Distributed Federative QoS Resource
Management

Giinther Holzl, Laszlé Boszorményi

Universitat Klagenfurt, Institut fur Informationstechnologie
Universitatsstrafle 65-67, A-9020 Klagenfurt

{guenther,laszlo}@itec.uni-klu.ac.at

Abstract

In a distributed multimedia system QoS resources have to be managed carefully to
utilize the resource pool in a way that bottlenecks can be avoided. Our key idea
is to let the applications participate on the resource management. We propose a
distributed architecture with a fine granulated, balanced resource management with
explicit QoS characteristics. The architecture is based on a distributed cooperative
resource manager which combines both the adaption and reservation principle for
guaranteeing QoS. We have designed and implemented a prototype of our federative
QoS resource manager (FQRM) in the Java environment.

Key words: QoS resource management; distributed resources; cooperative
resource sharing

1 Introduction

Modern multimedia applications in general have an insatiable demand for
resources. Not only the applications exist in a non-cooperative world but also
the users want to run their applications with the best possible quality of
service (QoS). Resources with a guaranteed QoS, which are used for running
multimedia applications, are commonly overloaded [?]. One solution is, of
course, to add as much resources as necessary (e.g. better communication
links, more processing power, faster hard disks etc.). This approach has not
only the disadvantage that it wastes a lot of resources, but it is actually only
meaningful if it is just the number of running applications that has to be
increased and the size of needed resources per application is fixed. Otherwise,
there is no limitation on the growth of demand on resources.

Preprint submitted to Elsevier Preprint 1 June 1999



As a result of the development of powerful graphics and processing devices
multimedia computing systems have changed from the control-only approach
to the fully integrated approach. Continuous media technology had an influence
not only on the communication infrastructure but also on operating systems

[7].

A multimedia application assigns different types of system resources for repre-
senting a given user QoS. The transformation from the user QoS to the system
QoS allows combinations, e.g. a smaller amount of assigned communication
resources could be compensated by a larger amount of processing power by
using better compression techniques. Our key idea is to let the applications
participate in the resource management. The advantage of such an approach
is obvious: applications know exactly what they really need and can adapt to
changing situations without loss of user-level QoS. For example, if an appli-
cation knows that the available bandwidth is getting less then it may reduce
the size of the video-window or reduce the resolution, or even close certain
windows etc., without frustrating the users. If the operating system does this
automatically then it may do it in a way which is unacceptable, but appli-
cations are supposed to know, which solution is appropriate for their users.
However, there are two obvious disadvantages as well: applications must be
cooperative and they have to take care of management problems that other
systems may solve entirely hidden. For the first objection there is an easy
answer: applications will be ready to cooperate, if this reduces their costs. For
the second objection we answer: the participation of the applications must be
made very easy — through a simple script language or through a simple API
for resource allocation.

Our approach deals with “balancing” resources throughout the whole system.
Beyond (the usual) negotiation in the admission phase, also renegotiations
take place during sessions. The main goal of this approach is to schedule the
limited set of different types of resources, characterized by QoS parameters,
in a way that the number of the running and still “satisfied” multimedia
applications will be maximized.

1.1 Adaption versus guaranteed resources in distributed systems

Currently most of the communication structures and also operating systems
schedule their resources corresponding to the best effort principle, i.e. the
scheduler tries its best but provides no guarantees for deadlines. This is prin-
cipally unsuitable when dealing with QoS resources, where guarantees of avail-
ability are basic requirement. Mainly two strategies are applied to cope with
this problem:



(1) The adaption principle[?]: the system components have to be aware of
changing parameters and have to adapt to new situations. Adaption can
be done at the operating- and communication system, the application or
at the user domain. The goal of this approach is to widen the accepted
resource space for a given user QoS. The application system is associated
with a control system creating the feedback (see figure ?7). The use of the
proper adaption algorithm will influence the overall system performance
and a lot of new problems known from control theory arise, e.g. instability.

controller

adtapti on

actions

change observed
controll gd parameters
parameters

user

application
system

Fig. 1. Adaption mechanism

(2) The reservation principle: resources are assigned in advance to applica-
tions located at the end of a flow. The strategy is usual in operating-
resp. communication systems supporting real time scheduling. Exam-
ples are the SMART real-time-scheduler[?], resp. isochronous channels
in ATM][?] or IEEE-1394[?] and the use of RSVP[?]. In contrast to the
former principle this technique needs an explicit resource management
function which is handled by the operating system or dedicated daemons.
Resources are assigned statically, e.g. the route in which bandwidth is
guaranteed doesn’t change over a session. Unallocated resources can be
used for services with best effort characteristics.

Since applications are developed under an egocentric view of world they
aren’t aware of over-reserving bandwidth. For example an MPEG stream
has due to the dynamic compression technique a very bursty character-
istic[?]. At startup time the application can only estimate the needed
resource bandwidth. Cell oriented techniques (like in ATM[?] networks)
provide a possibility of dynamic resource consumption even for such cases.
Unused resources can be utilized by traditional best effort communica-
tion services. However, unused reserved resources cannot be reassigned
to other applications.

We examined these two basic principles and combined them in the federative
resource management principle. The manager provides on the one side an
interface for reservation of resources with guaranteed characteristics. On the
other side, it also implements strategies for resolving bottlenecks by employing
the adaption principle. In this paper we describe mainly the structure of the
system and the areas of operation.



1.2 Design principles

The design principles of our QoS resource management system can be sum-
marized as follows:

e Low implementation costs: the resource manager should incorporate easy to
implement algorithms and resource models. If adaption to new management
strategies is desired, there shouldn’t be much effort to do this.

e Fasy to integrate — low usage costs: the programmer shouldn’t be burdened
by a hard to understand API. Existing applications should be able to adapt
to this new technology easily.

e FEfficient communication model: the communication overhead created by
the extra resource manager shouldn’t stress the network and block valuable
resources.

e Fairness: Requests for resources can be affiliated with priorities and sessions
of applications therefore can be categorized. The manager shouldn’t prefer
any application of the same class.

e Fuault-tolerance: Even if a node in the distributed system fails, the rest of
the system shouldn’t block.

2 Communication model and API

Resource management for distributed multimedia systems has become a chal-
lenge for developers because of the large variety of the different resource types.
Not only communication bandwidth has to be reserved for the transmission
of isochronous data. Also CPU time, graphics power, audio capabilities and
DSP power are resource types needed by multimedia sessions. Resource man-
agement functions are in principle orthogonal to the applications tasks. Thus,
there has to be a strict rule which says what has to be done in the manager
and what in the application.

gpplication

resource manager

managed object

managed resource

Fig. 2. Inserting layers of abstraction



Traditional operating systems manage native resources centrally within the
kernel. Applications can deposit a demand for getting more resources, e.g.
more processing power, and the operating systems reacts by inserting/updating
parameters in the scheduler. Clients have only a coarse-grained control through
ad hoc interfaces that makes modular design difficult [?].

Our approach inserts two layers of abstraction, one to the view of the appli-
cation and one to the view of the resource manager (figure ?7). Applications
use a dedicated resource manager which gives an easy and uniform access to
systems resources hiding the details of the underlying structure. The resource
manager in turn uses unified objects for accessing the actual resources. If we
apply this structure on the top of a traditional operating system then some
system resource management functions may be duplicated. However, we gain a
uniform view of resource management. A new operating system can integrate
this new principle from scratch.

2.1 Structure and objects

Federative resource management assumes cooperative applications. For this,
application programmers must have an easy control over the fine-grained man-
agement, otherwise they will just reject it.

We designed and implemented an object oriented architecture both for the
manager as for the resources. The system structure is shown in figure ?7.

Multimedia Node

Multimedia
Application

Multimedia-
Network

isochronous transfer
asynchronous transfer
managed objects
managed resource

Fig. 3. Communication model of the resource manager

2.1.1 The manager objects

Applications create at startup a federative QoS resource manager (FQRM)
object, which provides an interface for allocating and releasing of resources.



The first FQRM object created at a node starts as a server, all other ones are
created as clients. Quasi stand alone servers with no dedicated binding to an
application can be created by a dummy function. The client FQRM objects
are active, i.e. they have their own thread of control, thus enabling them to
continuously communicate to the server object. The FQRM objects commu-
nicate with each other through communication agents. The communication
agents hide any communication details from the applications. The communi-
cation between agents is independent from the application and the specific
management tasks.

The FQRM server object is the only local resource manager. Each server
has bidirectional connections to its neighboring server objects. For achieving
the efficient communication model goal resource requests should neither cause
heavy network bursts, nor should they overload the processors. Demands from
applications are passed to the local resource manager which tries to fulfill the
requirements. In the case of a bottleneck or when no local resources have to
be allocated, e.g. at parallel systems, the FQRM objects inform the network
of the resource requirements. An implicit conclusion of the efficient commu-
nication model goal is that the system has to be scalable, since it has to be
applied in a variety of distributed architectures. Solutions using trivial broad-
casting methods, i.e. each server object sends the requirement information to
all other server objects, need O(n?) messages for n servers and do not scale
well. We had to adopt a principle for distributed systems that offers a short
transmission delay for broadcasting and also has good scaling characteristics.
These demands are quite similar to requirements of the World Wide Web
(WWW) problems at actualizing links on pages without causing heavy net-
work bursts. The p-flood algorithm [?] is a simple mechanism with all of the
desired characteristics. It is also well established in the WWW. The principle
is to forward requests not to all of the server’s neighbors but only to a fixed
or randomly selected subset of them, which in turn use the same strategy. All
of the neighbors are reachable on multiple paths thus assuring that the infor-
mation is passed to all of the FQRM server objects. By slightly increasing the
transmission delay the p-flood algorithm avoids large communication peaks.
As shown in figure 7?7 the server objects C' and D are neighbors but D re-
ceives the requirement information not before time step 4. Servers which fulfill
the resource requirements will return an offer for resource reservation. These
offers are gathered, compared and finally the actual resource reservation can
be done.

2.1.2 The managed objects

Resources are managed using sets of objects. For providing an abstraction of
the managed resources we use an intermediate layer, the so called managed
objects which provides a unified interface to the actual managed resources.



Fig. 4. Spreading of a resource request message using the p-flood algorithm

These resources are allocated at startup time or on demand from the oper-
ating system and are categorized to the different types of managed objects.
Resource sets can be made persistent in a simple way, thus tolerating short
node breakdowns.

In principle all resources are managed locally, there is no need of a central in-
stance. This principle increases stability for the adaption principle by having
a low latency for the control. The FQRM server manages reservable resources
and tries to apply the adaption principle if a bottleneck arises. For fulfilling
resource requirements and for applying the adaption principle we need a pos-
sibility of comparing different resource objects. We categorized the resource
types in a hierarchy (see figure ??) for providing uniform access methods.
The structure was designed for applying in multimedia systems but can be
extended easily for different purposes which are described in section 4.

To provide a unified access method to the manager objects the resources
have to implement a unified interface. Each resource implements the meth-
ods getAttribute() and setAttribute(Attribute) for changing parame-
ters. The methods equals(QoSResource) and compareWith(QoSResource)
are the basis for the adaption principle thus making resources interchange-
able.

For example resource interchanging will happen

e if the bandwidth of a channel resource is too low but there are plenty re-
serves of the processing resource. A comparison is done between the channel



/ QoS 1
. Resource |
" Network \ '\ Time \‘\‘ Processing \\, ( \\ ’ Block
L Resource | ~ Resource U Remurce L R&source / ‘ R&eource‘
. fﬁﬂ“ o / \ ”““\
Channel\ 7 Timer K o D|sk Audio \~ Graphlc - Memory\

' Resource K +_ Resource ; ‘\ Resource \\ Resource o Resource ! xResource 1

N\ _-7 S~ ___- ~— e ——

Fig. 5. Object hierarchy of the resources

resource and the processing resource with the appropriate attributes of the
desired user QoS and as a result a solution with a better compression tech-
nique is proposed, thus decreasing the communication effort and increasing
the needed processing resources.

e if memory resources can be interchanged by slower disk resources, if appli-
cable, e.g. for storing of huge video data in video studios.

e if the user QoS is still satisfied, unavailable graphics resources can be re-
placed by audio resources.

e if timer resources are added to inform the application to release the re-
sources.

We implemented the architecture in the Java environment using stream object
sockets for intercommunication thus enabling the access to a wide range of
applications in a homogeneous system.

2.2 API

As already mentioned, the client manager acts as an interface to the server
manager. An application just declares a federative QoS resource manager
(FQRM) which decides on its own how to start depending on whether a local
server object is already installed or not.

To fulfill the easy to integrate design goal we provide a small but versatile
API. The parameters of the API functions are sets or multi-sets of managed
objects, described in section 77, or resource scripts defining required resource
characteristics of a session. In contrast to characteristic resource sets, resource
scripts define a range of resource characteristics.

The following APT functions are implemented:

e get resources is the main request function used by the application. Resources
are allocated (and also released) in a bundle by using sets of resources. Two-



phase locking[?] is applied by the resource manager for preventing deadlocks
in typical multimedia resource allocation situations. Resource sets are asso-
ciated with unique identifiers, thus allowing applications to incrementally
extend (or reduce) their allocated set of resources with just referring to the
identifier.

Required resources can be characterized by the application in the sense
of user QoS or system (QoS. Since managed resources only have system-
QoS characteristics the former method implies a transformation done by
the resource manager. This transformation also enables the employment of
the adaption principle, described in section 77.

The application is able to determine the mode of accomplishment of man-
agement transactions, e.g. it can determine whether to block until the re-
sources are reserved, or to block until a response from the server is given
or to wait for the resource reservation with a polling strategy. This flex-
ibility makes it easier to integrate the resource management into existing
applications.

e release resources is the inverse function to get resources.

e renegotiation makes the resource allocation process more effective by en-
abling cooperative resource sharing. Allocated resources can also be pulled
up when new resource requirements have to be processed and a bottleneck
arises. The applications are informed via call-back functions or via messages
when the allocated resources have set a renegotiation flag. For example, re-
sources are pulled up by the manager, when the actual degree of an appli-
cation’s user QoS exceeds the desired minimum QoS and a bottleneck is
caused by further resource requirements of different applications.

Figure 7?7 demonstrates the API within an interactive video on demand ap-
plication.

3 Managing techniques

3.1 Managing policies

Distributed resource management (in contrast to central management) has
the following advantages:

e Scalability by adding processing power proportional to resources.
o Fault tolerance by eliminating single points of failure.
o Efficient communication through the principle of locality.

The optimal resource management problem in principle is a multi-matching
problem with constraints and is an NP hard problem. However, a lot of coop-



VES:
* declare a local client resource manager within a video on demand
* application with interactive resource renegotiation. The resources
* are managed by a local server manager.
*/
FQRM localRM = new FQRM("MPEG-Play");
int setkey;

/**
* get required resources from the local server resource manager
*/

QoSResource resources = new QoSResources[4];

[Hmmmmmmmmm e specify channel parameters ------—--—-----—--—--- */
resources[0] = new ChannelResource();
videoServer.getChannelParameters(resources[0]);

[Hm—mmmmmmmmm o specify graphics parameters ——-—-—--——--———-———-—— */
resources[1] = new GraphicsResource();

resources[1] .width = userInputWidth;

resources[1] .height = userInputHeight;

resources[1] .hwSupport= HWSUPPORTOVERLAY + HWSUPPORTMPEG;
[Hmmmmmmmmmm e specify processing parameters —--—---—---—-——-——-—- x/
resources[2] = new ProcessingResource();

resources[2] .procType = PROCFILTER;

resources[2] .procQuant= 20;

[Hmm specify timer parameters ——---——---———--————-——- x/
resources[3] = new TimerResource();

resources[3] .timeSpan = PREVIEWTIME;

localRM. setMode (RMWAIT + RMRENEGOTIATE);

setkey = localRM.getResources(0, resources);

VAL
* resources aren’t required any longer
*/

localRM.releaseResources(setkey) ;

Fig. 6. Sample code of a video client in Java using FQRM

erative sub-optimal scheduling techniques have been developed and classified
[?]. Stochastic algorithms provide amazing solutions to this problem, e.g. lot-
tery scheduling [?], which uses tickets and currencies to manage resources. By
the way of deflation/inflation and ticket transfer, resources can be controlled
quite well with a low processing effort.

These algorithms also allow the employment of a reasonable technique, called
resource balancing, with the following properties:

10



e Resources should be located where the primary work has to be done (prin-
ciple of locality).

e If possible, resources have to be managed in a way, that a fine granulated
division can be realized.

e Resources can be shared among different applications.

We use this technique for integrating the adaption principle into the manager.
Tickets are related to managed objects which in turn are related to applica-
tions. In case of a resource bottleneck the manager uses lottery scheduling for
choosing and comparing of managed objects.

3.2 Mobile Resources

Unallocated resources belong to a locally installed server manager. By access-
ing resources from a foreign manager object, the control is passed to the foreign
node by copying resource objects to foreign server objects. We call this tech-
nique “moving mobile resources”. This technique avoids large communication
overhead.

4 Operational Areas

4.1 Distributed multimedia architectures

This field is probably the main application area of the federative QoS resource
manager. Film and audio studios have to handle isochronous data streams with
different priorities, e.g. a simple query can be done with a lower priority than
live recording. To provide a lot of communication power, host processors are
interconnected very tightly and the task of the resource manager is to offer the
resources to the applications in a way that the maximum system utilization
can be reached.

Besides the management of dedicated hardware, e.g. DSP pools for real time
video, filtering is one of the operational areas of the QoS resource manager.

4.2 Distributed hard real time applications

A problem in this area is the assignment of processing power to applications.
What has to be done when a new task is starting? Which unallocated pro-

11



cessing unit can fulfill the tasks requirements? Typical areas of operation are
DSP pools for speech processing and robotics.

4.3  Embedded systems

The management of peripheral elements used by different distributed tasks
is quite hard to handle. A synchronization between applications using shared
resources is fairly difficult to establish and maintain, e.g. a task wants to get
an allocated resource, how does it signal its requirement to the other task? The
easy unified method for cooperating just with the resource manager simplifies
the problem. In the worst case, a high prioritized application could preempt a
task with a low resource priority using the manager. Not only the reservation
but also the reassignment of resources is done more efficiently: when a task
can’t react on an inquiry in a certain time, the resource will be withdrawn by
the manager.

4.4 Fault tolerant systems

Fault-tolerant systems are supposed to be able to switch to alternative re-
sources in the case a shortage of resources arises. Traditional systems reserve
resources statically at startup time even if the resources are used only in the
case of emergency, e.g. backup structures. A federative resource management
system will allow a more flexible allocation scheme.

5 Conclusion and further work

Distributed federative resource management is a technique to use the advan-
tages of both adaption and reservation. The object oriented infrastructure
gives an easy to implement interface for the applications and for the manager
objects. The effort of integrating the system in an already existing application
is moderate.

We have implemented a first version of FQRM in the Java environment for
the purpose of managing small distributed multimedia systems. The next step
will be the integration into a medical video on demand system. A teaching
system using different classes of priorities is also planned.

Further research areas will be the management of different interconnect struc-
tures and also operating systems for applying the federative resource manage-
ment principle to heterogenous architectures.

12



References

[1] T.L. Casavanat, J.G. Kuhl, A Tazonomy of Scheduling in General-Purpose
Distributed Computing Systems, IEEE Transactions on Software Enginieering,
vol. 14, no. 2, February 1988

[2] J. Gecsei, Adaption in Distributed Multimedia Systems, IEEE-Multimedia,
April-June 1997

3] IEEE Computer Society, IEEE Std 1394-1995, IEEE Standard for a High
Performance Serial Bus, New York, August 1996

[4] F. Kappe, A Scalable Architecture for Maintaining Referential Integrity in
Distributed Information Systems, Journal of Universal Computer Science
(J.UCS) Vol. 1, No. 2, pp. 84-104, Springer, February 1995

5] J.Y. Le Boudec, The Asynchronous Transfer Mode: A Tutorial, Computer
Networks and ISDN Systems, vol. 24, May 1992

[6] J. Nieh, M. Lam, The Design, Implementation and FEvaluation of SMART:
A Scheduler for Multimedia Applications, Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, St. Malo, France, October 1997

[7] O. Rose, Simple and efficient models for variable bit rate MPEG video traffic,
Performance Evaluation, No. 30, pp. 69-85, 1997

[8] H. Schulzrinne, Operating system issues for continuous media, Multimedia
Systems, Springer Verlag, 1996

9] A.S. Tanenbaum, AS. Woodhull, Operating
Systems, Design and Implementation, Second Edition, p. 179, Prentice Hall,
1997

[10] C.A. Waldspurger, W.E. Weihl, Lottery Scheduling: Flexible Proportional-
Share Resource Mangement, Proceedings of the First Symposium on Operating
Systems Design and Implementation (OSDI ’94), pp. 1-11, Monterey, California,
November 1994

[11] C.A. Waldspurger, W.E. Weihl, An Object-Oriented Framework for Modular
Resource Management, Proceedings of the Fifth Workshop on Object-
Orientation in Operating Systems (IWOOOS ’96), Seattle, Washington,
October 1996

[12] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala, RSVP: A New Resource
ReSerVation Protocol, IEEE Network Magazine, September 1993

Biographies

GUNTHER HOLZL received a Dipl.-Ing. degree in Telematik (telecommunica-
tions and computer science) from the Graz University of Technology, Austria

13



in 1993. He joined Commend Communications Systems at Salzburg in 1994
where he developed a series of new generation intercom exchanges. In 1987
he got research assistant at the department of computer science at Klagenfurt
University, Austria in the group of Prof. Laszl6 Boszérményi in the fields of
distributed and parallel systems and programming languages. He is member
of IEEE.

LAszLO BOSZORMENYT is a full professor of computer science at the Univer-
sity Klagenfurt, Austria. He received his M.S.Sc and Ph.D. from the Technical
University Budapest, Hungary. His main research areas are distributed and
parallel systems, multimedia systems and programming languages. He pub-
lishes regularly at international conferences and journals, he is organizer and
program committee member of several international workshops and confer-

ences. He is a member of ACM and IEEE.

14



