: Polling-time for several end points

Possible solutions to this problem require the
receiving side to determine the buffer location of
a new message. In [6] the inclusion of another
remote memory transaction to current hardware-
DSM systems is therefore suggested, namely the
addition of a Remote Enqueue operation. This op-
eration inserts a data packet at the end of a queue in
remote memory, by this alleviating the sender from
the duty to determine an exclusive buffer space
at the receiver’s end while allowing the latter to
merely check a single memory location instead of
scanning a number of buffers that is proportional
to the number of connections.



5 Conclusions and Outlook

Our experiments have clearly shown that Ac-
tive Messages and user-level communication in
a hardware-supported DSM system perform well
and are worth being considered as part of a gen-
eral message-oriented communication layer. Scal-
ability problems inherent in shared memory based
communication can be overcome by yet to be in-
cluded special remote transactions.

With our own PCI-SCI bridge, we are able to
build the SMiLE multiprocessor, a low-priced par-
allel computer consisting of standard PCs form-
ing an efficient NUMA DSM system. With its
software layers, particularly the Active Messages
layer, it is possible to perform message-passing-
style communincation that benefits largely from
its hardware supported distributed shared memory
and the possibility of direct user-level access to the
network interface.

Thus, it will subsequently provide us with a plat-
form for experimental research and investigations
into the efficient use of DSM parallel machines and
their accompanying programming models.

Acknowledgements

We would like to thank Klaus Schauser and his
research group at the University of California at
Santa Barbara for access to their network of SCI-
coupled workstations which only made the Active
Messages experiments possible.

References

[1] Georg Acher, Hermann Hellwagner, Wolf-
gang Karl, and Markus Leberecht. A PCI-
SCI Bridge for Building a PC-Cluster with
Distributed Shared Memory. In Proceedings
The Sixth International Workshop on SCI-
based High-Performance Low-Cost Comput-
ing, pages 1–8, Santa Clara, CA, September
1996. SCIzzL.

[2] Anindya Basu, Vineet Buch, Werner Vogels,
and Thorsten von Eicken. U-Net: A User-
Level Network Interface for Parallel and Dis-

tributed Computing. In Proc. of the 15th
ACM Symposium on Operating Systems Prin-
ciples, Copper Mountain, Colorado, Decem-
ber 1995. ACM.

[3] Al Geist, Adam Beguelin, Jack Dongarra,
Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine
A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge,
Massachusetts, 1994.

[4] William Gropp, Ewing Lusk, and Anthony
Skjellum. Using MPI – Portable Parallel
Programming with the Message-Passing In-
terface. The MIT Press, Cambridge, Mas-
sachusetts, 1994.

[5] Hermann Hellwagner, Wolfgang Karl,
Markus Leberecht, Harald Richter, and
Vaidy S. Sunderam. SCI-Based Local-Area
Shared-Memory Multiprocessor. In Proceed-
ing APPT’95 – Int. Workshop on Advanced
Parallel Processing Technologies, pages
32–39, Beijing, China, September 1995.
Publishing House of Electronics Industry.

[6] Maximilian Ibel, Klaus E. Schauser, Chris J.
Scheiman, and Manfred Weis. Implementing
Active Messages and Split-C for SCI Clus-
ters and Some Architectural Implications. In
Proceedings The Sixth International Work-
shop on SCI-based High-Performance Low-
Cost Computing, pages 39–48, Santa Clara,
CA, September 1996. SCIzzL.

[7] IEEE Standard for the Scalable Coherent In-
terface (SCI). IEEE Std 1596-1992, 1993.
IEEE 345 East 47th Street, New York, NY
10017-2394, USA.

[8] Alain Mainwaring and David Culler. Ac-
tive Messages: Organization and Application
Programming Interface. Computer Science
Division, University of California at Berke-
ley, November 1995.

[9] PLX Technology Inc., 625 Clyde Avenue,
Mountain View, CA. PCI 9060 PCI Bus Mas-



ter Interface Chip for Adapters and Embed-
ded Systems, April 1995. Data Sheet.

[10] Georg Stellner, Arndt Bode, Stefan Lam-
berts, and Thomas Ludwig. NXLib - A Par-
allel Programming Environment for Work-
station Clusters. In C. Halatsis, D. Marit-
sas, G. Philokyprou, and S. Theodoridis, ed-
itors, PARLE’94 Parallel Architectures and
Languages Europe, number 817 in Lecture
Notes in Computer Science, pages 745–748.
Springer-Verlag, 1994.

[11] Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: a Mechanism
for Integrated Communication and Computa-
tion. In Proceedings of the 19th International
Symposium on Computer Architecture, vol-
ume 20 of CAN, pages 256–266, Gold Cost,
Australia, May 1992. ACM.


