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This paper addresses the problem of providing high-performance disk I/O in massively parallel computers.
Resolving the fundamental I/O bottleneck in parallel architectures involves both hardware and software
issues. We review previous work on disk arrays and I/O architectures aimed at providing highly parallel
disk I/O subsystems. We then focus on the requirements and design of parallel file systems (PFSs) which
are responsible to make the parallelism offered by the hardware and a declustered file organization
available to application programs. We present the design strategy and key concepts of a general-purpose
file system for a parallel computer with scalable distributed shared memory. The principal objectives of
the PFS are to fully exploit the parallelism inherent among and within file accesses, and to provide
scalable I/O performance. The machine model underlying the design is described, with an emphasis on
the innovative architectural features supporting scalability of the shared memory. Starting from a
classification of various scenarios of concurrent I/O requests, the features of the PFS design essential
for achieving the goals are described and justified. It is argued that the inter- and intra-request parallelism
of the I/O load can indeed be effectively exploited and supported by the parallel system resources.
Scalability of I/O performance and of the PFS software can be ensured by avoiding serial bottlenecks
through the use of the powerful architectural features.
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1. INTRODUCTION

Over the past decade, processor speeds have increased
dramatically and main memory sizes have kept pace or
have grown at an even faster rate. Storage capacity of
secondary memory, i.e. magnetic disks, has grown pro-
portionally with primary memory. In contrast, the per-
formance of conventional disks has improved only
modestly during the same period (Katz et al., 1989).
These trends are likely to continue in the foreseeable
future. The consequence is an increase of the funda-
mental CPU-I/O performance gap.

Today’s parallel systems with hundreds of high-speed
processors and large main memory (or memories) offer
tremendous raw computing power that will hit the
TFLOPS level within the next few years. However, if
I/O performance cannot be balanced with computing
capabilities, more and more parallel applications will
become I/O bound and will not be able to take full
advantage of that power. A classical rule of thumb states
that a computer system should provide 1 Mbit/s of I/O
bandwidth per MIPS of CPU performance (Hennessy
and Patterson, 1990). Recent measurements, however,
indicate that I/O demands are higher, close to 1 Mbyte/s
per CPU MIPS (Akella and Siewiorek, 1991). It is
obvious that a conventional disk and file system cannot
supply data to the processors at these rates. Exploiting
parallelism for I/O in hardware and software is regarded
as the only means to overcome the I/O bottleneck in a
parallel computer system.

Despite its importance, parallel disk I/O has been
devoted adequate research only recently. Work has been
performed on three levels:

® Device level (disk arrays).

® Architecture level (organization of disk I/O sub-
systems).

® Software level (parallel file systems).

In this paper, we will briefly review previous work on
the hardware and architecture levels, and then focus on
the software level, i.e. parallel file system (PFS) require-
ments and design.

A PFS is responsible for making the parallelism and
raw bandwidth of a distributed I/O subsystem available
to applications. It must exploit parallel I/O resources
(and other machine resources) to permit or generate
parallel I/O transfers. These should translate into high
throughput rates and/or low I/O latencies encountered
by applications, and result in a balance of computation
and I/O and high performance eventually.

Thus, exploiting the parallelism offered by the archi-
tecture, on the one hand, and the parallelism available
(explicitly or implicitly) in I/O requests, on the other
hand, is one of the principal objectives of a PFS. Equally
important and closely related to this goal is ensuring
scalability of I/O performance. This requires the PFS
software to be written in a scalable way, without serial
bottlenecks.

These objectives, providing parallelism of 1/O transfers
and ensuring scalability of file system software and I/O
performance, represent the cornerstones of a PFS design
which is the subject of this paper. In addition, the PFS
should be suitable for general-purpose use. It therefore
does not rely on potentially specialized I/O operations,
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but aims at exploiting available parallelism in a way
transparent to the user.

The machine model underlying the PFS design is a
general-purpose, scalable, distributed shared memory
(DSM) parallel computer similar to that being described
in another paper of this special issue (Abolhassan et al.,
1993). The main thrust of machines of this type is that
they provide truly scalable shared memory by various
innovative architectural means, namely memory ran-
domization, combining of memory accesses in the inter-
connection network in order to avoid ‘hot spots’ and
multi-threaded processors that efficiently support effect-
ive memory latency hiding. Given such features, the PFS
serves as a test case for their utility and the program-
mability of such a machine.

Starting from the I/O load patterns anticipated for
such a machine, the major design principles that aim at
providing the desired parallelism and scalability proper-
ties of the PF'S are derived. It turns out that the scalable
DSM offers the best opportunities to ensure these
features.

The basic design considerations as presented here
leave several issues open for further investigations.
Hence, we conclude by giving an outlook on further
(partly ongoing) work on design refinement, prototype
implementation to provide a ‘proof of concept’ and
simulations to evaluate to what degree the objectives
have been met.

2. RELATED WORK

Parallelism on the path to and from disk devices must
be provided and supported on the three levels identified
above. In this section, we will briefly review previous
work and progress made in these areas. A recent special
issue of the Journal of Parallel and Distributed Computing
(nos 1/2, January/February 1993) provides a broad
overview of the field of parallel I/O systems.

2.1. Device level

The most promising way to overcome the bandwidth
limitation of conventional magnetic disks appears to be
‘device parallelization’, i.e. to group together multiple
physical disks and make them appear as a single logical
disk. With such disk arrays, single or multiple data
blocks (up to entire files) are divided into portions of
equal size and spread over successive physical disks of
the array. The advantage of disk arrays is that the
aggregate bandwidth of multiple disks can be utilized to
service single large I/O requests or support multiple
independent small requests in parallel. As a consequence,
the average latency of I/O requests is reduced.

That approach of partitioning data onto multiple
disks under the control of a single array controller has
become known as disk striping (Salem and Garcia-
Molina, 1986); often, the term interleaving is used equiva-
lently. Operating disk arrays in a synchronous or asyn-
chronous manner has been proposed and studied in

terms of its performance effects (Kim, 1986; Kim and
Tantawi, 1991). The basic concepts, a taxonomy and the
benefits of disk arrays are well described in Katz et al.
(1989); also, comprehensive descriptions of other tech-
niques for improving performance of conventional disk
systems are given.

The key conclusion of that work is that high I/O data
rates are best achieved by using a large number of
conventional small and cheap disks. Employing multiple
disks in parallel, however, substantially increases the
probability of disk array failure. Therefore, disk array
organizations have been developed that attempt to pro-
vide increased fault tolerance by storing redundant
information, while maintaining high throughput capabil-
ities and storage capacity. The RAID scheme (Redundant
Arrays of Inexpensive Disks) has been proposed to
encompass different disk array structures with different
levels of performance and fault tolerance properties
(Patterson et al., 1988; Katz et al., 1989).

RAID systems are now being delivered by most
manufacturers. Each of the RAID levels and systems
represents a different trade-off between I/O bandwidth,
effective storage capacity, and reliability. For the purpose
of providing a highly parallel, general-purpose 1/O sub-
system, a RAID Level 5 system will probably offer the
best price/performance ratio (Katz et al., 1989). A disk
array of this type therefore appears to be suited as the
basic building block of the machine model introduced
in Section 3.

2.2. Architecture level

The architecture of disk I/O subsystems has not been
studied as extensively as disk array structures and, as a
consequence, many issues are still open. Most parallel
I/O systems built or proposed to date for parallel
computers consist of multiple I/O processors, each with
one or more disks attached to it. The I/O nodes and the
attached devices can be addressed independently, estab-
lishing multiple separate I/O units.

In a ‘traditional’ I/O system, all I/O units are treated
in isolation. That is, each file is located (as a whole) on
one I/O unit only, which allows for parallel transfers of
multiple files, but not to and from a single file. The
latter type of parallelism is enabled by a technique
termed file declustering which breaks up a file into a
number of portions and maps them onto different 1/O
units (e.g. in a round-robin fashion).

Examples of commercial systems of this type are the
I/O subsystems of the Intel iPSC/2, iPSC/860 and
Paragon computers (Pratt et al., 1989; Intel, 1992) and
of the nCUBE machines (del Rosario, 1992).
Experimental hypercube systems with concurrent 1/O
structures have been proposed as well (Flynn and
Hadimioglu, 1988; Witkowski et al., 1988; Reddy and
Banerjee, 1990).

The advantage of this arrangement of parallel inde-
pendent I/O units over disk arrays is superior scalability,
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at least from a hardware point of view. I/O nodes with
disks can readily be added to a system whereas adding
disks to an array places an additional burden on the
controller and eventually makes it a bottleneck.

Obviously, both these approaches, parallel independ-
ent I/O units (file declustering) and disk arrays (data
striping), can be combined. Questions that arise are
what combination of declustering and striping yields
best performance and whether a general guideline for
the trade-off in the amount of declustering and striping
can be given at all. Studies to answer questions like
these have been reported in (Reddy and Banerjee, 1989,
1990), but clear recommendations for I/O subsystem
design cannot be derived from the evaluation results.

A general finding probably is that I/O architectures
with combined parallelism, ie. those that use high
degrees of both declustering and striping, provide better
performance for scientific applications than organiza-
tions with lower parallelism. However, other loads such
as the transaction workload of those studies appear to
benefit more from other structures. Further study is
certainly required to derive more useful configuration
guidelines.

For general-purpose use, a practical compromise
appears to be to use disk arrays of moderate size in the
I/O units such that the array controller is not prone to
become a bottleneck and array reliability is acceptable,
and to determine the degree of declustering (number of
parallel I/O units) according to the anticipated I/O
traffic of the system. From a scalability point of view,
some form of declustering is needed anyway (Reddy and
Banerjee, 1989). The Paragon I/O system (Intel, 1992)
appears to have been designed along this rationale
(incorporating multiple I/O nodes and RAID
technology).

However, determining the appropriate number of I/O
nodes in relation to the number of compute nodes of a
parallel system is a further open problem. Frequently,
systems with ratios of I/O nodes to compute nodes of
1:1 to 1:10 are studied or proposed, with non-scientific
load (multi-user file system/transaction load) appearing
to benefit more from a higher number of I/O nodes
(Reddy and Banerjee, 1989; Eckardt, 1991). Interestingly,
a ratio of 1:log p is proposed for general-purpose file
I/O on hypercube systems, where p is the number of
processors (Ghosh et al., 1993). This ratio and the
corresponding scalability factor of p/log p for the I/O
subsystem are argued to imply a balanced system. The
general belief is, however, that I/O resources are to scale
in proportion with the number of processing elements.

2.3. Software level

Given a parallel I/O subsystem, the challenge is to make
its extensive raw disk bandwidth available for parallel
programs. Parallel file system software is needed that
maps file I/O requests to the parallel I/O system effec-
tively and efficiently. The PFS must exploit parallelism

inherent in the I/O load among and within I/O requests
to achieve high overall and individual data transfer rate
and minimize I/O latencies.

In order to meet these requirements, a PFS must itself
be implemented as a highly parallel program. It should
be easy to use, to free the programmer from the burden
of dealing with low-level details of partitioning and
declustering files to the parallel I/O devices to obtain
good performance. In addition, a file system should be
scalable in the sense that, when I/O subsystem resources
are scaled up, the I/O performance delivered to applica-
tion programs should scale up proportionally.

Several parallel file systems have been proposed and
implemented, predominantly on distributed-memory
systems. Commercial systems have become available for
iPSC/2 and iPSC/860 and nCUBE/2 hypercube
machines.

The well-known Intel Concurrent File System (CFS),
for example, declusters files over I/O nodes (Pierce,
1989). On each I/O node, a disk process executes to
service read and write requests directed to that node; it
controls local file allocation and file structure mainten-
ance, and maintains a buffer cache that holds blocks
from locally attached disks. On the compute nodes, read
or write operations issued by clients are split up into
separate requests for file blocks by CFS runtime library
routines. Using file structure and distribution informa-
tion cached locally, the library sends these requests
directly to the appropriate disk nodes. This software
structure allows much parallelism of the I/O architecture
to be exploited.

However, as pointed out in Choudhary (1993),
existing systems are limited due to the requirement on
users to perform low-level management of file accesses
to obtain high performance. Also, scalability appears to
be limited in some systems, e.g. the Intel CFS and the
experimental file system Bridge (Dibble et al., 1988;
Dibble and Scott, 1989), which include centralized server
components.

A major issue in existing file systems, in particular for
distributed-memory machines, is mapping the distribu-
tion of data in main memories and the distribution of
data on secondary storage devices to each other, such
that truly parallel I/O transfers can take place. Users
ought to be relieved from this data mapping requirement
as far as possible.

An interesting contribution in that respect in nCUBE’s
new I/O system software (DeBenedictis and del Rosario,
1992; del Rosario, 1992). A programmer must define or
use a function to map data from an application-specific
distribution to an intermediate representation only. This
is taken by the PFS software to obtain a highly declus-
tered file structure. The combined mapping then defines
the data flow between primary and secondary storage.
This two-level approach is designed to allow convenient
definition of file I/O in a distributed-memory system
(without the demand on the user to have to deal with
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the I/O architecture), enable parallel I/O transfers, and
ensure performance scalability.

It must be noted here that, with shared memory as
being available in the machine model underlying our
PFS design, data mapping is no longer a critical issue;
it suffices to specify the address and length of a main
memory buffer where file data have to be transferred to
or from.

Other work has investigated special PFS functionality
and interfaces. Special I/O modes, file organization
concepts, and file system operations have been intro-
duced (Witkowski, 1988; Asbury and Scott, 1989;
Crockett, 1989; Pierce, 1989; Kotz, 1992), but a conclus-
ive and generally useful view of file system functionality
has not emerged. In addition, many of the schemes are
tailored towards scientific applications which are domin-
ated by various forms of sequential access patterns.

Finally, caching in PFSs, in particular prefetching
issues and write-back policies, have been studied. All
these techniques represent problems and opportunities
specific to multiprocessors. Trade-offs and results have
been presented in Kotz and Ellis (1990, 1993).

In summary, a number of issues of PFS software
design are still open. Our PFS design addresses the
problems of ensuring scalability and exploiting parallel-
ism in a transparent way.

3. PARALLEL MACHINE MODEL
3.1. Architectural overview

The parallel machine assumed for our PFS design is a
scalable architecture designed for general-purpose use.
In the development of massively parallel architectures,
a trend is currently observed towards systems providing
a single global physical address space. Such a shared
memory is generally held to be a better target for
convenient parallel programming, automatic paralleliz-
ation, load balancing, debugging, and portability of
parallel software. A scalable shared memory system can
only be built as a DSM (Hellwagner, 1990; Nitzberg
and Lo, 1991) and efficiency requirements demand that
the DSM be implemented in hardware.

The architecture underlying the PFS design is, there-
fore, a parallel MIMD system with DSM which should
scale into the range of massive parallelism, ie. with
thousands of processing elements (PEs). The architecture
is depicted in Figure 1.

Each PE is a standard MIMD node with its own
independent CPU, local memory and a portion of the
global memory (a memory unit or module) attached.
These PEs are (virtually) fully connected via a global
interconnection network. In our model, this network
can be viewed as a black box with no specified physical
structure. It should, however, meet certain requirements
on the universal scalability of throughput and delay
with system size, which are satisfied by network struc-
tures with O(log p) diameter and O(p-log p) link capa-
city together with a routing scheme which properly

Distributed
Shared Memory

Compute Nodes

Interconnection
Network

I/O Nodes

Disk Arrays

FIGURE 1. Parallel machine model.

distributes all kinds of traffic across the entire network.
Network structures and routing schemes which meet
these conditions have been presented in Klein (1991); a
paper in this special issue discusses such interconnect
technology as well (Thompson, 1993). The network is
supposed to provide both types of services, direct mess-
age-passing between processes located on different nodes
and remote memory accesses demanded by the DSM
subsystem.

3.2. Disk I/O subsystem

Among the PEs, we distinguish between compute nodes
and I/O nodes (or disk nodes), the latter constituting
the I/O subsystem. Attached to each I/O node are one
or more disks, preferably organized as a redundant disk
array, e.g. according to RAID Level 5. The disk array
controller has DMA capabilities to transfer disk blocks
to and from the I/O node’s local memory. The disk
array is viewed by the I/O processor as a single storage
device with known capacity and access characteristics.

In this paper, we do not assume or require a specific
number of I/O nodes or a specific ratio of I/O nodes to
compute nodes. In any case, even if the number of disk
nodes is an order of magnitude lower than the number
of compute nodes, the I/O subsystem comprises hun-
dreds of nodes and probably thousands of disks. We do,
however, assume, as an essential requirement for scalable
performance, that the number of disk nodes grows
proportionally with overall system size.

The distributed nature of both the I/O subsystem and
the shared memory (DSM) offer the chance to perform
highly parallel data transfers between primary and sec-
ondary memory. From a hardware point of view, there
need not be any bottleneck in the data transfer paths. It
is up to the PFS to fully exploit this opportunity, to the
benefit of parallel programs.

3.3. Scalable DSM

Implementation of a scalable shared memory has long
been deemed infeasible. However, the DSM concept
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offers new opportunities to achieve this goal. Yet, a
major impediment to scalability remains even for a DSM
system, ie. increasing communications latencies for
remote accesses when system size grows.

There are two principal approaches to deal with this
problem:

® [atency reduction which attempts to minimize the
number of remote accesses and, hence, of average
memory access times through caching. Its effectivity
heavily depends on the degree of locality exhibited
by parallel applications, and on the efficiency of
coherence maintenance protocols.

® [atency hiding which aims at exploiting the latency
associated with a remote memory access in that the
issuing processor switches over to execute another
process. This approach is effective only if sufficient
parallelism (in terms of number of processes) is made
available by the software, and the hardware supports
efficient process switching.

The first approach is incorporated in systems like the
KSR1 (Rothnie, 1992), the DASH machine (Leonski
et al., 1992), the Data Diffusion Machine (Hagersten
et al., 1992) and the Scalable Coherent Interface (SCI)
Standard (IEEE, 1992).

The second approach is of particular interest because
it has a thorough theoretical background. Results of
(Valiant, 1990a,b) constructively show that shared
memory can be emulated in a system with distributed
memory units in a scalable way, i.e. with asymptotically
constant efficiency, using latency hiding and excess paral-
lelism (O(log p) processes per node).

The global memory system we assume is therefore
based on this second approach. It incorporates a number
of innovative architectural means designed to overcome
the remaining threats to scalability. These features are
depicted in Figure2 and described in the following.
(Note that the ‘dance-hall’ configuration of Figure 2
gives a logical view of the memory system. Physically,
the memory units comprising the DSM are assaciated
with processors, as shown in Figure 1.)

® Memory randomization (address hashing, Randomized
Shared Memory (RSM)). If the address space were
mapped to memory modules in a regular fashion (e.g.
consecutively), regular (e.g. consecutive) access pat-
terns could overload individual memory units and
lead to systematic blocking in network switches lead-
ing to those modules. Thus, many accesses would
encounter increased latency penalties. As a means to
obtain an equal loading of all memory modules and
distribute memory access traffic uniformly in the
network, address hashing has been proposed. This
technique  pseudo-randomly distributes global
memory addresses and, at runtime, global data
accesses throughout available memory units ( Valiant,
1990a). Recent investigations of the practical effici-

Randomized Shared Memory (RSM)
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FIGURE 2. Scalable DSM implementation.

ency of this RSM scheme have shown encouraging
results (Hellwagner, 1992).

® Memory request combining. Even with RSM, high
access latencies can still result from many processes
concurrently accessing the same memory location,
e.g. a synchronization variable. Such ‘hot spots’ are
avoided in that accesses heading to the same memory
location are combined in the interconnect (Gottlieb
et al., 1983).

® Fetch&add memory transactions. Many algorithms, in
particular synchronization algorithms, require or
benefit from atomic read-modify-write memory
operations. In our memory system, an indivisible
fetch&add memory transaction (Gottlieb et al., 1983)
is assumed. Concurrent fetch&add operations can be
combined in the network.

® Multi-threaded processors. As stated above, the pro-
cessor must support efficient process switching for
purposes of effective latency hiding. We assume multi-
threaded CPUs that have a number of hardware
contexts (register sets, also termed ‘virtual processors’)
which can be switched without delays, i.e. within a
cycle. In addition, the contexts can be swapped in
from (out to) local memory within a few processor
cycles. Finally, such a processor also supports efficient
creation and deletion of processes, e.g. directly in its
instruction set.

For optimization purposes, it is advantageous to permit
explicit control of the allocation of certain shared
memory regions to specific nodes (localized pages), and
our concepts make use of these features. Similar func-
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tionality is provided in the Tera computer system
(Alverson et al., 1990).

While such a system may appear ‘exotic’, it is not
unrealistic or unimplementable. Rather, several projects
are underway to develop and implement scalable DSM
machines or components thereof according to these
principles. The Inmos Chameleon project and the
PRAM being developed at Universitdt des Saarlandes
(Abolhassan et al., 1991, 1994) encompass all the archi-
tectural features listed above and correspond most
closely to our machine model. A commercial endeavour
using memory randomization is the Tera computer
(Alverson et al, 1990). Earlier systems based on such
principles are the NYU Ultracomputer (Gottlieb et al.,
1984), the Fluent machine (Ranade et al., 1988) and the
BBN Monarch computer design (Rettberg et al., 1990).

As indicated earlier, it is decisive for the success and
efficiency of machines with RSM that sufficient parallel-
ism is available to realize effective latency hiding. In this
sense, our PFS design serves as a case study of whether
this kind of system software can adequately contribute
to the required degree of parallelism. (Note that other
contributions come from other system software and from
application processes.)

4. /0 LOAD MODEL

In addition to the architecture model, a basic under-
standing of the patterns of I/O requests a general-
purpose PFS will be faced with, must be developed. The
I/O load model from which the basic design principles
of our PFS have been derived, is described in this section.

4.1. Situation

As pointed out in (Choudhary, 1993), the I/O require-
ments of parallel applications differ widely. Well-known
workloads are transaction processing which is character-
ized by a large number of random I/O accesses of small
size, and scientific applications which require fewer
accesses, each of larger size and often involving some
form of sequential pattern (French et al., 1993). Image
processing programs perform even fewer accesses, but of
very large size. Multimedia applications potentially
require enormous bandwidth and storage capacity when
accessing video data. Other types of I/O requirements
result from support for virtual memory, checkpointing,
and storage of data for off-line visualization; still others
from decision support systems.

In contrast to uniprocessors and distributed systems,
file access patterns in parallel systems are far from well-
understood. This situation is attributed in Kotz and
Ellis (1990) to the deficiencies of existing PFSs which
have discouraged typical parallel file access patterns to
develop. Further, no studies have been carried out to
collect data on file usage of existing parallel applications
(or they have not been published).

Hence, one has to resort to building models of parallel
file I/O patterns based on experience and knowledge or

intuitive understanding of parallel applications. Such
models have been developed (see e.g. Kotz and Ellis,
1990, 1993; French, 1993; Ghosh et al., 1993), but they
either concentrate on scientific workload (sequential
accesses) or are derived from distributed-memory sys-
tems only.

The model of I/O loads for our general-purpose
parallel DSM machine and PFS needs to be more
general. We classify 1/O requests of parallel applications
according to the degree of cooperation and data sharing
of the constituent processes.

4.2. 1/0 load scenarios

In the following, three general classes of I/O load are
introduced. It must be pointed out that the scenarios
presented here describe prototypes for important con-
currency situations and not the I/O behaviour of real
applications which will rather resemble some (dynamic-
ally changing) combination of these simple cases.
Nevertheless, the load classes represent a useful frame-
work to point out the most important problems occur-
ring in concurrent file I/O and to indicate potential
solutions to these problems, as will be done in Section 6.

4.2.1. Independent clients ( Figure 3a)

The simplest concurrent request scenario is one where
many client processes issue their own independent
sequences of PFS requests. This scenario is typical for
distributed systems or for multiprocessor systems with
multiple independent applications executing concur-
rently. Thus, it includes concurrent requests of all types
(i.e. directory as well as data transfer operations), pos-
sibly on the same set of files, but without systematic
sharing and contention on individual files. Some random
sharing may still occur, however, and must be properly
coordinated by the PFS. For performance and scalability
reasons, the inter-request parallelism represented by mul-
tiple independent requests must be exploited effectively
and efficiently by the PFS.

4.2.2. Cooperating clients with transfers from/to disjoint
memory regions (Figure 3b)

A more specific task for a PFS is the situation where
the client processes cooperate systematically and prob-
ably in a synchronous way, using a common data set
managed by the PFS. The resulting request scenario
consists of many concurrent transfer requests for disjoint
or overlapping parts of the same file, which often occur
nearly synchronously in certain program phases. This
load type is typical for distributed-memory machines,
and the I/O load models referred to earlier (e.g. Kotz
and Ellis, 1993; French et al., 1993; Ghosh et al., 1993),
can be subsumed into this class. Request patterns of this
type result, for instance, from data-parallel programs
where the participating processes execute the same pro-
gram on separate subsets of the data. The PFS should
again support inter-request parallelism and, in addition,
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FIGURE 3. Classes of parallel I/O loads. (a) Independent clients. (b) Cooperating clients. (c) Single client (large transfers).

allow scalable parallel access to the same file or files,
with serialization in case of sharing and contention
reduced to what is semantically indispensable.

4.2.3. Single clients with transfers from/to global memory
(Figure 3c)

With global memory available, a convenient way of
doing file I/O is to have a single distinguished process
(e.g. a master) request a large data transfer on behalf of
all the other processes of the application program (e.g.
the slaves). The shared main memory (DSM) data
structure from (to) which the data are transferred is
produced (consumed) collectively by the application
processes, €.g. in a data-parallel way. Note that while
I/O in this case is logically centralized, it is not implied
that all data must physically pass through the node
issuing the I/O request. The challenge for a PFS here is
the internal parallelization of the single transfer opera-
tion, i.e. exploiting intra-request parallelism, in order to
support scalable system performance.

4.3. Scaling behaviour of I/O loads

In order to eventually determine whether scalability of
I/O performance has in fact been achieved, the scaling
behaviour of I/O loads must be modelled and the
corresponding desired scaling behaviour of I/O perform-
ance criteria must be determined. Table 1 presents the
basic scaling characteristics for the three load scenarios
and the evaluation criteria. It is assumed for this scaling
model that overall system size, e.g. number of nodes,
main memory capacity, network bandwidth and disk
1/O subsystem resources, scale by a factor of s. Clearly,
variations of this basic scaling behaviour can be consid-

ered. However, this model suffices to demonstrate our
understanding of scalable 1/O performance.

Two entries of Table 1 have to be noted. First, the
individual data transfer rate for each request in the
cooperating clients load is supposed to remain constant.
However, with access conflicts increasing systematically
both in number and size, this goal may have to be
revised. What can be requested then is that the individual
data transfer rate decreases proportionally with the
degree of conflicts. Second, note that the individual
transfer rate in the single client load is supposed to
increase by the overall scaling factor s. This requires the
PFS to fully exploit intra-request parallelism represented
by large transfers.

5. PFS FUNCTIONALITY AND STRUCTURE

The functionality and interface of the proposed PFS
have been designed to adhere to an approved standard,
POSIX.1 (IEEE, 1990), as closely as possible. This
standard specifies a conventional read/write file system
interface with UNIX-style sharing semantics.

There are certainly more convenient and elegant ways
to deal with file I/O, for instance by means of memory-
mapped files. However, the POSIX standard is widely
adopted and familiar to most users, and has been
adopted for almost all PFSs. More importantly, the use
of explicit requests for file system services (read, write
and other operations) greatly simplifies exploiting the
inter- and intra-request parallelism inherent in the 1/O
load. In other words, the conventional interface provides
a suitable basis to promote parallelism in file accesses.

As discussed earlier, quite a wide spectrum of specific
I/O concepts, operations and modes to support parallel

TABLE 1. Basic scaling characteristics of load scenarios and I/O performance criteria when overall system size scales with a factor of s

Independent clients

Cooperating clients Single client

Number of clients s-fold
Request rate per client constant
Transfer size per request constant
Number of files s-fold
Size of files constant
Access conflicts random
on shared files and directories

Response time for single request constant
Individual data transfer rate constant
Aggregate data transfer rate s-fold

s-fold constant
constant constant
constant s-fold
constant constant
s-fold s-fold
systematic, systematic,
increasing constant
constant constant
constant s-fold
s-fold s-fold
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processing have been proposed. However, no consensus
on what functionality a PFS should provide, has
emerged. For our PFS design, we have refrained from
incorporating sophisticated, yet potentially specialized
functionality. Rather, we have made the attempt to make
the basic mechanisms (standard I/O calls) efficient and
flexible to use. This should enable a software layer above
the PFS, e.g. a run-time system, to provide richer,
application-oriented functionality without great effort.

The POSIX.1 standard has been specified for a unipro-
cessor environment where concurrent operations, but
not really parallel ones occur. Hence the existing stand-
ard I/O operations had to be extended appropriately for
parallel processing.

The most notable extension relates to the sharing
semantics, i.e. the rules governing concurrent or parallel
accesses to shared files and directories. The PFS enforces
multiple readers/single writer (concurrent read/exclusive
write, CREW) behaviour of such accesses. More spe-
cifically, these semantics allow read and write operations
to proceed concurrently or simultaneously under the
following constraints:

® A write operation blocks read operations, and vice
versa, if the scope of the accesses overlaps (ie. a
conflict exists).

® Write operations are atomic with respect to each
other and to read operations.

® Conflicting accesses are serialized into arbitrary
order.

The CREW semantics apply to accesses to various types
of data: directories, PFS management data structures,
and files. That means, that in contrast to conventional
UNIX systems, for example, multiple simultaneous non-
conflicting operations on a single shared file are sup-
ported. These semantics are strict and intuitively appeal-
ing, similar to UNIX semantics. They demarcate the
scope of parallelism in I/O load that the PFS should be
able to exploit.

Figure 4 illustrates the basic functional and data layers
of the PFS. In Section 6, we will concentrate on the
central management level which is the part critical for
scalability and for exploiting the parallelism inherent in
the I/O load and architecture. It comprises several levels

Functional view Data view
Client level PFS library User data
| I
Dispatcher Directory tree
Central
management Worker System tables
level
Data transfer Buffer cache
I I
Device level Disk access Disk blocks

FIGURE 4.

File system layers.

of server processes and manages the PFS metadata and
the buffer cache. The PFS library is linked to the client
applications and mediates their I/O requests to the
server processes. The client level as well as the device
level, which includes the device drivers, are not further
dealt with in this paper.

6. KEY DESIGN PRINCIPLES OF THE PFS

This section introduces the essential features of the PFS
that have been designed to map the parallelism inherent
in file and directory I/O to the parallel system described
in Section 3. The scope of parallelism is determined by
the CREW sharing semantics given in Section 5.
Exploiting as much parallelism as semantically possible
is the key building block of providing scalable 1/O
performance. The PFS design concepts are, therefore,
introduced and justified primarily in terms of how they
promote parallelism of data transfers or how they avoid
serial bottlenecks in the PFS software.

We derive these concepts by considering the load
scenarios of Section 4 separately. For each load profile,
the potential impediments to parallel operation are
identified and the appropriate concepts to avoid serial
bottlenecks are introduced. This is not to say that each
concept introduced is effective for the corresponding
load profile only. Rather, structuring the presentation in
this manner serves to show how the proposed features
quite naturally follow from the potential threats to and
opportunities of parallel I/O operation. In practice, just
as any real I/O load will be some combination of the
‘canonical’ load profiles, only the combination of the file
system features will allow the I/O load and architectural
parallelism to be effectively matched.

6.1. Parallelism support for independent requests

Under the independent clients scenario, the file system
load consists of many unrelated directory and file
accesses. There is no systematic concurrent sharing of
files, and conflicting file accesses are assumed to occur
at random only. Thus, from a semantic point of view,
file accesses may proceed largely concurrently or truly
parallel. The challenge for the file system to promote
parallel operations under these circumstances is 2-fold:

® Multiple requests must be serviced in parallel. This
clearly precludes a centralized server architecture.

® If processed in parallel, multiple requests produce
high demand and potential contention on the file
system metadata, i.e. the directory tree and internal
data structures. Serialization of accesses to the metad-
ata must be avoided as far as possible, under the
CREW semantical constraint.

The concepts to overcome the potential threats to paral-
lelism and scalability are outlined subsequently.

THE COMPUTER JOURNAL,

VoL. 36,

No. 8, 1993

€T0Z ‘62 Afenuer uo Lnjuabe |y Yeyiol|gigsiselseAlun e /B1o'seulnolployxo: ufwod//:dny woiy papeojumoq


http://comjnl.oxfordjournals.org/

SCALABLE PARALLEL FILE SYSTEMS 749

6.1.1. Distributed, multi-threaded server

The basic idea to handle client requests in parallel is to
create a light-weight server process (thread) for each
request. The concept is illustrated in Figure 5 by means
of an example.

The file system library, on behalf of an application
process that issues the open() call, sends a request
message to a PFS dispatcher process. This, in turn,
spawns a worker thread that takes over responsibility to
service the request and, in that example, performs path-
name translation, sets up or modifies appropriate system
table entries, and eventually returns a file descriptor and
an error indicator to the client. The dispatcher process
is not burdened with that request and is ready to receive
further requests and spawn more server threads
meanwhile.

Many dispatcher processes are distributed throughout
the system such that concurrent client requests can be
served truly in parallel. An obvious strategy would be
to have one dispatcher process per compute node, but
other configurations are equally possible. The worker
threads need not necessarily be allocated on the same
nodes as their clients. In the first place, performance
considerations may suggest so, but load balancing may
be equally important. In an RSM-based parallel system,
in particular, every node should have a sufficient number
of processes to execute such that high memory access
latencies can be hidden effectively (excess parallelism).
Random placement of file system worker threads, for
example, may be employed to support this goal. This
issue will be revisited later in this section.

Notice that the multi-threaded server approach con-
tributes to meet the excess parallelism requirement. The
prerequisite for this concept to be efficient is that thread
creation and switching is cheap, but, as argued earlier,
this has to be the case in an RSM-based architecture
anyway to make it reasonably efficient.

6.1.2. Management data structures in DSM

To enable the distributed server threads to operate on a
common database, the file system metadata are located
in DSM.

The metadata essentially consist of three levels of

Client process ——» Message

wmmmep Thread
PFS library —<__“/ creation

DISP OPEN
O—O
PFS dispatcher PFS worker
process thread

FIGURE 5. Creation of server threads.

tables similar to UNIX file system data structures which
are termed user file descriptor table, open file description
table, and i-node table in Tanenbaum (1992). The pur-
pose of the tables in our file system is similar, but there
are differences in several details. The single most notable
difference is how disk block addresses are stored. This
issue is however not relevant to the degree of parallelism
achievable. Suffice it to say here that our design allows
files up to the terabyte range to be maintained, and that
the block addressing scheme is symmetrical. Other
differences relate to the locking scheme discussed below.

Logically, the directory tree belongs to the metadata
as well, although there are no separate main memory
data structures to hold directory information. The direct-
ory is stored as a single file on the parallel disks and
fetched into memory (in blocks) through the buffer cache
mechanism. It is globally accessible in the DSM for the
file system worker threads just as the system tables are.

The RSM architecture is most effective for holding
such central data structures. While being logically cent-
ralized and globally accessible, the metadata are physic-
ally distributed in fine grain over the entire system.
Thus, the memory and corresponding network load
generated by metadata accesses of server threads is
smoothed out in the system; the available system
resources are utilized in parallel. These properties hold
for other DSM schemes as well, but to a lesser extent.

Since RSM is accessible from every node with approxi-
mately uniform latency, there is no need to replicate the
metadata. Only a single copy of the central data struc-
tures is maintained. Thus, coherency problems do not
arise in our architecture.

6.1.3. Fine-grained, two-level locking of metadata

To guarantee consistency of shared data structures in a
concurrent or parallel system, temporary locking of
critical data (mutual exclusion synchronization) is
required. This should be kept to a minimum to enforce
serialization only when semantically indispensable.

To achieve this goal, we employ a refined locking
scheme characterized by two properties:

® [t is fine-grained in that only small, but self-contained
portions of metadata are protected, e.g. specific direct-
ories, and individual directory or system table entries.

® [t comprises two lock types, shared and exclusive
locks, which are employed to enforce CREW semant-
ics on common data.

Clearly, as compared with conventional (single-type)
locking as used in UNIX file systems, this locking
technique requires increased design and implementation
effort, and special care to avoid deadlocks and provide
fairness conditions, for example. The benefit is, however,
that more parallel directory searches, pathname transla-
tion, table lookup, and table walks can be performed.
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6.1.4. Scalable fetch&add-based readers/writers
coordination

Implementing the two-level (CREW) locking scheme in
a scalable and efficient way is an essential prerequisite
for the PFS to meet its goals.

Research on such synchronization methods, usually
termed readers/writers (R/W) coordination, has been
pursued for several years now and brought about soph-
isticated bottleneck-free R/W coordination algorithms
(Gottlieb et al., 1983; Freudenthal and Gottlieb, 1991,
Mellor-Crummey and Scott, 1991). There is one draw-
back to these schemes, however: they are restricted to
use busy waiting when processes have to be blocked.
Busy waiting wastes machine resources (‘virtual pro-
cessors’, network and memory module bandwidth) and,
hence, is not a good solution for blocking processes
when waiting time is long. This may be the case in the
PFS when a protected section involves disk accesses,
e.g. for reading in a directory.

Therefore, we have designed a new scalable and
flexible R/W synchronization algorithm that improves
over previous ones. The algorithm is given in Figure 6
in terms of the entry and exit protocols of reader and
writer processes accessing a shared database under the
CREW regime.

The key idea of the algorithm is to use a shared
counter cnt which keeps track of the current status of
contention at the shared database, i.e. the number of
readers and writers waiting or accessing the data. Both
these numbers can be maintained in a single counter in
that the counter is incremented by one for each reader
and by the value HUGE for each writer. If cnt is a 64-bit
quantity and HUGE =232, then up to (232—1) readers
and (232—1) writers may contend for the database. The
first activity in the entry (exit) protocols of readers and
writers is to atomically increment (decrement) the coun-
ter by one or HUGE, respectively, using fetch&add. Thus,
with a single atomic memory transaction, a process
announces (withdraws) its interest, and learns about the
interests of other processes. The status returned is used
to determine the further protocol actions to be taken.
In the conflict-free case, the solution is optimally efficient,
requiring one global memory access only to enter or
exit from the critical region. In case of contention, the
semaphores r and w, accessed by the familiar semaphore
operations P() and V(), become effective in controlling
and coordinating access to the shared database.

Scalability of this R/W solution is ensured through
the use of the fetch&add memory primitive and the
combining feature of the target architecture’s intercon-
nection network. Concurrent fetch&add accesses to the
same memory location are combined ‘on-the-fly’ in the
network, resulting in a single compound request being
propagated, and the replies are split up on their way
back. The requesters are returned results and the
memory contents are changed just as if the requests
were executed in some serial order. The combining

facility fosters both parallelism and scalability in that
such concurrent memory accesses are serviced truly in
parallel rather than serially.

The algorithm is flexible in the sense that the sema-
phore operations P() and V() may be implemented
employing either waiting discipline, busy waiting or
queueing, without changes to the overall structure of the
algorithm. This choice allows the algorithm to be readily
adapted to the various instances of the R/W problem in
the PFS. Scalable, fetch&add-based implementations of
PO and V(), for both busy waiting and queueing, are
easily derived from techniques given in Almasi and
Gottlieb (1989), e.g. scalable parallel queue management.

6.2. Parallelism support for cooperative accesses

As stated in Section 4, the cooperating clients load will
produce concurrent and parallel accesses to the same
file(s). The load on each shared file will, in general,
contain both conflict-free accesses and random and/or
systematic access conflicts.

To handle such situations efficiently, the file system
should provide the following two features:

® [t permits as many parallel accesses on file data as
semantically safe.

® [t enforces as much coordination (i.e. serialization)
as semantically required.

Traditional UNIX file systems are very restrictive in this
respect. At any given time, only a single process is
permitted access to a file, which is achieved through
locking the file’s i-node. The following feature is destined
to establish the above properties in our file system and,
thus, to provide substantial improvement over UNIX.

6.2.1. Record locking on file data

In the context of a universal, POSIX-style file system, a
record is defined as an arbitrary portion of a file. Thus,
a record may range from a single byte to the entire file.

Associated with each file in our file system design is
a table called record table. On each access, the file system
checks whether the desired file portion is accessible
without conflict. If so, the accessing thread may proceed,
and the byte range and type of the access are entered
into the record table. Again, two types of locks are
employed, shared and exclusive locks, for CREW
semantics (another instance of the R/W problem in the
PFS). When an access is finished, the corresponding
entry is removed from the record table.

If an access is detected to be in conflict with one or
more others, as is the case for the write accesses W, and
W, in Figure 7, the accessing thread is blocked until the
specified record has been released by the opponent(s).
Several strategies for activation of blocked threads can
be considered, such as checking activation on every
release of a record or at periodic or random time
intervals.

Clearly, an efficient implementation of record locking
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r: sema
w: sema

cnt: unsigned integer

nar: integer

init_sema (r,0)
init_sema (w,0)
cnt := 0
nar := 0

process reader

/* Semaphore to grant read access in case of conflicting accesses */
* Semaphore to grant write access in case of conflicting accesses */

/* 64-bit counter to indicate number of readers and writers; */

/* reader increments it by one, writer increments it by HUGE =2**32 */
/* Number of active readers; of interest iff writer(s) is (are) */

/* (going to be) blocked and readers have to drain out */

[***** Reader's entry protocol: request read access *****/

if (fetch_and_add(cnt,1) >= HUGE)

P (r)

7 Writer(s) active or waiting ? */
/* Wait for writer to grant access */

ceeeens /* Read the database */

/***** Reader's exit

if (fetch_and_add(cnt,-1) > HUGE)
repeat until (nar>0)
if (fetch_and_add(nar,-1)=1)

Vo(w)

process writer

oldcnt, nwr: integer

protocol: release read access */
/* Writer(s) waiting ? */
/* Wait till number of active readers is set by writer */
* Am I last active reader in this group ? */
/* Grant access to one waiting writer */

/* Variables local to each process */

[*¥**** Writer's entry protocol: request write access *****/

oldcnt := fetch_and_add(cnt,HUGE)

if (oldent > 0)

/* Request access and check R/W status */
/* Reader(s) active ? */

if (oldcnt < HUGE) /* Am I first writer to be blocked ? */
nar := oldcnt /* 1 am first writer; set number of active readers */
P (w) /* Wait for last active reader to grant access */

ceecene /* Write the database */

[¥***% Writer's exit pro

oldcnt := fetch_and_add(cnt, -HUGE)

nwr := MOD(oldcnt
if (nwr > 0)

if (oldcnt > 2*HUGE)

tocol: release write access *****/
/* Release exclusive access */
,HUGE) /* Determine number of currently waiting readers */

/* More writer(s) waiting ? */

nar := nwr /* Yes; set number of active readers for next read round */
par i:=0 for nwr

vV (r) /* In parallel, grant access to nwr readers */
else
if (oldcnt > HUGE) /* Writer(s) waiting ? */
vV (w) /* Grant access to next writer */
FIGURE 6. Scalable R/W coordination algorithm.
K2 | Blocked
—mmmmmm———— e threads
R, H I Ry : ! Ry: I W, 1 I W3 Active
0 File offset -1
FIGURE 7. Conflict-free and conflicting concurrent accesses on file data.
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is crucial for file system performance. It is certainly
difficult to implement, but it is expected that the parallel-
ism achievable will well outweigh the increased overhead
of the record locking protocol.

6.3. Parallelism exploitation from large transfers

The third scenario assumes large I/O transfers to and
from global memory. A single access to a large file
portion does not entail conflicts, but might result in all
data being passed through a single node if not forced to
exploit the parallel hardware resources. The challenge
for the PFS is, therefore, to map the intra-request
parallelism inherent in large accesses to the declustered
file organization and parallel data transfer paths of the
machine.

The following two concepts are proposed for that
purpose. The first one, decomposition, is particularly
tailored to meet the challenge of large transfers, whereas
the second one, the buffer cache, is effective for the other
load patterns as well.

6.3.1. Parallel decomposition of large transfers

The intra-request parallelism of large transfer operations
is exploited in that a single access is decomposed into
multiple parallel accesses each of which is serviced by a
dedicated data transfer or copy thread. This is depicted
in Figure 8 where the data transfer threads are denoted
by COPY_RD. These threads are spawned by the worker
thread (READ, in this case) and copy data from the
disk system (or cache) to the user space. It is proposed
to assign transfers of constant size to each of the copy
threads, and to have their number vary with the trans-
fer size.

Clearly, the first prerequisite for parallel transfer is
that the data are available in parallel from the disk
system or cache, ie. that the file being accessed is
declustered over several or all I/O nodes. The file block
allocation mechanism has to ensure this property when
the file is created or extended.

Second, the copy threads have to be distributed all
over the system as well, such that the data transfers can
be initiated and controlled in parallel and the memory
load and network traffic is equally distributed through-
out the system. In principle, the copy threads can be
scheduled on compute nodes or disk nodes, based on a
deterministic (e.g. round-robin) or random allocation
strategy. The important point here is that the process
management system supports creation and placement of
a possibly very large number of threads in an efficient
(parallel) and scalable manner.

This concept provides a number of advantages:

® Utilization of parallel transfer paths, ie. parallel
operation on all architectural levels.

® Support of excess parallelism and load balancing in
that multiple processes are generated and distributed
for a single I/O operation (given it is sufficiently
large).

® Support of scalability through increasing transfer rate
for growing system and transfer sizes, induced by an
increasing number of copy threads.

6.3.2. Buffer cache in DSM

For performance reasons, a buffer cache is added to the
file system which avoids disk accesses for frequently
used disk blocks. Since the file system administers the
disk blocks of all I/O processors (IOPs) globally (files
are declustered over all IOPs), the cache has to be
globally accessible as well. Local caches in private IOP
memories cannot be used; rather, the cache blocks have
to be placed in DSM. This has the advantage that only
one instance per cache block has to be maintained which
avoids coherency problems. The arguments and benefits
are analogous to those for placing file metadata in DSM.

Cache management is performed by the data transfer
processes. They search the cache for the requested disk
blocks and, in case of a cache hit, transfer data directly
between cache and client address space. If a data transfer
thread encounters a cache miss, however, it initiates a
disk access in that it spawns a disk access thread (denoted
RD in Figure 8) on the very IOP the requested disk
blocks are allocated upon.

The obvious way to organize the cache in DSM is to
rely on the standard address randomization scheme to
distribute cache blocks and cache administration data
structures throughout the entire system. This yields a
truly global cache that can be accessed from any node
and can hold disk blocks from any IOP in the system
in an arbitrary, dynamically changing pattern. This can
be effective for relieving an IOP from heavy load, for
example, in that (many) more blocks of that IOP are
stored in the cache than of other IOPs. There is a
significant drawback, however, in that data copying
from a disk to the cache (or vice versa) has to take place
in two steps: first from the disk controller to a local disk

Client

—_—

Client address space in DSM

DISP READ

: Data
¢ transfers

COPY_RD
(cache accesses)

RD
(disk accesses)

FIGURE 8. Decomposition of large data transfers.
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buffer (DMA transfer), and second, from this buffer to
the distributed cache block (randomization).

The facility of localizing pages on specific nodes, as
indicated in Section 3, allows an alternative scheme (and
potential optimization) to be considered. The cache can
be organized as a collection of independent, local IOP
caches, each of which holds blocks from the attached
disks only. The local disk blocks and local cache admin-
istration data, while still being globally visible and
accessible, are allocated in pages localized to the IOP.
That is, they are not distributed, and each page is stored
contiguously in memory. The main advantage is that
disk data can be copied into the local cache area directly.
This approach avoids the second step of the global cache
organization (i.e. additional data copying over the net-
work) and will thus be more efficient in moving data
between disks and caches.

Because of this obvious performance advantage and
our expectation that ‘hot’ disks and IOPs should occur
rarely in a system storing files in declustered fashion, we
currently prefer the organization with many separate
IOP caches. One must, however, bear in mind that there
is still a trade-off between the efficiency of this organiza-
tion and the superior caching behaviour of the global
cache. The issue will have to be resolved by quantitative
evaluation studies.

7. CONCLUSION AND FURTHER WORK

We have presented the design strategy and the key
concepts of a parallel file system supporting standard
POSIX-style file I/O with maximum concurrency in a
universal parallel computer equipped with scalable DSM
(RSM). Such machines do not yet exist, but are expected
for the near future. Besides, many of the proposed
concepts will also be effective for DSM schemes with
less strict scalability requirements.

The major thrust of our PFS is consistent utilization
of the parallelism offered by the underlying architecture
and avoidance of serial bottlenecks in the PFS software
to ensure scalable I/O performance.

The design principles presented in this paper obviously
do not describe a complete PFS design. However, as we
have tried to make clear using qualitative reasoning,
they are essential prerequisites for the PFS to meet its
scalability and performance objectives.

Research on the PFS continues along three lines:

® Design refinement.
® Prototype implementation.
® Quantitative evaluation (simulation).

Design refinement in essence involves two activities. First,
scalable algorithms and concurrent data structures for
the central management level of the PFS (cf. Figure 4)
are being conceived. An important example are data
structures for record locking and corresponding algo-
rithms, as indicated in Section 6; another is detailed
design of caching policies. An essential step in that

direction has already been completed through the design
of the scalable readers/writers coordination algorithm
given in Figure 6. Second, decisions to ‘dimension’ cer-
tain data structures have to be taken. This involves
determining quantities such as the size(s) of the indi-
vidual transfer units comprising high-volume data trans-
fers (¢f. Figure 8) or the size(s) of local buffer caches.
This must be supported by quantitative evaluations
(modelling and simulation) outlined below.

A prototype implementation is underway on a small,
bus-based shared-memory multiprocessor that com-
prises six compute nodes and six disk nodes. The imple-
mentation is to demonstrate that the proposed PFS
concepts are indeed feasible and implementable with
reasonable effort. An example of what can be learned
from the prototype is whether the degree of parallelism
(in terms of number of processes) required for RSM
machines for effective latency hiding, can be generated
or adequately supported by file system activities. A
peculiar memory architecture makes the multiprocessor
well-suited for implementing the PFS concepts: besides
physically shared memory, non-coherent DSM with
NUMA access characteristics is provided by the hard-
ware. This allows localized shared pages to be defined
and used, for example. The implementation uses a pro-
prietary operating system kernel which supports message
passing, efficient light-weight process creation and
switching (thread management), and simple shared
memory management.

Finally, quantitative evaluations are performed to serve
three purposes. First, since scalability cannot be demon-
strated by the prototype implementation, one has to
resort to simulation. A model of the 1/O load, the PFS,
and the parallel machine is being developed and simu-
lated to obtain quantitative results on I/O performance
and its scalability behaviour. Indirectly, it can be estab-
lished that the PFS software is free of serial bottlenecks,
or impediments to scalability can be identified. Second,
the results allow an estimate of the absolute performance
of the machine’s I/O subsystem to be derived. Third, in
the course of developing the overall model, intermediate
models are created and simulated in order to quantitat-
ively support the detailed design decisions referred to
above (e.g. ‘dimensioning’ aspects).

ACKNOWLEDGEMENTS

The parallel file system design is the result of joint work
with Horst Eckardt and Axel Klein. Both have also
contributed to an earlier version of this paper. The work
reported in this paper has been carried out within the
cooperative ESPRIT project GPMIMD (General-
Purpose MIMD Machines) and has partly been funded
by the CEC under EP5404.

References

Abolhassan, F., Keller, J. and Paul, W. J. (1991) On the cost-
effectiveness of PRAMs. In Proc. 3rd IEEE Symp. on Parallel
and Distributed Processing. IEEE CS Press, Los Alamitos.

THE COMPUTER JOURNAL,

VoLr. 36, No.8, 1993

€T0Z ‘62 Afenuer uo Lnjuabe |y Yeyiol|gigsiselseAlun e /B1o'seulnolployxo: ufwod//:dny woiy papeojumoq


http://comjnl.oxfordjournals.org/

754 H. HELLWAGNER

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. J. and
Scheerer, D. (1993) On the physical design of PRAMs.
Comp. J., 36.

Akella, J. and Siewiorek, D. P. (1991) Modeling and measure-
ment of the impact of input/output on system performance.
In Proc. 18th Ann. Int. Symp. on Computer Architecture.
IEEE CS Press, Los Alamitos.

Almasi, G. S. and Gottlieb, A. (1989) Highly Parallel
Computing. Benjamin/Cummings, Redwood City.

Alverson, R., Callahan, D., Cummings, D., Koblenz, B.,
Porterfield, A. and Smith, B. (1990) The Tera computer
system. In Proc. 1990 Int. Conf. on Supercomputing, pp. 1-6.
ACM Press, New York.

Asbury, R. K. and Scott, D. S. (1989) Fortran I/O on the
iPSC/2. In Proc. 4th Conf. on Hypercube Concurrent
Computers and Applications, pp. 129-132.

Choudhary, A. (1993) Parallel I/O systems: Guest Editor’s
Introduction. J. Parallel Distributed Comput.

Crockett, T. W. (1989) File concepts for parallel I/O. In Proc.
Supercomputing 1989, pp. 574-579. ACM Press, New York.

DeBenedictis, E. and del Rosario, J. M. (1992) nCUBE parallel
I/O software. In Proc. 11th Ann. IEEE Int. Phoenix Conf.
on  Computers and  Communications (IPCCC'92),
pp. 117-124. IEEE CS Press, Los Alamitos.

del Rosario, J. M. (1992) High performance parallel I/O on
the nCUBE 2. IEICE Transactions. Institute of Electronics,
Information and Communication Engineering, Japan.

Dibble, P. C., Scott, M. L. and Ellis, C. S. (1988) Bridge: a
high-performance file system for parallel processors. In Proc.
8th Int. Conf. on Distributed Computer Systems, pp. 154—161.
IEEE CS Press, Los Alamitos.

Dibble, P. C. and Scott, M. L. (1989) Beyond striping: the
bridge multiprocessor file system. Comp. Architecture News,
17, 32-39.

Eckardt, H. (1991) Disk I/O Requirements and Distributed 1/0
Structures for Parallel Computers. Internal Report SYS
3-BeG 022/91, Siemens, Munich.

Flynn, R. J. and Hadimioglu, H. (1988) A distributed hypercube
file system. In Proc. 3rd Conf. on Hypercube Concurrent
Computers and Applications, pp. 1375-1381. ACM Press,
New York.

French, J. C, Pratt, T. W. and Das, M. (1993) Performance
measurement of the concurrent file system of the Intel
iPSC/2 hypercube. J. Parallel Distributed Comput., 17,
pp. 115-121.

Freudenthal, E. and Gottlieb, A. (1991) Process coordination
with fetch-and-increment. In Proc. Conf. ASPLOS IV,
pp- 260-268. ACM Press, New York.

Ghosh, J., Goveas, K. D. and Draper, J. T. (1993) Performance
evaluation of a parallel I/O subsystem for hypercube multi-
computers. J. Parallel Distributed Comput., 17, pp. 90-106.

Gottlieb, A., Lubachevsky, B. D. and Rudolph, L. (1983) Basic
techniques for the efficient coordination of very large num-
bers of cooperating sequential processors. ACM TOPLAS,
5, 164-189.

Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P.,
Rudolph, L. and Snir, M. (1984) The NYU ultracomputer—
designing an MIMD shared memory parallel computer.
IEEE Trans. Comp., C-32, 175-189.

Hagersten, E., Landin, A. and Haridi, S. (1992) DDM—a
cache-only memory architecture. COMPUTER, 25, 44-54.
Hellwagner, H. (1990) A Survey of Virtually Shared Memory
Schemes. SFB Report No.342/33/90 A, Technical

University, Munich.

Hellwagner, H. (1992) On the Practical Efficiency of
Randomized Shared Memory. In L. Bougé, M. Cosnard,
Y. Robert, and D. Trystram (eds.), Parallel Processing: Proc.
CONPAR 92/VAPP V, pp. 429-440. Springer-Verlag, Berlin.

Hennessy, J. L. and Patterson, D. A. (1990) Computer

Architecture: A Quantitative Approach. Morgan Kaufmann,
San Mateo.

IEEE (1990) IEEE Std 1003.1-1990/International Standard
ISO/IEC 9945-1: 1990. Information Technology— Portable
Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C Language]. 1EEE,
New York.

IEEE (1992) IEEE Std 1596-1992. SCI—Scalable Coherent
Interface. IEEE, New York.

Intel Corp. Supercomputer Systems Division (1992) Paragon™
XP/S Product Information. Intel, Beaverton.

Katz, R. H,, Gibson, G. A. and Patterson, D. A. (1989) Disk
system architectures for high performance computing. Proc.
IEEE, 77, 1842-1858.

Kim, M. Y. (1986) Synchronized disk interleaving. IEEE Trans.
Comp., C-35, 978-988.

Kim, M. Y. and Tantawi, A. N. (1991) Asynchronous disk
interleaving: approximating access delays. IEEE Trans.
Comp., C-40, 801-810.

Klein, A. (1991) Interconnection networks for universal mess-
age-passing systems. In Proc. ESPRIT Conf. 91, pp. 336-351.
CEC, Brussels.

Kotz, D. (1992) Multiprocessor File System Interfaces.
Technical Report PCS-TR92-179, Dartmouth College,
Hanover, NH.

Kotz, D. F. and Ellis, C. S. (1990) Prefetching in file systems
for MIMD multiprocessors. [ EEE Trans. Parallel Distributed
Systems, 1, 218-230.

Kotz, D. F. and Ellis, C. S. (1993) Caching and writeback
policies in parallel file systems. J. Parallel Distributed
Comput., 17, pp. 140-145.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D.,
Gupta, A., Henessy, J., Horowitz, M. and Lam, M. S. (1992)
The Stanford DASH multiprocessor. Computer, 25, 63-79.

Mellor-Crummey, J. M. and Scott, M. L. (1991) Scalable
reader-writer synchronization for shared-memory multipro-
cessors. In Proc. 3rd ACM Symp. on Principles and Practice
of Parallel Programming (PPoPP), pp. 106-113. ACM Press,
New York.

Nitzberg, B. and Lo, V. (1991) Distributed shared memory: a
survey of issues and algorithms. Computer, 24, 52-60.

Patterson, D. A., Gibson, G. and Katz, R. H. (1988) A case
for redundant arrays of inexpensive disks (RAID). In Proc.
ACM SIGMOD Conf. on Management of Data, pp. 109-116.
ACM Press, New York.

Pierce, P. (1989) A concurrent file system for a highly parallel
mass storage subsystem. In Proc. 4th Conf. on Hypercube
Concurrent Computers and Applications, pp. 155-160. ACM
Press, New York.

Pratt, T. W,, French, J. C,, Dickens, P. M. and Janet Jr., S. A.
(1989) A comparison of the architecture and performance
of two parallel file systems. In Proc. 4th Conf. on Hypercube
Concurrent Computers and Applications, pp. 161-166. ACM
Press, New York.

Ranade, A. G, Bhatt, S. N. and Johnsson, S. L. (1988) The
fluent abstract machine. In Allen, J. and Leighton, F. T.
(eds.), Advanced Research in VLSI (Proc. 5th MIT Conf.),
pp. 71-93, MIT Press, Cambridge, MA.

Reddy, A. L. N. and Banerjee, P. (1989) An evaluation of
multiple-disk I/O systems. IEEE Trans. Comp., C-38,
1680-1690.

Reddy, A. L. N. and Banerjee, P. (1990) Design, analysis, and
simulation of I/O architectures for hypercube multiproces-
sors. IEEE Trans. Parallel Distributed Systems, 1, 140—151.

Rettberg, R. D., Crowther, W. R., Carvey, P. P. and Tomlinson,
R. S. (1990) The Monarch parallel processor hardware
design. Computer, 23, 18-30.

Rothnie, J. (1992) Kendall square research introduction to the

THE COMPUTER JOURNAL,

VoL. 36, No.8, 1993

€102 ‘62 Afenuer uo Unjusbe |y »eYlol|giosiselseAlun e /Bioseulnolpioixo: ulwody/:dny woly papeojumoq


http://comjnl.oxfordjournals.org/

SCALABLE PARALLEL FILE SYSTEMS 755

KSR1. In Meuer, H.-W. (ed.), Supercomputer 92,
pp. 104-114. Springer-Verlag, Berlin.

Salem, K. and Garcia-Molina, H. (1986) Disk striping. In
Proc. IEEE Data Engineering Conf., pp. 336-342. IEEE CS
Press, Los Alamitos.

Tanenbaum, A. S. (1992) Modern Operating Systems. Prentice
Hall, Englewood Cliffs, NJ.

Thompson, P. (1993) Concurrent interconnect for parallel
systems. Comp. J., 36.

Valiant, L. G. (1990a) General purpose parallel architectures.
In van Leeuwen, J. (ed.), Handbook of Theoretical Computer
Science. North-Holland, Amsterdam.

Valiant, L. G. (1990b) A bridging model for parallel computa-
tion. Commun. ACM, 33, 103-111.

Witkowski, A., Chandrakumar, K. and Macchio, G. (1988)
Concurrent I/O system for the hypercube multiprocessor. In
Proc. 3rd Conf. on Hypercube Concurrent Computers and
Applications, pp. 1398-1047. ACM Press, New York.

THE COMPUTER JOURNAL,

Vor. 36, No.8, 1993

€T0Z ‘62 Afenuer uo Lnjuabe |y Yeyiol|gigsiselseAlun e /B1o'seulnolployxo: ufwod//:dny woiy papeojumoq


http://comjnl.oxfordjournals.org/

