Virtual Method Resolution with
Typed Alias Graphs

Markus Schordan, Wolfram Amme

markuss@ifi.uni-klu.ac.at amme@Qinformatik.uni-jena.de

Abstract

We present an algorithm that computes alias configurations, propa-
gated types and reaching definitions in one single pass. Object-oriented
features like virtual method resolution, inheritance and a method call
of a super class within a method of a subclass are fully integrated in
our analysis. We use a monotone data flow system and introduce typed
alias graphs as data flow information sets.

1 Introduction

Object-oriented programming has become a widely-used, important pro-
gramming paradigm that is supported in many different languages. The
C++ programming language is currently the most widely available and used
language, and Java is a new type-safe language which has become popular
recently.

The analysis we present can be applied to a subset of Java and C++.
In this paper we focus on how to deal with virtual methods, the this (self)
reference, and the call of a method of a super class. Both C++ and Java calls
to virtual methods are dynamically dispatched. Since the method invoked,
is decided at run-time, we need an analysis at compile time which is able
to determine the method that is invoked. Such an analysis can provide the
necessary information for aggressive optimizations at compile time as well
as for tools to support the programmer in the development process of large
applications.

The static analysis we present is a type based alias analysis that gives
the most precise results when applied as global analysis to a program. We
perform three essential tasks in our analysis. The possible types of objects

at each program point, the reaching definitions for each field of an object
and virtual method resolution.

We present an algorithm that is based on a control flow graph and gives
very precise information represented as typed alias graphs. We do not deal
with overloaded methods because those can be determined at compile time
without alias analysis, and shadowed variables can be renamed, so that we
can consider them distinct.

In section 2 we present how the control flow graph we use is created
and how we deal with overridden methods. The language we analyse is a
subset of object oriented languages like C++, Java, and Modula-3. The
code examples we use to illustrate the details of our analysis are written in
Java. The details of our typed alias analysis are presented in section 3.

2 Control Flow Graph

To be able to determine the methods invoked at run-time we first construct
a control flow graph, and give some additional type information to entry
nodes of methods. We also use the class hierarchy information to restrict
the control flow graph. The consideration of super-calls makes some more
reasoning on the type hierarchy necessary and enables us to determine ex-
actly the virtual methods invoked for the given example with our algorithm.

A control flow graph for a method consists of nodes, which represent
single-entry, single-exit regions of executable code, and edges, which repre-
sent execution branches between code regions. We represent a program with
an interprocedural control flow graph (ICFG). An ICFG is a triple (N,E,e),
where N is the set of nodes, with the entry nodes holding additional type
information and a tupel consisting of the formal and actual parameters of
the call. We attach the type of the receiver object for which the CFG of a
method is created to the entry node. During flow analysis this type infor-
mation is compared with the type this refers to. If it is the same type then
this method can be invoked at run-time. In the other case the TA graph
is set to the one element and this path is considered not to be executed at
run-time. E is the set of edges. Node e is the entry node of the program. N
contains a node for each statement in the program, an entry and exit node
for each method, and a call and return node for each method call.

We create multiple edges and nodes for virtual methods to represent
all methods that may be selected by dynamic dispatch at run-time. The
number of edges that carry information may be reduced because the TA
graph may be set to the one element at several entry nodes. By this we

classA { class B extends A { class C extends B {

publicint val;

void defineg() { void define() { final void define() {
this.val=1,; this.val=2; this.val=3;

} } }

void modifyby(A x) { final void modifyby(A y){| }
this.define(); super.modifyby(y);
this.val+=x.val; this.val*=y.val,

} }

} }

Figure 1: The classes of the example program.

identify overridden methods that are not invoked at run-time. If exactly
one edge emanating from the entry nodes carries information then such a
method is identified to be a candidate for in-lining. If it is not possible to
reduce the number of possibly invoked methods to one the information is
combined at the return nodes.

Since our analysis is a conservative analysis we may not identify all
methods that are not invoked but we are able to reduce the number of
invoked methods significantly.

2.1 Special treatment of super

The super keyword can be used in any subclass to call methods of the
corresponding super class. A call to a method using super is treated different
to an ordinary method call in our creation of the ICFG. As parameter of the
method call we pass on a this reference. To the entry node of the created
method that represents the super-call, we attach the same type as is attached
to the entry node of the calling method. This is essential and is illustrated
by the super-call in our example at point 7.2.2. - To deal correctly with the
use of this in different methods it is necessary to use an indexed this. But,
not to unnecessarily increase the number of alias pairs, we do not create a
new index with calls on super because any call on super or this means that
the this reference remains the same during the method call. This is the
case in our example at points 7.1.2, 7.2.2, and 7.2.2.2. Because we represent
each method call by one path in the ICFG it is safe to check at entry nodes
whether this refers to an object of a type for which the ICFG of the method
was created. That way we consider the fact that the virtual method selected
at run-time corresponds to the type of the receiver object.

ONONC ORONORS)

ONO

ety (A} aty (B} aty {C}
! !})
thisLval=1 thisLval=2 thist val=3
1 1 v
exit: void exit: void exit: void
G e
entry: [_i
{AI(AX9] | @ AwnenA()
! {A}, _ f
cal: tie2 o {;A} “ % ﬁ&mgg
this2val=1 Coefingl),
return .) &b,
— | exit: void @ amodfyby(c)
this2val+=xval \.________] @
!} Javaprogram
exit: void
|
fry: fry:
{enB}ry,[((ﬁ\,y),C)] ?g}r%l[((/\,x),y)] p——
_ i i
cdl: this2 cl: thi2 thiSZ'V;:Z
retum* return* ot V(;d
this2 val*=y va this2.val+=xva
v !
exit: void exit: void

Figure 2: Interprocedural control flow graph

2.2 Example

Let us illustrate the basic mechanisms for dealing with overriding of methods
by an example. In Fig. 1 the source of the three classes A,B, and C is given,
in Fig.2 the main program with its corresponding ICFG. At statement 4
we have to construct nodes for all three define methods of classes A,B, and
C because it depends on the run-time type of the variable ¢ which method
is called at run-time. Analogous at statement 7, where nodes for the two
methods modifyby of classes A and B are created and two edges connecting
the call node with each entry node. We do not have to consider class C
because modifyby is declared final in class B.

Additional reasoning is necessary on method calls with this and super
to obtain the control flow graph of Fig. 2. FEither the method modifyby
of class A or B is called. For both cases we create nodes representing the
respective method and attach the type to the entry node. Let us focus on
the case of modifyby when the receiver object is of type B. This corresponds
to our representation of method modifyby with type B attached to the entry
node. From the entry node on it is safe to assume the type, this refers to,
as type B. This is important to handle the super-call of modifyby of class
B correctly. The super-call is represented in the ICFG by a this call and
we create a path representing the method modifyby of class A but attach
type B to the entry node. This ensures that our check at the entry node
during flow analysis succeeds. We only need to create one path for the call
of define because we only represent the case that the receiver object is of
type B. Again we attach type B to the entry node.

When we apply our flow sensitive alias analysis we are able to reduce the
number of multiple edges. This works fine for the given example at points
4.1.1, 4.2.1, and 7.1.1. - but in practice it may not always be possible to
reduce the number of information carrying edges emanating from an entry
node, i.e. the number of possibly called methods, to one. In the same pass
we perform reaching definitions in our alias analysis as we describe in section

3.2.

3 Alias Analysis

We use typed alias graphs (TA graphs) as data flow information sets. Each
TA graph denotes possible structures of the store and some aspects of its
state at a certain point in program execution. In TA graphs, alias informa-
tion is expressed by the set of paths with which we can access an object at
one program point. Nodes of a TA graph represent the objects present in

the store. We mark the nodes of a TA graph with the class name of the
corresponding object. Additionally, to express the structure of an object we
annotate each node with the names of variables of the corresponding object.
As we will explain below, by marking the nodes with type information, the
control flow information given by the control flow graph can be made more
precise during data flow analysis. Eventually, a reference of one object to
another object is expressed by a labeled edge in the TA graph.

Fig. 4 shows the results of an alias analysis with TA graphs for the
program given in Fig. 2 and Fig. 1. For each program statement, we calcu-
lated a TA graph that describes the store immediately before the execution
of the statement.

Assignments to non reference variables

e s:p=...
TAout = Update(TAinyp;S);

Assignments to reference variables
°sip =g
TAowt = Update(InsertEdges(DeleteEdges(TAin,p),p,q),p,8)
e s:p = null;
TAowt = Update(DeleteEdges(TA;n,p),p,s)
e s: p = new class();
TAout = Update(GenerateObject(DeleteEdges(TA;n,p),p,class,s),p,s)

Method calls
e s: call: p;
TAour = Call(TA;p,p,s).

Figure 3: Semantic functions for the determination of reaching definitions.

Each node in the CFG a semantic function is assigned which defines how
our monotone data flow system propagates and alters the TA graphs during
analysis. Fig. 3 defines the semantic functions used by our method. In this
definition, TA;, stands for a TA graph before the application of the semantic
function, and TA,,; for the corresponding TA graph after the application of
the semantic function. These semantic functions are composed of auxiliary
functions that perform transformations on TA graphs. Splitting the semantic
functions is not essential, but simplifies the presentation.

Following we describe the semantic functions and how the TA graphs
are altered:

GenerateObject(A, p, class, s) starts a new edge labelled with "’ on
every node of A that can be reached via p and attaches a blank node—
which represents the non static members of class class—to it.

DeleteEdges(A, p) deletes all edges emanating from any node of A that
can be reached via p and performs a garbage collection thereafter, i.e.,
deletes all nodes not reachable via any path starting at a variable.

InsertEdges(A, p, q) inserts edges into A. To all nodes that are reachable
via q a node starting from p is added to the graph.

Call(A, p, s) defines the semantic function of a node that represents a
method call. The function call only handles the treatment of the this
reference. If necessary it creates a this-node and establishes edges from
this to all other nodes that are refered by p. This is similar to analyse
the assignment this=p.

3.1 Entry and exit nodes

At each entry node of the CFG the type of the class the method belongs
to and the list of formal and actual parameters of the original program are
stored. Since we create a separate path for each method possibly invoked
by a virtual method call only the type of the corresponding receiver object
is attached to the entry node.

Therefore, at entry nodes is checked whether the this-node refers to an
object that can call the method. If there is no adequate node in TA graph,
function entry passes on the one element (the empty set), i.e., the data flow
analysis will propagate no information to the method body—which means
such a method call cannot occur. In contrast, if there is a this in A, that
points to a node representing an object of an adequate class then we proceed
with the modified TA Graph.

At exit nodes we need to delete the local context. All nodes in the TA
graph A that can be reached via a local variable are deleted including all
edges emanating from them. The this reference is treated different if it was
reused in the call of the method. In that case edges emanating from this
remain unaltered (Fig 2: points 7.2.2.5, 7.2.2.2.3).

3.2 Reaching definitions

We demonstrate our method by concentrating on the calculation of reaching
definitions of a program. Reaching definitions are defined as the problem of

determining, for a specific program point and a storage object, all program
points where the value of this storage object has been (or could have been)
written last. An annotated TA graph, which is used for the calculation
of reaching definitions, contains in principal the same information as a TA
graph. However, besides the alias and type information, we can also analyse,
which program statements define local variables resp. instance variables of
objects, last.

Semantic functions of the constructed data flow framework must consider
the updating of local variables and instance variables, respectively. Fig. 3
contains the semantic functions for the determination of reaching definitions
with annotated TA graphs. A function called Update(), is used to model
the updating of a variable. An application Update(A, p, s) registers the
corresponding variable name with the statement number s in every node
that can be reached via the path p in A.

Fig. 4 shows the results of an analysis with annotated TA graphs for the
program given in Fig. 2. For each program statement of the main method
we have determined an annotated TA graph that describes the reaching
definitions before the execution of the statement. At the top of each TA
graph we note down the numbers of all program points where that TA graph
is computed as result of our analysis. The def-values of variables that are
not defined by assignment in the program are left free. Those are assumed to
be initialized with default values depending on the programming language
analyzed.

For the given example program we are able to determine all program
points where the member val of class B and C is defined. Those lines in
the ICFG that are not solid represent edges where only the empty graph
is propagated. This is the case for paths that are determined not to be
executed at the entry points of methods.

There is one assignment for the member val of class C at point 4.3.2.
Therefore we note 4.3.2 as the definition point of val. This is done at point
4.3.2 by the semantic function for assignment to non-reference variables.
For the member val of class B three assignments are made. At the points
7.2.2.2.2, 7.2.2.4 and 7.2.4 val is defined with a new value. We note down
the program position where val is defined. For any optimization based on
alias graphs this is an ideal information to extract dependence information
of variables and program positions in a program. For each program point
we are able to determine the reaching definitions in the presence of virtual
methods and inheritance.

A A A
a alq A aly A
val: val:
A A A
b
b b 2 [T1L_] B
val:
c A c A C! A
4 (4.1-3.1,432),433: 6:
oA A
. A A a A A alq
alq — 1 va
val:
val: b A
A
1A b: 2 B
b:
. val:
val: A val c Al
c A [3
3
t
el [vaas2 val43.2
val: ¢ 431
¢l 43.
1
7 7.1-2.1 t 722 .
B|n B|n
A A 7 i A I
o e e =
A B A ® A ?
b: b:
b 2 val 2 val: 2 va
¢, A Cc ¢l g A C |, A c
val:4.3.2 val:4.3.2 J’val:4.3.2
A
Y1721
7222,72221-2 5] 7.22.23,72234 51, 7.2.2.5,7.2.3-4: t
. h B|n
A 7 - A 7 i A N
a Lo : 7
B B
w A | A A B
2 va: b: b:
: 2 val:7.2.22.2 2 val:7.2.2.4
A
¢, c ¢, A c ol, A c
4‘—[\@1:4.32 jval:4.3.2 jval:4.3.2
| A A
y: . N A
721 Al Ylr21 Al Y721 [A
7.2.24] 7221 7.22.1%
7.25: 9
B|n
&g A 7 s & A 0,4.1.2-3,4.2.2-3,7.1.1-5,
1 2 6 1 71213
B
b: A b: A °
2 va:7.2.4 |2 va:7.2.4
C: 3 A c C. 3 A c
jvam.az va:432
| A
Y1721

Figure 4: Example of an alias analysis with TA graphs.

4 Related work

Diwan, McKinley, and Moss evaluate three alias analysis based on program-
ming language types. The most precise of these three is a flow-insensitive
analysis that uses type compatibility and additional high-level information
such as field names [1]. They use redundant load elimination to demonstrate
the effectiveness of the algorithms in terms of opportunities for optimization.
But they are not able to determine which method is invoked at run-time from
a set of overridden methods (see program point 7 in our example program)
because their algorithm is flow independent.

Pande and Ryder [2] present a polynomial time combined algorithm
to perform program-point-specific, interprocedural type determination and
aliasing algorithm for C++. The algorithm is a work-list based, fixed point
iteration method that reports points-to-type and may-hold alias information.
In contrast to their approach we represent all information by one single alias
graph during analysis.

In [3] the effectiveness of four methods for detecting whether a method
invocation is monomorphic (always calls the same method) is investigated.
They apply type hierarchy analysis, type propagation, aggregate analysis
and interprocedural type propagation (only to scalars). In contrast to our
approach they apply type propagation and aggregate analysis in two differ-
ent passes. We integrate type propagation, virtual function resolution and
reaching definitions (which is more precise than aggregate analysis) in one
single pass and represent the data in one uniform data structure, so called
typed alias graphs. It is interesting to note that our approach shows that
it is not necessary to separate type propagation from the computation of
reaching definitions.

Rinard and Diniz use type equality to disambiguate memory references.
But the type system they use does not have inheritance [4].

[5] developed an algorithm to determine the possible shapes that heap-
allocated structures in a program can take on. Their method is quite ac-
curate and can also be applied to cyclic data structures. Manipulation of
the representation is based on sets of access paths, distinguishing this work
from previously published approaches. They use an elegant form of materi-
alization. Therefore, when information appears that is not denoted by the
graph, a new node from the summary node is materialized.

Amme and Zehendner describe in [6] a store-less method to determine
data dependences in programs with pointers. They use so-called A /D graphs
as data flow information set and perform a single-pass data dependence anal-
ysis by solving a monotone data flow system for a class of restricted impera-

10

tive languages. Based on an intraprocedural analysis with A/D graphs they
develop a method to derive a safe approximation of the data dependences
by employing k-bounded A/D graphs.

5 Conclusions

In this paper we have presented an algorithm for compile time alias analysis
for object-oriented languages like Java/C++. Our technique is based on a
monotone data flow system. The alias information is represented by typed
alias graphs. By using the type information in our TA graphs we are able to
determine which virtual method will be used at run time. As a first step an
interprocedural control flow graph (ICFG) is created. We assign each node
in the ICFG a semantic function, which defines how the alias information
is propagated during the data flow analysis. We presented how annotated
TA graphs can be used to compute reaching definitions in object-oriented
programs in the presence of virtual methods.

The use of annotated TA graphs for program analysis promises a sig-
nificant improvement over known methods. Currently, we have started to
construct an experimental system to obtain preliminary data on the use-
fulness of our method. As a further step we are attempting to extend the
present research to programs with arbitrary data structures. Our final aim
is to be able to analyze any program written in Java/C++.

References

[1] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based
alias analysis. In Proceedings of the ACM SIGPLAN’98 Conference on

Programming Language Design and Implementation (PLDI), pages 106—
117, Montreal, Canada, 17-19 June 1998.

[2] Hemant Pande and Barbara Ryder. Static type determination for C++.
In USENIX Association, editor, Proceedings of the 1994 USENIX C++
Conference: April 11-14, 1994, Cambridge, MA, pages 85-97, Berkeley,
CA, USA, April 1994. USENTX.

[3] Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley. Simple and
effective analysis of statically-typed object-oriented programs. In Con-

ference on Object-Oriented Programming Systems, Languages & Appli-
cations (OOPSLA °96), pages 292-305, 1996.

11

[4] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis : A
new analysis framework for parallelizing compilers. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implemantation, pages 54—67, New York, May 21-24 1996. ACM Press.

[5] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. In Conference
Record of POPL 96: The 23'4 ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 16-31, St. Petersburg
Beach, Florida, 21-24 January 1996.

[6] Wolfram Amme and Eberhard Zehendner. Data dependence analysis
in programs with pointers. Parallel Computing, 24(3-4):505-525, May
1998.

12

