Parallel Cluster Computing with IEEE1394-1995

Laszl6é Boszérményi, Giinther Holzl and Emanuel Pirker

Institut fiir Informationstechnologie, Universitiat Klagenfurt
Universitatsstrafie 65-67, A—9020 Klagenfurt
{laszlo@itec,guenther@itec,epirker@edu}.uni-klu.ac.at

Abstract. Diverging demands on computer networks, such as high
bandwidth, guaranteed quality of service and low latency lead to grow-
ing heterogeneity. IEEFE1394-1995 is a standardized low-cost high-
performance serial-bus-system with both isochronous and asynchronous
operation. It might be an interesting candidate for all-round local and
system area networks, providing a good compromise in fulfilling the above
demands for low costs. Beside providing some technical background we
show the possibilities and advantages of building parallel clusters on top
of IEEE1394-1995. The main advantage is that minimal speed-up can
be guaranteed, as shown on the basis of the parallel implementation of
discrete Fourier transformation.
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1 Introduction

Computer networks have to face different, partly contradictory demands. High
bandwidth seems to be still the measure most people believe in, and most com-
panies use as selling argument for their networks. However, for multimedia (or,
more exactly, for continuous data) guaranteed quality of service (QoS) at the
user-level is more important than raw speed. For parallel applications, user-
level end-to-end latency is the most important measure. These divergences in
the demands lead to a growing heterogeneity in local area network technology.
The only common denominator is the requirement for low prices. Currently, we
have no standard (or quasi standard) solution that fulfills all requirements for a
reasonable price.

We assume that in the coming years a new de facto LAN/SAN stan-
dard arises, which is able to provide a good compromise in supporting all the
above mentioned requirements. We investigate the IEEE1394-1995 standard (the
“FireWire!”) from this point of view, i.e. its ability to serve as a basis for an
“all-round” standard network.

Ethernet is definitely the leading LAN technology, at least regarding the
number of installations. There are a number of efforts to raise the bandwidth
of Ethernet. 100 Mbps FastEthernet can be regarded as the new standard LAN

! FireWire is a trademark of Apple Computer, Inc.



technology (as being already less expensive than 10 Mbps Ethernet). The Gigabit
Ethernet technology also arises, however, not without contradictions. Latency
times seem to get much slower lower than bandwidth is getting higher. The
Virtual Interface Architecture (VIA) [4] addresses the problem of low latency
and therefore, Ethernet-based systems combined with VIA might have excellent
performance in the future. Currently, however, there are no appropriate products
yet available.

Some efforts have also be done to provide guaranteed QoS in an Ethernet-
based system. In [14] a solution is suggested which requires the replacement
of the Ethernet drivers without any change in the hardware. In [15,12] the
solution is extended in a way that not even the drivers must be replaced, rather
a simple Ethernet switch is used (consisting of a PC with a number of Ethernet
cards). These solutions provide satisfactory but by no means optimal results.
Summarizing we can say that there is a certain probability that Ethernet will
remain the ultimate LAN technology in the future, but this is by no means sure.

Other networks, especially Myrinet [2], provide high bandwidth and good la-
tency times, but provide no guaranteed QoS. Moreover, although Myrinet can be
regarded as a cheap solution if it is compared to supercomputers, it is expensive
if it is compared to Ethernet. One of the most attractive features of Myrinet is
its flexibility, which might be used to add guaranteed QoS to Myrinet.

The IEEE1394-1995 standard [7] addresses first of all the question of multi-
media support and QoS. It has, however, some features, that qualify it also as a
good basis for parallel computing. In the following we elaborate these features.
If IEEE1394-1995 proves as really suitable for parallel computing then it could
be an interesting, low-price candidate for future LAN technology.

Previous work covered the design and implementation of a driver for Intel
and Alpha based computing nodes running the Linux operating system and
optimized for asynchronous data transfers [10]. We use the Adaptec AHA-8940
1394-t0-PCI host adapter which supports 200 Mbps data transfer rate at present.

2 The IEEE1394-1995 High Performance Serial Bus

2.1 Relative place

We start the investigation with a placement of IEEE1394-1995 among the most
important networks used for parallel cluster computing.

Network comparisons regarding pure technical aspects can be found e.g. in [1]
and [13]). Table 1 provides a short comparison of essential network technologies.
The table reflects beside basic technical characteristics such as network struc-
ture, minimal one way latency, maximal access bandwidth and the existence of
support for isochronous communication, also aspects of operating system sup-
port, manufacturer support and price.

There is obviously no “best” network. Regarding the different operational
areas each network has its pros and cons. IEEE1394-1995 belongs to the bests in
price, supports isochronous communication, has high bandwidth and low latency.
Exactly these are the features that make the further investigation worthwhile.



Table 1. Comparison of networks for parallel cluster computing

Fast- Gigabit- [SCI ATM Myrinet |IEEE1394-
Ethernet |Ethernet 1995
Network structure” ||bus bus ring switched |switched |bus
Min. one way latency®||20 us 20 ps® 5 s 120 ps 5 s 15 us
Max. access bandw. [|100 Mbps|1 Gbps 4 Gbps |155 Mbps |1.2 Gbps {400 Mbps
Isochronous cap. Vv v
Cable len. per link? {[200 m 200 m 10 m 100 m 10 m 4.8 m
Windows-NT supp. | high high low medium |high medium
Solaris support high medium  |high medium  |high null
Linux support high low low medium  |high low®
Manufacturers a lot many few many 1 few
Costs per link’ $500 $1500 $1000 $3000 $1800 $500

“ original network structure, busses can also be switched of course
b regarding only the hardware dependent layers

¢ estimated value

¢ when using standard low cost cables

¢ development in progress [11]

f host adapter inclusive switching hardware

2.2 Features

The IEEE1394-1995 is a low-cost, high-performance ergonomic serial bus [7].
It was designed for operation both in the areas of industrial as in consumer
electronics. Its architecture is compatible with other IEEE busses and standards
(e.g. [6]) and implements a memory read/write communication architecture in
contrast to conventional I/O-based communication, so distributed systems with
global memory architectures can be mapped without great translation efforts.
The shared memory architecture of IEEE1394-1995 is an architecture to provide
economic interfaces and low latency. The address model is based on IEEE Std
1212 [6] (CSR Control and Status Register architecture), thus being compatible
with SCI (Scalable Coherent Interface). IEEE1394-1995 uses IEEE-1212 “64-bit
fixed” addressing, where the first 16 bits are used to represent the node_ID,
thus allowing up to 64k nodes. Further the node_ID is divided into the 10-bit
wide bus_ID and a 6 bit-wide physical_ID. Therefore up to 1023 busses?, each
having up to 63 nodes?, can be interconnected. The remaining 48 bits are used
for addressing the node memory space, the private space or the register space®.
One or more nodes of the serial bus can be combined to form logical modules.
An addressing scheme for determining the module number is not provided.

2 bus # 1023 refers to the local bus

3 node # 63 refers to the broadcast-address

* The private space is characterized by having 0xFFFFE and the IEEE Std 1212
register space by having OxXFFFFF as the leading 20 bits, thus remaining 28 bits for
the private address resp. the register address.




The main feature distinguishing from most other communication technolo-
gies is the capability of the isochronous transfer of digital data, which is needed
when working under guaranteed timing or guaranteed bandwidth is required, e.g.
transfer of multimedia data. Although this feature is also available in the Asyn-
chronous Transfer Mode (ATM), ATM has the disadvantage over IEEE1394-1995
of the requirement of additional expensive switches with high latency.

The serial bus protocols are a set of three stacked layers. The lower two layers
can be compared to the ISO/OSI layers 1-2. The highest layer is the so called
transaction layer and provides read, write and lock transactions. It provides a
path to the isochronous resource manager (IRM), which is in fact part of the
control and status register (CSR) structure [6]. The middle layer (link layer)
provides a one-way data transfer with confirmation of request and provides its
service to the transaction layer. In difference to the transaction layer it provides
an isochronous data transfer service directly to the application using periodic
cycles with a cycle time t;5,. of 125 us. A link-layer-transfer is called a subaction.
The lowest layer (physical layer) translates the logical symbols into electrical
symbols, arbitrates the bus and defines the mechanical interfaces for the Serial
Bus.

2.3 Performance Measurement

Though the Linux IEEE1394-1995 driver is in a preliminary state, we have done
some basic performance measurements on asynchronous transactions. The read
quadlet transaction is used for minimum information transfer to access a single
quadlet (four bytes) aligned register of the CSR structure. We measured the
performance of consecutive read quadlet transactions, which in turn consist of
an acknowledged read request and an acknowledged read response subaction,
with the packet length of four resp. five quadlets. The equipment consists of
Intel Pentiums 200 MHz running Linux with the 2.0 kernel. Further we use
the Adaptec AHA-8940 1394-to-PCI host adapters with the 400 Mbps Adaptec
AIC-5800 link controller chip and the 200 Mbps IBM 21S750PFB PHY chip. The
tests were done with a data transfer rate of 200 Mbps. A 100000 transaction test
showed an average single transaction latency of 129 us. The latency consists of
the link layer round trip time plus the transaction layer software overhead. For
packets with little payload the software and communication overhead is rather
high and we expect notably higher throughput with isochronous transfers and
asynchronous packets with higher block size.

3 Transaction model for group communication

As mentioned in section 2.2 the highest layer of the Serial Bus protocol stack
is the transaction layer which provides three different reliable unicast transac-
tion types: the read, write and lock transactions. For unicast messages services
like flow and error control are provided by the underlying link layer with asyn-
chronous subactions.



The idea of group communication is to let processes communicate with a
group of other processes simultaneously. Examples of group communication are
replicated file systems (with coherent caches), replicated program executions
(SPMD machines), teleconferencing and financial computing systems. Hardware
support influences the efficiency of group communication. The bus architecture,
as used at IEEE1394-1995, is an ideal vehicle for one-to-all group communica-
tion (broadcasting). Reliable broadcasting, which is related to atomic messages,
is an extension to broadcasting and is required for most parallel applications.
IEEE1394-1995 provides broadcast write transactions with an unacknowledged
request subaction — the standard doesn’t define how to complete the transaction
to make it reliable. In general it is required to check the needs of the applications
for realizing the appropriate broadcast method. For example file-streams can be
broadcasted more efficiently using forward error correction mechanisms. In con-
trast cache coherency protocols have to use broadcasting with causality and
total ordering semantics since several processes can transmit “memory-invalid-
messages” simultaneously.

Protocols for group communication have been investigated very exhaus-
tively, e.g. [3,5,8]. In this section we want to demonstrate a realization of
the BB-method [8], a reliable multicast method, on top of the IEEE1394-1995
link/transaction layer. The CSR architecture can be used very efficiently.
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Fig. 1. Reliable broadcast method for IEEE1394-1995 using the BB method for five
nodes with r = 2

The BB method assumes the existence of one processing node with an extra
service called sequencer S. It is based on unreliable broadcast and reliable uni-
cast messages. The procedure for a single broadcast is demonstrated in figure
1. After node A sends a broadcast of the message M (Fig.1a), S stores M and
allocates a sequence number s, which is again broadcasted (Fig.1b). To cope
with processor failures, r other processors also store the message and have to
acknowledge s (Fig.1c). After receiving the r acknowledgements, S broadcasts
an accept s message and the kernels are allowed to pass M to the application
(Fig.1d). To assure that all processing nodes have received the broadcast mes-
sages they have to inform the sequencer about their highest received sequence
number periodically, so the sequencer and the r other processors are allowed



to discard messages from their buffers. In case of loss of a message by single
receivers because of transmission errors or because of buffer overflows within the
receivers, the lost message can be retransmitted using reliable unicast messages.
The correct order of the received broadcast messages is checked by the receiver
itself.

The read, write and lock transaction architecture of IEEE1394-1995 is well
suited to efficiently implement the BB method. We suggest the following method:

Analogous to the bus manager election process a sequencer or reliable broad-
cast manager (RBM) is determined at startup or bus reset. The RBM imple-
ments two status registers, which can be read through the CSR address space,
one for the actual sequence number and one for the sequence number of the old-
est buffered message. These registers can be used to retransmit lost messages.
Furthermore each node implements a broadcast message counter (BMC) in the
RBMs address space, which holds the sequence number of the last successfully
received broadcast message. The RBM has to analyze these locally stored BMCs
periodically for being able to discard acknowledged messages. Faulty nodes can
be also detected by this procedure.

For message broadcasting we use the standardized unacknowledged broadcast
transactions. The “fetch_add” lock transaction adds a given value to a memory’s
value and can be efficiently used to implement the “ack s” messages. Every lock
transaction decrements a counter, which was initialized with r. When the counter
reaches zero, the RBM is allowed to complete the reliable broadcast transaction
by broadcasting the “accept s” message.

4 Topologies

The obvious strategy of connecting all nodes to one serial bus is easy to realize,
but can have major drawbacks regarding performance. One can separate bus
segments by usage of bus bridges. Similar to Ethernet bridges, intra-bus traffic
is not distributed across bridge ports. Usage of bus bridges means we have to
keep the system free of cycles, thus disallowing to build complex communication
networks. Therefore we suggest routing on higher layers and connecting nodes
to more than one independent bus.

To minimize latency and maximize throughput we have to follow two con-
flicting targets:

— keep the number of nodes connected to a single bus as small as possible to
avoid congestion on the bus

— keep the number of busses small to avoid having messages traveling over
many hops which is time-consuming

We suggest building parallel computers by usage of nodes which are con-
nected to more than one bus. Routing occurs by a bridge protocol or by yet
a higher layer. We do not use bus bridges because they don’t allow cycles and
have no advantages over multi-homed nodes. Having the driver bridging seems
to be the best solution since we don’t need heavy-weight protocol stacks, we



can implement our own bridge protocols and policies and can make use of the
reliable group communication patterns directly.

For doing routing decisions, performance of standard drivers may be not
adequate. In case of the Linux IEEE1394-1995 driver [10], a very low-level cut-
through routing implementation, which bypasses the Serial Bus protocol stack
is suggested. To achieve real high performance, additional hardware solutions
(intelligent PCI-1394 adapters) are required.

The straightforward approach to build an IEEE1394-1995 based “supercom-
puter” is connecting individual nodes in the form of a grid. In this case vertical
and horizontal connections are independent busses. Every host in the grid is
therefore connected to two different busses and is capable of routing (figure 2).

Sending a message from node A to node B in a grid of N nodes can be
accomplished by the network

— needing one routing decision if B is connected to one of the two busses A is
directly connected to (2v/N — 2 nodes can be reached this way, without any
intermediate hop)

— needing two routing decisions (one intermediate hop) if B is connected to
any other bus in the network (the rest, or N — 2¢/N + 1 nodes are reached
this way)

Routing is done, in the simplest case, only by that one such host which is
connected both to the source and target node. This can be extended to arbitrary
nodes, demanding a bridge protocol or advanced static policies.

Due to the efficiency of bus-based grids they may be completely satisfying
for most networks. You can vary the grid structure by using a different — bigger
or smaller — number of busses, thus leaving the “one row/column — one bus”
policy.

However, as the node number increases we have to face other topologies, e.g.
by connecting each node to three or more busses.
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5 Parallel applications using isochronous transfers

One of the great characteristics of IEEE1394-1995 is the isochronous transfer
capability of digital data. The original thought was to use this sort of transfer
for time critical data such as video- and audio streams. The mechanism is to
reserve guaranteed communication bandwidth and applications may transfer a
limited size of information during time-slots. The idea was to provide guaranteed
QoS and to reduce synchronization and buffer management tasks. In this section
we show with the help of an easy example (parallel discrete Fourier transform
(pDFT)) how isochronous transfers can be used to achieve a guaranteed speedup
produced by parallel algorithms. Time critical applications (e.g. control systems)
have to rely on end-to-end timing guarantees. In contrast to most of todays
used networks (see table 1) IEEE1394-1995 is able to provide timely guaranteed
delivery. In combination with real time task scheduling end-to-end scheduling can
be realized, thus giving us the possibility to calculate the guaranteed speedup,
which is indeed the lowest bound of the grade of parallelization.

5.1 DFT implementation

The discrete Fourier transform (DFT) is applied in the analysis, the design and
implementation of time-critical signal processing procedures [9]. The goal is to
calculate the DFT of limited sequences with the length N using the formula

N—-1
X[k =) anWir k=0,1,..,.N—1 (1)
n=0

and Wy = e/ ¥.An optimal sequential algorithm, which takes advantage of
the symmetrical and periodic characteristic of W™ needs O(N log N) multipli-
cations. The signal graph of an eight point frequency decimated DFT is shown
in figure 3. The inputs are fed through a bit reversing operation (butterfly opera-
tion). The calculated results are spread to adders with a following multiplicator.

5.2 Parallel DFT implementation with isochronous channels

A parallelization can be realized by vertical distribution, so every processing
element (PE) has to calculate N/#PE complex sums and multiplications. For
transmitting N/#PE values at every isochronous cycle the PE has to reserve
sizeof(value) x N/#PE channel capacity. For calculating the end-to-end pro-
cessing time we assume a constant processing time t,, which is guaranteed
by the operating systems real time scheduler. The overall system’s behavior
is demonstrated in figure 4 for processing times smaller and larger than the
isochronous cycle time t¢;5,.. As the result of delayed predecessors we observe
that the maximum single idle time for synchronization is 2 % t;soc = 250us.
Although the average aggregate time will be much lower, a guarantee for the
maximum aggregate time can be provided by nt, + 2(n — 1)t;50., where n is the
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Fig. 4. Parallel implementation of the DFT using isochronous channels and #PE =4
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number of processing steps. However, in the general case, when N > #PE, only
log, #PE communication steps are needed, the maximum aggregate time will
be t,logy N + 2tis0c(log, #PE). The guaranteed speedup of the parallelization is
shown in figure 5 and can be expressed by

#PElog, N
logy N + 2452 log, #PE

(2)

guaranteed_speedup;soppFT =

6 Conclusion and further work

We have shown that the IEEE1394-1995 standard (and its followers) might play
an important role in the LAN/SAN technology of the next decade. It not only
supports the delivery of continuous data with guaranteed quality of service, but
it also has the potential of serving as a high-performance, low-latency network,
supporting cluster-based parallel computing. Even more, due to the combination
of the above features, parallel clusters based on IEEE1394-1995 have the unique
feature of guaranteed speedup.

We presented some basic figures about the performance of IEEE1394-1995.
A next step should be to measure the performance with well-known benchmarks
and with some typical applications.

It might be an interesting research to build an IEEE1394-1995 switch. Such
a switch could be built quite simply with the help of a workstation with a
greater number of IEEE1394-1995 adapter cards. With the help of such switches
arbitrarily complex networks could be built cost effectively and efficiently.

References

1. Bal H.E., Hofman R., and Verstoep K., A Comparison of Three High Speed Net-
works for Parallel Cluster Computing, Workshop on Communication and Architec-



100

tisoe/tp
tisoc/tp
tisoc/tp
tisocltp

Fig.5. Influence of the

communication effort in

the guaranteed speedup

10 e of the parallel DFT using

e isochronous channels. Using

more PEs for parallelization

means relative higher influ-

ence of the communication
overhead.

speedup

#PE

tural Support for Network-based Parallel Computing (CANPC’97), pp. 184-197,
San Antonio, Texas, February 1997

2. Boden N.J., Cohen D., Felderman, R.E., Kulawik A.E., Seitz C.L., Seizovic C.L., Su
W., Myrinet: A Gigabit-per-second Local Area Network, IEEE Micro, 15(1): 29-36,
February, 1995

3. Chang J., Maxemchuk N.F., Reliable Broadcast Protocols, ACM Transactions on
Computer Systems, Vol.2, No.3, August 1984

4. Compagq, Intel, Microsoft, Virtual Interface Architecture Specification Version 1.0,
http:www/viarch.org, Dec 16, 1997

5. Frank A.J., Wittie L.D., Bernstein A.J., Multicast Communication on Network
Computers, IEEE Software, May 1985

6. IEEE Computer Society, IEEE Std 1212, Control and Status Registers (CSR) Ar-
chitecture for microcomputer buses, New York, 1994

7. IEEE Computer Society, IEEE Std 1394-1995, IEEE Standard for a High Perfor-
mance Serial Bus, New York, August 1996

8. Kaashoek M.F., Tanenbaum A.S., Efficient reliable group communication for dis-
tributed systems, Rapport IR-295, Faculteit Wiskunde en Informatica, Vrije Univer-
siteit, July 1992

9. Oppenheim A.V. Schafer R.W., Discrete-Time Signal Processing, Prentice Hall,
1989

10. Pirker E., Ho6lzl G., The Design, Implementation and Operational Areas of the
Linuz IEEE-1394 Driver, Institute of Information Technology, University Klagen-
furt, Technical Reports, No 2-98, June 1998

11. Pirker E., The Linuz IEEE1394-1995 Subsystem,
http://www.edu.uni-klu.ac.at/“epirker/ieee1394/

12. Varadarajan S., Chiueh T., EtheReal: A Host-Transparent Real-Time Fast Ethernet
Switch, State University NY at Stony Brook, TR-45, January 1998

13. Varma A., Raghavendra C.S., Interconnection Networks for Multiprocessors and
Multicomputers: Theory and Practice, IEEE-press, 1993

14. Venkatramani C., Chiueh T., The Design, Implementation and Evaluation of a
software-based real-time Ethernet protocol, ACM SIGCOM 95, 1995

15. Venkatramani C., Chiueh T., Design and Implementation of a Real-Time Switch for
Segmented E, in International Conference on Parallel Processing (ICPP), August,
1998



