
Information Processing Letters 82 (2002) 269–276

Processing a multimedia join through the method of
nearest neighbor search

Harald Koscha,∗, Solomon Atnafub
a Institute of Information Technology, University Klagenfurt, Austria

b Information Systems Engineering Lab, INSA de Lyon, France

Received 30 June 2000; received in revised version 1 March 2001
Communicated by A. El Abbadi

Keywords:Multimedia databases; Processing of a multimedia join; Nearest neighbor search

1. Introduction and motivation

Commonly used content-retrieval systems focus on
the problem of finding the nearest neighbor (NN-
search) for a given single query object out of a
database of media objects [1]. However, there are
only few attempts [2,3] that realize join operations
on two multimedia tables, where the multimedia data
components are represented by their respective feature
vectors. The necessity of using multimedia joins in a
variety of applications is the motivation behind this
search for a more efficient and more general purpose
method of performing a join on multimedia tables.

In this perspective, the goal of this paper is to intro-
duce an efficient implementation of such a multimedia
join using the method of NN-search. The problem is
naturally related to the NN-search for a single query
object which suggests a straightforward nested-loop
implementation. We will show that this implementa-
tion can be considerably improved by extending the
notion of a query object to a query-sphere (Section 3).
Finally we will demonstrate experimentally that our

* Corresponding author.
E-mail address:harald.kosch@itec.uni-klu.ac.at (H. Kosch).

implementation decreases considerably the number of
index partitions to be accessed (Section 4).

Our current work is on the management of image
data, but the techniques can be extended to other types
of media data such as video and audio. As long as the
feature vector representations are used for the content
of the media data there is a way to extend our work to
video and audio databases.

1.1. Motivation

Let us consider a sample multimedia investigation
scenario (housebreaking during summer holidays in
a residential district) to motivate the usefulness of
a multimedia join. Let us suppose that we have to
manage two sets of images with its descriptions:
images of housebreakersBL and scanned images,SI,
of individuals who appeared at the entry point of the
district.

In order to implement the NN-search in a DBMS,
a proper image repository model has to be introduced.
With respect to the state of the art in image DBMS (see
Oracle’s interMedia, Informix’s Image DataBlades,
and the DISIMA DBMS [3]) we propose an object-
relational (OR) paradigm for storing and manipulating

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00279-4



270 H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276

image objects and their related data. Our OR image ta-
ble MM(o, fv, a) contains a componento which is the
image object itself.fv is a feature vector representa-
tion of the objecto anda is an attribute component
that may be used to describe the object.a may be de-
clared to be an object type or a set of object types.

In the concrete scenario, the image tables are as fol-
lows. BL contains the images of housebreakers and
their correspondingfv, as well as the names, ad-
dresses, and information on previous crimes.SI con-
sists of: the scanned images, their correspondingfv,
and the date and time at which each of the images
were scanned. Suppose now, there is an investigation
scenario for a housebreaking incident, say on August
24 between 4–6 PM, in the locality where the surveil-
lance camera is mounted.SI alone cannot give a com-
plete set of information on the suspects. It is therefore
required to perform some operations on the two tables
in order to get fuller information. The following is a
possible query to retrieve the list of suspected persons
with records for housebreaking crime.For the pictures
in SI, shot or filmed on August24 between4–6 PM,
find the corresponding most similar(best 5) photos
that are in the image table of criminals BL, plus their
corresponding name and address.

This query performs a relational selection on the
date and time attribute ofSI. That is, it selects
only those instances ofSI where the date and time
of the photo shot is August 24 between 4–6 PM.
Then, it does amultimedia joinoperation between
the selected instances ofSI and the image tableBL.
The multimedia join is a binary operation which
computes for each image stored in the left input
table (the selectedSI), thek-nearest neighbors in the
set of images stored in the right input table,BL.
Comparison for similarity of two images, actually
under consideration in the join, is done by computing
the relative distance between the feature vectorsfv,
based on a certain metric.

Let us now give some important definitions for the
remainder of the paper.

Definition 1 (k-nearest neighbor search). Given a set
of imagesS, a query imageq , and a positive integerk;
thek-nearest neighbors to the query imageq denoted
asNNk(S, q) are the firstk images that are a shorter
distance fromq in the feature space than any of the
other images inS. More formally:

NNk(S, q)

= {{o′
1, o

′
2, . . . , o

′
k} | o′

i ∈ S for i = 1, . . . , k and

‖o′
i − q‖ � ‖o − q‖

∀o ∈ S \ {o′
1, o

′
2, . . . , o

′
k}

}
,

where‖o − q‖ stands for the distance between the
object o and the query objectq . The distance is
commonly computed using a certain metric such as the
Euclidean distance metric.

A multimedia join finds thek-nearest images in the
set of images stored in the right input (inner) table for
each imageo1 stored in the left input (outer) table. The
definition is given below.

Definition 2 (Multimedia join operation). LetMM1(o,

fv, a) and MM2(o, fv, a) be two image tables, where
the dimensionality and format offv of MM1 and fv
of MM2 are the same. The multimedia join operation
(MM-join) through the method ofk-NN-search is for-
mally defined as:

MM1 �NNk
MM2

= {
(t1, t2) | t1 = (o1, fv1, a1) ∈ MM1 and

t2 = (o2, fv2, a2) ∈ MM2, and

o2 ∈ NNk(MM2, o1)
}
,

wherek is a positive integer.

Example. The algebraic expression for the query in
the motivation is:

ΠBL.a.name,BL.a.address
(
σSI.a.time,SI.a.date(SI) �NN5 BL

)
,

whereσSI.a.time,SI.a.datedenotes the relational selection
operator on the specified time and date of the crime
andΠBL.a.name,BL.a.addressis the relational projection.

2. Related work

During the last decade, several systems that sup-
port content-based query have been proposed (see the
review in [1]). Some of the commonly known proto-
types are systems such as MARS [2], DISIMA [3] and
CHITRA [4]. Though many works exist, there are very
little of them that consider a multimedia join operation



H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276 271

that associates two sets of data for similarity. For ex-
ample, the MARS system allows complex query for-
mulation by an intelligent query refinement tool for
the user-interaction, but does not support a definition
of similarity-based join. The DISIMA system accepts
queries in MOQL [3] that extends OQL by adding new
predicate expressions. However, the similarity-based
join proposed in DISIMA results in pairs of instances
from the two input tables for which a user-defined
threshold similarity value governing the difference of
the respective feature vectors has been exceeded. The
CHITRA system uses a fuzzy object query language
(FOQL) [4] that is an extension of OQL, however a
multimedia join operation cannot be specified.

Other relevant work comes from the domain of spa-
tial databases. Typical “spatial join queries” involve
two or more sets of spatial data and combine pairs (or
tuples) of spatial objects that satisfy a given predicate.
For instance, one might be interested in finding all the
pairs of objects that intersect with each other (intersec-
tion join). Brinkhoff et al. present in [5] a very detailed
analysis of different implementation strategies for an
intersection join. They show that a spatial sort-merge-
based join based on a plane sweep technique outper-
forms a nested-loop one. However, the plane sweep
technique proposed for an intersection join cannot ap-
ply for the purpose of our multimedia join, since they
have different definitions (if in our join, projections of
bounding boxes intersect, it cannot be guaranteed that
a nearest neighbor has been found) and deal with dif-
ferent data sets (dimension of the feature vectors is in
general higher than that of spatial data).

Recent papers in spatial databases attempt to com-
bine spatial join queries with an NN-search. Hjaltason
and Samet [6] and Corral et al. [7] define a “distance
join” between two input sets which computes theK-
closest pairs of two input spatial object sets, ordered
by the distance of objects in each pair. In addition,
Hjaltason and Samet [6] propose a “distance semi-
join” which groups the results of the distance join by
the objects of the outer table retaining the pairs of ob-
jects with closest distance.

Let us now consider these works with reference to
our image database (where the points in the index
represent feature vectors). It is important to stress that
the definitions of distance join and distance semi-join
are different from the definition of our multimedia
join. We will illustrate the difference in a concrete

Table 1

a1 a2 a3

b1 1 5.1 2

b2 2 3 2.2

b3 1 4 1.4

example. Consider that two image tablesA andB have
three instances eachai ∈ A andbi ∈ B (1 � i � 3).
The distance between the instances ofA and B are
shown in Table 1.

Then, the distance join generates the following
pairs for K = 6 (i.e., 2/3 of the Cartesian Product
is generated):(a1, b1), (a1, b3), (a3, b3), (a1, b2),
(a3, b1), (a3, b2). The distance semi-join computes in
this example as:(a1, b1), (a3, b3).

The multimedia join (fork = 1), however would
produce: (a1, b1), (a2, b2), (a3, b3). For k = 2, it
would produce:(a1, b1), (a1, b3), (a2, b2), (a2, b3),
(a3, b3), (a3, b1). The distance join cannot provide a
comparable case fork > 1.

We realize here thata2 ∈ A and its NN is not in
the result of the distance semi-join (i.e.,a2 has been
discarded in the distance join), thus information ona2
got lost. In order to guarantee for the distance semi-
join that all objects of the outer table are considered,
we would have to generate the Cartesian Product in the
distance join, but this is not practical in many cases.

3. Processing a multimedia join through the
method of NN-search

Efficient processing of a multimedia join requires
multidimensional index structures which make it pos-
sible to find images that are similar to a query image,
while using only few index page accesses. Existing
index structures for high-dimensional feature spaces
can be classified into Data Partitioning (DP) based and
Space Partitioning (SP) based structures [8]. DP-based
index structure consists of bounding regions (BRs)
arranged in a spatial containment hierarchy (e.g., R-,
X-, SS-, and TV-trees) [9,8], as SP-based index struc-
ture consists of a space that is recursively partitioned
into mutually disjoint subspaces (e.g., kDB- and hB-
trees) [10].

In this paper, the NN-search method proposed for
X-trees [9] is used as a reference implementation.



272 H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276

The proposed join algorithms work however with dif-
ferent DP-based index structures that use a hierar-
chical directory structure. In order to meet the dif-
ferent bounding predicates of DP-based index struc-
tures, changes must be made in the definitions of the
mindist() andminmaxdist() functions between a query
point and a leaf partition (which can be looked up in
the respective papers (e.g., for SS-trees in [11])), but
not in the definitions of the functionsmindist() and
minmaxdist() between a query-sphere and a leaf par-
tition. Extensions of our algorithms to SP-based index
structures are the adaptation of the index traversal such
that the minimum number of possible points are vis-
ited.

3.1. Simple nested-loop implementation

A straightforward method for performing an MM-
join is to directly apply the algorithm for the NN-
search for each object of the outer table as a query
object looking for its closest objects from the inner
table. The tuple containing a data object of the
outer table and tuples containing its selected nearest
neighbor objects from the inner table are concatenated
to form the resulting instance.

This algorithm has a nice property that enables us
to reuse the NN-search implementation for a single
query object. However, this algorithm can be improved
if the NN-search is modified to cluster query points in
a query hypersphere.

3.2. Optimized algorithm for the MM-join based on
query point clustering

The main idea of our optimized algorithm lies in
the way we consider objects in the leaf partition of the
outer table index. The data objects considered in the
outer table index are those that are clustered together
on a relatively small BR. This spatial proximity can
be exploited when searching for the nearest point in
the index of the inner table by searching not only
for the nearest neighbor of a single query object,
but by searching for the nearest neighbor of a whole
hypersphere containing all data objects of this leaf
(here called the query-sphere). The other advantage
of this new approach is that, for each object of the
outer table, we need no longer traverse the whole
index of the inner table. This reduces significantly the

number of accessed leaf partitions of the inner table
index (i.e., disk pages accessed). Note that, in this
join the number of data objects which can be stored
in a page is substantial. For instance, a page of size
4 KB can hold 32 feature vectors of dimensionality 16
where each object coordinate is assumed to be stored
in 8 bytes.

Fig. 1 shows the general algorithm for the optimized
MM-join implementation. The algorithm traverses the
leaf partitions of the outer table index. For each leaf
partitionPi of the outer table index, a query-sphereS

that contains all the data objects ofPi is determined.
As we are no longer dealing with a single query
object, the nearest neighbor search method has to
be partially redesigned. The data structure has to be
redesigned in such a way that we maintain a list
of candidate nearest neighbor objectsCandidateand
their respective leaf partitions sorted by their distance
to the farthest away object inS. Furthermore, new
distance functionsmindist() and minmaxdist() that
compute the respective distances between a query-
sphere and the partitions have to be introduced and the
pruning policy has to be updated.

The general principle is that the NN-search for the
query-sphereS traverses the inner table index and for
every partitionP visited stores a list of sub-partitions
ordered by theirmindistSphere(). mindistSphere(P,S) is
the minimum possible distance from the partitionP to
the nearest possible point inS, i.e.,mindistSphere(P,S)

can be reduced to themindist(P,Q) between a parti-
tion P and a query objectQ by the following means
(see also Fig. 2). The pointC denotes the center of the
query-sphereS andr its radius. Assuming an Euclid-
ean distance we have:

mindistSphere(P,S)

=
{

mindist(P,C) − r if mindist(P,C) − r � 0,

0 otherwise,

mindist(P,Q) andminmaxdist(P,Q) for X-trees are
defined in [9], for SS-trees in [11] (see also above).

If the algorithm visits a leaf, it first computes
the data object of the leaf which has the smallest
distance to the farthest away object in the hypersphere
S. This objectNNref is used to prune the list of parti-
tionsPL and the list of candidate nearest-neighbor ob-
jectsCandidate. Prune(NNref ,var Candidate,var PL)

is the procedure proposed to process the pruning.
It takes as input two variable parametersCandidate



H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276 273

Foreach leaf partitionPi of the outer table indexDo
Compute the query-sphereS with radiusr around the pivot element of the par-
tition Pi, such that all data elements in the leaf partition are contained inS.
//Search the nearest neighbor ofS in the inner table index
Let Candidatebe a list of tuples of the form (object, leaf ),
sorted bydistanceSphere(object, S). Initialize Candidate= {}.
Initialize PL with the sub-partitions of the inner table root-partition.
Sort elements inPL by mindistSphere().

While PL#{} Do
If first element partitionP of PL is a leaf Then

Find nearest neighbor objectNNref to S in P .
Candidate:= Candidate∪ (NNref ,P ).

// Do the pruning ofPL andCandidate
Prune(NNref ,Candidate,PL).

Elsif �P ′ ∈ PL,mindistSphere(P,S) � minmaxdistSphere(P
′, S)

Then ReplaceP in PL with its son nodes.
ResortCandidateby distanceSphere(object, S).

Else RemoveP from PL. Endif
ResortPL by mindistSphere().

EndWhile
For each data object inS calculate the NN fromCandidateand concatenate them.
EndForeach

Fig. 1. Optimized algorithm for the MM-join.

Fig. 2. Distance measures:mindist() (solid lines) andminmaxdist() (dotted lines). Single query objectQ on the left. Query-sphereS on the
right.

and PL. First, all partitions P ∈ PL that have
mindistSphere(P,S) larger than the distance ofNNref

to the farthest away object in the hypersphereS (=
distanceSphere(NNref , S)) are removed from the list
PL. Then, the list of candidate nearest-neighbor ob-
jectsCandidateis pruned, i.e., anobject∈ Candidate
is removed fromCandidate, if:

distanceSphere(NNref , S) � distanceSphere(object, S).

The functiondistanceSphere(object, S) can be defined
with the help ofdistance() in the context of a single
query object as follows:

distanceSphere(object, S) = distance(object,C) + r,

whereC denotes once again the center of the hyper-
sphereS andr its radius.

Upon visiting an internal partitionP its succes-
sor nodes replaceP in the list of partitionsPL,



274 H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276

only when there exists no other partitionP ′ ∈ PL
such that itsminmaxdistSphere(P

′, S) is smaller than
mindistSphere(P,S). minmaxdistSphere(P,Q) of a par-
tition P with regard to the query-sphereS is the max-
imum possible distance from the farthest away object
in S with respect toP to the nearest data object inside
a partitionP . It can be defined by usingminmaxdist()
of a query objectQ and a partitionP , as follows (see
also Fig. 2). The pointC is the center of the hyper-
sphereS andr its radius:

minmaxdistSphere(P,S) = minmaxdist(P,C) + r.

The branch-and-bound part of the algorithm termi-
nates whenPL becomes empty, thus no more inter-
nal nodes are to be exploited. The final operation is to
search for each object inS, the corresponding nearest
objects from the remaining candidate leaf partitions in
Candidates.

4. Experimental results

We implemented in C++ the nested-loop and opti-
mized algorithms of the NN-search based on the X-
tree as reference implementation [9]. The effective ca-
pacity of an X-tree page was 512/dim data objects,
supposing the example settings of the last section.
All experiments were carried out on a Pentium III,

450 MHz with 128 MB main memory and 21 GB
of storage device. The program simulates thebuffer
managementof a DBMS. We employed the settings of
Berchtold et al. [9] and assumed that the buffer size re-
served for each X-tree involved in the multimedia join
depends on the number of index nodesnum_nodes,
the dimensiondim and the page sizepage_size, thus
computes as:�(12.5∗ dim∗ num_nodes)/page_size�.
The first internal levels of the index tree are initially
kept in the buffer, whereas a minimum the root node
of each X-tree has to be held in the buffer. The sum
of the cached pages of the two input X-trees is limited
by 256 pages. If it is exceeded, the number of cached
pages for each index is reduced proportionally.

The experimental analysis was carried out on two
distinct datasets, onesynthetic(uniform dataset) and
one real (results of the real datasets can be found in
the extended version [12]). Theperformance metric
is firstly the number of page accesses to the disk that
are performed during the MM-join (i.e., page accesses
of both tables) and secondly the running time of the
algorithms (CPU-time). Each experiment has been
performed 100 times (starting from the initial buffer
each time) and the mean value has been considered.
The confidence interval tests of the results indicate
that, 98% of the results are within 7% of the mean in
almost all cases.

Fig. 3. Page access improvement factor optimized over the simple algorithm.



H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276 275

Fig. 4. CPU-time improvement factor optimized over the simple algorithm.

Fig. 3 (for page accesses) and Fig. 4 (for CPU-time)
show the improvement factor of the optimized over the
simple algorithm with respect to the variation of the
dimension, the number of data objects, and the number
k of computed NN. On the left side of each figures,
the number of accessed disk pages is shown fork = 1
and on the right side fork = 3. The case ofk = 5 is
not shown due to the lack of space, but shows similar
characteristics.

Fig. 3 shows that the highest page access improve-
ment factor is achieved independently from the di-
mension forN = 5000. The factor decreases towards
10,000 data objects. However, for a number of data ob-
jects above 20,000 (fork = 1) and 25,000 (fork = 3)
the improvement factor remains nearly constant. For
example, fordim = 14 the factors hovers at 52 for
k = 3 and at 35 fork = 1. At the same time, for what-
ever number of objects, the improvement factor in-
creases with the dimension. The improvement factor
for k = 3 is on average 23% higher than that fork = 1,
and the improvement factor fork = 5 is on average
21% higher than that fork = 3. The higher search ef-
fort in the inner table shows a greater advantage for
the optimized algorithm over the simple one.

Fig. 4 shows that the CPU-time improvement fac-
tor decreases with higher dimensions, however the de-
crease becomes less important, e.g., in the case ofk =

1, for d = 8 the factor is on average 133.2, ford = 10
it is 89.5, ford = 12 it is 73.1, andd = 14 it is 66.5.
This is the inverse result of the page access metric,
where the higher improvement factors are achieved for
higher dimensions. The reason is that with a higher
dimension less query objects are contained in a page
and the sum of CPU-time spent for all query objects
of one outer table leaf partitions becomes less impor-
tant compared to the CPU-time spent in the optimized
algorithms. Contrarily, for the disk access metric, the
impact of the dimension (we observe that for dimen-
sions above 6 a high increase in the number of page
accesses for the simple algorithm) dominates the re-
sults. Similar to the access page metric, for a number
of data objects above 15,000 (fork = 1) and 20,000
(for k = 3) the CPU-time improvement factor remains
nearly constant. Once again we note that the improve-
ment factor fork = 3 (right-hand figure) is on average
24.5% higher than that fork = 1 (left-hand figure), and
the improvement factor fork = 5 is on average 21%
higher than that fork = 3. Finally, one notices that the
CPU-time improvement factor is higher than the page
access one.

In general, the access page and CPU-time improve-
ment factors are significant with respect to the dimen-
sion, the number of data objects in both input tables
and the number of nearest neighbors computed. This



276 H. Kosch, S. Atnafu / Information Processing Letters 82 (2002) 269–276

argues strongly for the use of the optimized MM-join
implementation.

5. Conclusion and future work

This paper focused on processing a multimedia join
through the method of the NN-search. We first intro-
duced a simple nested-loop solution which applies for
all data objects of the outer table an NN-search in the
set of objects stored in the inner table. We then pro-
posed a novel optimized strategy which takes advan-
tage of query point clustering in a hypersphere. Sev-
eral experiments have been performed to demonstrate
the efficiency of the optimized algorithm over the sim-
ple one for different data sizes, dimensions and num-
ber of nearest neighbors to be searched. Future re-
search will focus on formalizing the similarity-based
operators on multimedia databases and on developing
a similarity-based algebra.

References

[1] Y. Rui, T.S. Huang, S.-F. Chang, Image retrieval: Past present
and future, J. Visual Comm. Image Representation 10 (1999)
1–23.

[2] K. Porkaew, M. Ortega, S. Mehrotra, Query reformulation
for content based multimedia retrieval in MARS, in: Proc.
IEEE International Conference on Multimedia Computing and
Systems, Florence, Italy, Vol. 2, June 1999.

[3] V. Oria, M.T. Özsu, B. Xu, L.I. Cheng, P. Iglinsk, DISIMA:
An object-oriented approach to developing an image database

system, in: Proc. Internat. Conference on Data Engineering
(ICDE), San Diego, CA, February–March 2000, pp. 672–673.

[4] S. Nepal, M.V. Ramakrishna, Query processing issues in
image (multimedia) databases, in: Proc. Internat. Conference
on Data Engineering (ICDE), Sydney, Australia, March 1999,
pp. 22–29.

[5] T. Brinkhoff, H.-P. Kriegel, B. Seeger, Efficient processing of
spatial joins using R-trees, in: Proc. ACM SIGMOD Internat.
Conf. on Management of Data, Washington, DC, June 1993,
pp. 10–15.

[6] G.R. Hjaltason, H. Samet, Incremental distance join algo-
rithms for spatial databases, in: Proc. ACM SIGMOD Conf. on
Management of Data, Seattle, WA, June 1998, pp. 237–248.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopou-
los, Closest pair queries in spatial databases, in: Proc. ACM
SIGMOD Conf. on Management of Data, Dallas, TX, May
2000, pp. 189–200.

[8] K. Chakrabarti, S. Mehrotra, The hybrid tree: An index struc-
ture for high dimensional feature spaces, in: Proc. Internat.
Conf. on Data Engineering (ICDE), Sydney, Australia, March
1999, pp. 440–447.

[9] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: An
indexing structure for high-dimensional data, in: Proc. VLDB
Conference, Bombay, India, September 1996, pp. 28–39.

[10] G. Evangelidis, D. Lomet, B. Salzberg, The hBπ tree: A multi-
attribute index supporting concurrency, recovery and node
consolidation, VLDB J. 6 (1) (1997) 1–25.

[11] R. Kurniawati, J.S. Jin, J.A. Shepherd, The SS+-tree: An
improved index structure for similarity searches in a high-
dimensional feature space, in: Proc. SPIE Storage and Re-
trieval of Image and Video Databases, San Jose, CA, February
1997, pp. 110–120.

[12] H. Kosch, Processing a multimedia join through the method of
nearest neighbor search (extended version), Technical Report
TR/ITEC/01/2.02, ITEC, Univ. Klagenfurt, 2001, http://www-
itec.uni-klu.ac.at/∼harald/ipllong.pdf.


