
Software – Concepts & Tools (1998) 19: 141–145 1998 Springer-Verlag

Why Java is not my favorite first-course language

László Böszörményi

Institut für Informatik, Universität Klagenfurt∗, Universitätsstraße 65–67, A-9020 Klagenfurt, Austria;
http://www.ifi.uni-klu.ac.at/cgi-bin/staff_home?laszlo, E-mail: laszlo@ifi.uni-klu.ac.at

Abstract. The choice of the first-course programming
language for a university-level computer science curricu-
lum has pedagogical ramifications in terms of comprehen-
sibility and mastery of fundamental concepts. This paper
compares the merits of Java and Modula-3 as a first-
course language.

Key words: Programming education – Java – Modula-3

1 Introduction (and justification)

The programming language Java [1, 7] is now very fash-
ionable, and to argue against fashion is very similar to
fighting against the wind. Nevertheless, I would like to
use the ongoing debate about using Java as a first-course
programming language as a pretext to discuss once more
the purposes of an introductory course in a computer sci-
ence curriculum at universities. (It is important to stress
that I am speaking about universities, because the aims
of other educational institutions may be different. Even
universities may differ to a large extent, but I think that
some common denominators can be found). Thus this
paper is not primarily about Java, nor even about com-
puter science, but about teaching. Most computer scien-
tists seldom write (and still more seldom read) papers
about teaching. Considering the fact, however, that most
computer scientists are also teachers, it seems to need no
justification to speak about teaching (actually this state-
ment is a justification, as I realize while writing it). This
topic is also my excuse for a more personal style than
what is usually tolerated in computer science publications

∗ The paper was written on a sabbatical leave at the State Uni-
versity of New York at Stony Brook.

(which is worth another discussion, because the usual im-
personal style is often just a way to suggest scientific value
that cannot be found otherwise in the given publication).

2 Didactic aims of a first programming course

2.1 Analogy to mother tongue

How we learn something for the first time seems to have
particular importance. The best example is surely the
learning of the mother tongue. Most people are able to
learn foreign languages very well, but almost never per-
fectly, and the role of the mother tongue always remains
a special one. For people having two (or even three)
mother tongues, this is true for both (or all three) mother
tongues. The analogy between the first programming lan-
guage and the mother tongue is surely not perfect, be-
cause we learn the mother tongue in a very different way
and at a very different age than a programming language.
In the phase of learning the mother tongue, we have
no idea about the grammatical concepts of the mother
tongue, not even about the existence of a grammar; we
just learn to speak by intuitively grasping the language
through unbelievable creative use (Humboldt calls this
the energetic phase). As Wittgenstein put it, we learn
to play a game, without knowing its rules, without even
knowing that it has rules. This is definitely not the way
that adults can learn a second language or a programming
language. Rather, they have to learn the concepts and
their use in a long dynamic process. Nobody can learn
a programming language properly just by using it, and
nobody can learn a programming language without using
it. Nevertheless, it is true that the first programming lan-
guage serves as a reference for learning additional pro-
gramming languages.

142 L. Böszörményi: Why Java is not my favorite first-course language

2.2 No best paradigm – the importance of a historical
point of view

Meyer argues for the early introduction of an object-
oriented curriculum [4]: “If you think object-oriented de-
velopment is the right way to go, there is no reason to
delay”. Unfortunately, I don’t think that “object-oriented
development is the right way to go”. First, for many
purposes it is definitely the wrong approach, and, e.g.,
the concept of modularization is much more fundamental
than that of object-orientation. I don’t know any software
of non-trivial size where modularization was not indis-
pensable to handling complexity, whereas I know many
cases where object-orientation does not help much. Of
course, object-orientation includes modularization, but
this is what makes modularization is a simpler and more
basic concept. Second, and more importantly, I don’t
think that there is one single “right way” that universities
should try to find and teach. Quite the contrary, univer-
sity education should show that the approach we think
today to be the best (if there is one) was not the first and
probably will not be the last. The university should not
try to teach ultimate wisdom; it should rather teach stu-
dents to think about different possibilities. This can be
best achieved with a certain historical view. It is surely
not possible to always tell the whole story, but it is im-
portant to show that – as with so many other things –
programming has a history and a development, and con-
tinues to develop.

The historical point of view reveals another – didacti-
cally very important – aspect. The direction of historical
development has probably not been an accident. For ex-
ample, it is surely no accident that programming started
with such basic (I deliberately avoid simple) concepts as
the notions of constant, variable, algorithm and function
(procedure) and not with the notion of objects. Much
time passed before scientists understood the basic con-
cepts enough to come to the highly sophisticated abstrac-
tion of classes and objects. The first object-oriented lan-
guage, Simula-67, appeared in the mid-sixties, yet almost
two decades passed before its significance was generally
recognized. Why should we expect that students will be
able grasp these notions in a few weeks?

All this does not directly imply that we cannot start
the teaching of programming with object-orientation, but
it surely follows that we do not have to start with it. Actu-
ally, I am rather against starting with object orientation
because it puts an unnecessary burden on the students,
who might fail to thoroughly understand the basics for
a long time. Recall the world-wide pedagogical disaster
with using set theory in the elementary school. The idea
of deriving almost all of mathematics from set theory is
surely a most interesting mathematical effort. However,
it is didactically a terribly bad idea. To use another ex-
ample, it is certainly true that every sequential program
can be regarded as a special case of a parallel program.
Still, this observation does not imply that it is a good

idea to start teaching with parallel programming and de-
rive sequential programming as a special case thereof. I do
not want to say that it is impossible to start with object-
orientation, but my experience suggests that it is better
to start with the classical basic concepts and to introduce
object-orientation on top of them. A student need not be
familiar with all current, fashionable buzzwords already
after the first semester. It is much more important that
he/she be able to understand and solve a variety of differ-
ent problems after finishing a computer science major.

In summary, I require the following from the first pro-
gramming course:

1. It must teach the most basic concepts of program-
ming.

2. It must teach these basic concepts in a way that the
student can use them as a reference for advanced con-
cepts and advanced programming notations.

3. It must teach these basic concepts in a way that makes
students understand that programming paradigms
and notations were not created by God, but were in-
vented by humans who err, and so the concepts are
therefore under steady development and (hopefully)
improvement.

To put it in another way, an introductory course on pro-
gramming at a university must do much more than just
teaching programming in a given language: it must de-
velop the basic capability in the students to learn any
other programming language and any other programming
paradigm.

From these requirements it follows that the quality of
such an introductory course cannot be evaluated by itself.
We have to evaluate it in the context of a whole curricu-
lum. The most important question is: how well does it
support later understanding of more advanced concepts?

2.3 Java as a first-course language

My basic criticism of using Java as a first-course language
is that a number of basic programming concepts are sup-
ported only in an indirect way, and thus the language
suggests a limited view of programming. I do not crit-
icize Java as a programming language itself. Although
it has its weaknesses, it is certainly a clean and good
language and is by far the best among the “popular”
programming languages (such as Fortran, Cobol, C and
C++). Java might even be cleaner (and is definitely more
powerful) than Pascal. In the following discussion I will
compare Java to Modula-3 [2, 3] (my favorite first-course
language), a high-end member of the Pascal family. The
two languages are comparable in their semantic concepts
(this is more than an accident; to my knowledge Modula-3
directly influenced the design of Java, although this fact is
rather sparsely referenced in Java documents), and they
are probably equally well suitable as a programming lan-
guage for large software projects. However, as a teaching
language, just from the beginning, Modula-3 seems to

L. Böszörményi: Why Java is not my favorite first-course language 143

be superior, as I will try to show. I have, of course, ab-
solutely nothing against teaching Java in later courses.
Quite the contrary, I find this important, and my ex-
perience shows that students having Modula-3 as their
“mother tongue” [5] learn Java very easily and quickly.

In Java, the notion of a module arises only as a special
case of a class, the notion of a procedure as a special case
of a method, and the notion of a constant as a special case
of a variable. This has a certain mathematical beauty, but
makes initial understanding difficult. As if my mother, in-
stead of saying: “Please bring a chair to the table”, had
said “please, send a message to an instance of the class
chair, which is a subclass of class furniture, to be brought
to the very instance of the class table, being also a sub-
class of class furniture.” I doubt that I could have ever
learned to speak in this way.

In the following I will show the lack of a number of no-
tions in Java, from which the reader might conclude that
Java is much simpler than Modula-3. This is not the case.
The Modula-3 language reference consists of roughly 50
pages, while the Java language reference is a thick book
that is still steadily growing. My criticism is not that Java
is too simple, but that by centering almost everything
around object-orientation, a language was created that
is nice to use, but difficult to learn as a first language.
In Modula-3, on the other hand, the traditional basic
concepts of structured programming reach an unusually
mature level, which allows smooth integration of newer
concepts such as object-orientation and concurrency.

2.4 The lack of the notion of a module

If you start the programming course in Modula-3, you can
tell the students that a program is always constructed as
a set of modules, but for a while we will construct sim-
ple programs consisting of a single module and employing
another module providing basic input/output facilities. If
you use Java, you cannot say this so simply, because Java
has no explicit notion of a module. You can, of course, say
that a Java program consists of a set of classes, and ini-
tially we will develop programs consisting of a single class
that also must be called static (the explanation of why
comes later). This is a minor problem.

The lack of the module concept becomes much worse
a few weeks later. Using Modula-3, you can introduce
the concept of an interface and an implementation of
a module. The notion of information hiding can be easily
mapped onto these language concepts – everything that is
public is in an interface, everything that is hidden is not.
You can introduce (later !) more sophisticated concepts,
such as public interfaces and special interfaces for friends,
which can be mapped onto the same language elements.

In Java you might use abstract classes and class mod-
ifiers (there are quite a few of them) for the same pur-
pose. However, Modula-3 forces us to define interfaces

and corresponding implementations as separate syntac-
tical units. Java does not force such definition, and the
temptation not to do so very soon becomes too great
for the students. Thus they miss one of the most im-
portant software engineering concepts, that of modular-
ization. The Modula-3 student will certainly swear in the
beginning because she/he is forced to make the many in-
terfaces, but after achieving a certain skill level in this,
he/she will understand the importance of the concept and
will be ready to construct interfaces in other program-
ming languages (like Java) as well. (This observation is
confirmed by a student poll conducted by Prof. Hender-
son at the State University of New York at Stony Brook,
where Modula-3 is used as a first-course language). You
can, of course, force the students to always first make an
abstract class in Java. In this case, however, they will not
swear about the language but about you.

2.5 The lack of the notion of a procedure, modes of
parameter passing and of references

In Java, the procedure (or function) is a special case of
a method. This is one of the most unhappy didactic facts
about Java. In my experience, the concept of a procedure
is difficult enough for beginners. It is an absolutely un-
necessary burden to be forced to use static and final class
methods where you mean just a procedure.

A related problem in Java is the lack of an orthogo-
nal concept of modes of parameter passing. Simple types
are passed by value; objects are passed by reference. Par-
ameter passing is defined much cleaner and safer than
in C. However, there are programming languages (such
as Modula-3) that manage to allow explicit and orthogo-
nal control over the mode of parameter passing in a not
less clean and safe way. In many well-known algorithms,
the lack of VAR parameters in Java leads to unnecessary
complications. Let us take a very trivial example: a pro-
cedure that swaps two integer values. In Modula-3 we just
write:

PROCEDURE Swap(VAR int1, int2: INTEGER) =
VAR x: INTEGER;

BEGIN x:= int1; int1:= int2; int2:= x
END Swap;

In Java this procedure is actually not implementable. We
need to wrap an object around the two integers and re-
turn this as a function value, which has no justification at
all. In order to provide a swap operation on two numbers,
we don’t need the concept of an object! If this example is
not convincing enough, let’s take a more real one. Most
implementations of an insert (delete) operation of an AVL
tree use a Boolean VAR parameter (generally called h or
height) to show whether the tree was grown (reduced) at
the last recursion level. To realize this in Java, we need
a special object just to store a Boolean value. We may, of
course, also change the algorithm, e.g., by turning the in-
sert procedure into a function. In the case of delete, how-
ever, which is usually already a function, we need a more

144 L. Böszörményi: Why Java is not my favorite first-course language

sophisticated change. Anyway, in a number of well-known
algorithms the lack of VAR parameters causes certain
complications, which has bad consequences not only on
their performance but, more important, on their under-
standability.

Safety arguments are also used to explain why an ex-
plicit notion of a pointer missing in Java; this is correct
if we take C pointers as a basis. (Implicitly, Java does
have pointers, because objects are pointers per defini-
tion.) However, there are programming languages (such
as Modula-3) that do provide safe pointers (in Modula-3
they are called references) which can be used orthogo-
nally; i.e., we can define a reference to any type. Modula-
3 even provides a safe subtyping concept for references,
which makes it possible to discuss the idea of a subtype,
independently of the class concept, inheritance and dy-
namic binding. (Actually, Modula-3 provides the subtype
concept even for subranges, thus allowing a discussion of
the idea with easy examples already in the first weeks.)

2.6 The lack of records and the array flaw

Java does not have an explicit notion of a record. This
seems to be not too bad, as we can use classes (maybe de-
clared as final) instead. I am sure that most professional
programmers have no difficulty with that. However, di-
dactically this is not a very satisfying situation because
records and classes are very different notions. (Moreover,
some Java environments require putting classes into sepa-
rate files, which might be justified for classes, but it is an-
noying if we mean only a simple record.) In Oberon [6, 8],
Wirth and Gutknecht took the record as a basis and made
objects to extensible records. This allows a discussion of
the record concept first, without the need to introduce
objects. Java – and some other orthodox object-oriented
languages – do this the other way around. The effect is
that many students never gain a clear understanding of
a record as a static container for data (and as one of the
oldest notions of programming).

Arrays in Java are objects. This has some pleasant
consequences for their use, but is definitely a burden for
understanding them. Arrays are a very fundamental ab-
straction (also one of the oldest notions) having nothing
to do with object orientation. On the other hand, Java ar-
rays always start with index value 0, which forces the pro-
grammer to normalize arrays in a number of well-known
algorithms. This is certainly not so difficult, but I person-
ally prefer arrays that can have any index bounds over
arrays that also happen to be objects.

Moreover, Java arrays have the well-known covariance
problem. If we have an array of type T1 and another array
of type T2, where T2 is a subclass of T1, then this sec-
ond array is regarded as a subclass of the first one (a kind
of covariance). This has the pleasant consequence that ar-
ray values of a subclass can be assigned to array variables
or parameters of a superclass. However, this has also the
unpleasant consequence that it may lead to unexpected

run-time errors, namely, if an array variable has the run-
time type of a subclass (via an assignment as described
above) then it becomes incompatible with the superclass
or with other subclasses of the same superclass. This fact
is undetectable for the compiler, however.

If you are now confused after this short explanation –
which you likely might be unless you already knew about
this phenomenon – how should we explain this to students
in the first semester? Now let us consider an example:

public class person { // a person has
String name; // a name
void display() { ... } ... // and a display method

} //person

public class student extends person {
// student is a subclass of person

int studentNo;
// a student additionally has a number

void display() { ... } ...
// and an overridden display method

} //student
. . .

public static void main (String argv[]) {
person[] persons = new person [3];

// array of persons
student[] students = new student [3];

// array of students
. . .
students[1] = new student(“Paul”, 2);

persons = students;
// persons run-time type becomes array of student

persons[1] = new person(“John”);
// leads to ArrayStoreException!

} //main

The last statement leads to a run-time error because we
cannot assign a person-value to a variable of type student
(which person[1] has become). The situation deteriorates
if the critical assignment is hidden in a library proced-
ure. We can certainly learn to live with this phenomenon,
but it is most inconvenient to explain to beginners why
they cannot assign a person to an element of an array of
persons.

2.7 Some minor remarks

How the two languages discussed handle constants is
characteristic of the languages. If we need a symbolic
name for the number of certain data items, then we write
in Modula-3:

CONST Number = 100. In Java we write: static final
int Number = 100. The explanation in the first case is
trivial: if you need a constant, write CONST and that’s
it. How do you explain – in the first or second week – why
we have to write all that stuff (static final int) just to get
a number?

The switch statement has inherited an ill feature of the
corresponding C statement. If you forget to jump out of

L. Böszörményi: Why Java is not my favorite first-course language 145

a certain selection using a break statement, then control
just flows on to the next selection – which is almost surely
a major error. The explanation is just wasted time.

The C-like syntax might have played a key role in
Java’s success. I definitely do not want to trigger any re-
ligious war between the followers of Pascal-like and C-like
syntax. However, in my experience, beginners have less
difficulties with the more English-like syntax of the lan-
guages of the Pascal family than with the forest of braces
in the languages of the C family. This is especially true if
they have to read a piece of code, which they definitely
should also learn from the beginning.

Java cannot be used as a systems programming lan-
guage because it does not allow certain low-level opera-
tions (such as pointer arithmetic or disabling the garbage
collection). There are good safety arguments for this;
however, they are not necessarily valid. Modula-3 pro-
vides a solution by allowing modules to be declared as un-
safe. In unsafe modules some safety checks are disabled,
but through the explicit notification, such places are easy
to localize in a program.

3 Conclusion

My main purpose has been to provoke a discussion about
the purpose and method of teaching programming at uni-
versities. Teaching is similar to baseball (or to soccer in
Europe): everybody knows better how to do it. Among
the many people who are loudly proclaiming the intro-
duction of Java as a first-course language, only a small
fraction has ever written a program in Java. This is prob-
ably not how universities should make such a terribly
important decision as the first programming language.
Still worse, many responsible people do not even perceive
the importance of what we teach in the beginning. This

is also why many universities delegate the undergraduate
courses to lecturers rather than professors. It is so much
easier (although not easy!) to teach things properly at the
beginning than to correct misconceptions later.

I have tried to show that Java is not an ideal first-
course language and that there are better ones. I did not
want to show that Java is a bad language or that it can-
not be used as a first-course language. A university might
choose the didactically non-optimal solution for several
(mostly political) reasons. However, even in such a case,
a technical and didactic discussion is an absolute neces-
sity at a university that is responsible for universal educa-
tion [5].

Acknowledgements. I thank Andras Ercsenyi, Michael Franz, Peter
Henderson, Hanspeter Mössenböck, Markus Schordan and Niklaus
Wirth for many valuable suggestions, and Jacqueline Cantwell for
her careful reading.

References

1. Arnold, K., Gosling, J.: The Java Programming Language.
Addison-Wesley, 1996

2. Böszörményi, L., Weich, C.: Programming in Modula-3 – An
Introduction in Programming with Style. Berlin, Heidelberg,
New York: Springer-Verlag, 1996

3. Nelson, G.: Systems Programming with Modula-3. Prentice
Hall, 1991

4. Meyer, B.: Towards an Object-Oriented Curriculum. In
TOOLS 11 (Technology of Object-Oriented Languages and
Systems). Prentice Hall, 1993, pp. 585–594

5. Mittermeir, R., Böszörményi, L.: Choosing Modula-3 as
“Mother Tongue”. In Mössenböck H. (ed.): Modular Program-
ming Languages. Proc. JMLC’97. Berlin, Heidelberg, New
York: Springer-Verlag, LNCS 1204, 1997, pp. 336–350

6. Mössenböck, H.P.: Object-Oriented Programming in Oberon-
2. Berlin, Heidelberg, New York: Springer-Verlag, 1993

7. Niemeyer, P.: Exploring Java. O’Reilly, 1996
8. Reiser, M, Wirth, N.: The Programming Language Oberon.

Addison-Wesley, 1992

