Over the Top Content Delivery: State of the Art and Challenges Ahead

ACM Multimedia – Nov. 2014

Christian Timmerer and Ali C. Begen

Note Well

The information and slides in this tutorial are public.

However, Alpen-Adria-Universität Klagenfurt, Cisco and their affiliates hold the copyrights.

Please use proper citation when using content from this tutorial.

The slides will be available at http://www.slideshare.net/christian.timmerer and http://ali.begen.net in a few days

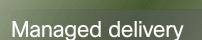
Presenters Today

Christian Timmerer

- Associate Professor at the Institute of Information Technology (ITEC), Multimedia Communication Group (MMC), Alpen-Adria-Universität Klagenfurt, Austria
- Co-founder of bitmovin (www.bitmovin.com)
- Research Interests
 - Immersive multimedia communication
 - Streaming, adaptation, and
 - Quality of Experience (QoE)
- General Chair of QoMEX'13, WIAMIS'08, TPC-Co Chair of ACM TVX'15, QoMEX'14
- AE for Computing Now, IEEE Transactions on Multimedia; Area Editor for Signal Processing: Image Communication; Editor for SIGMM Records
- EU projects: DANAE, ENTHRONE, P2P-Next, ALICANTE, SocialSensor, QUALINET, and ICoSOLE
- Active member of ISO/IEC MPEG and DASH-IF
- Blog: http://blog.timmerer.com; @timse7

Ali C. Begen

- Have a Ph.D. degree from Georgia Tech, joined Cisco in 2007
- Works in the area of architectures for next-generation video transport and distribution over IP networks
- Areas of Expertise
 - Networked entertainment
 - Internet multimedia
 - Transport protocols
 - Content distribution
- Senior member of the IEEE and ACM
- Visit http://ali.begen.net for publications and presentations


What to Expect from This Tutorial

- Upon attending this tutorial, the participants will have an understanding of the following:
 - ✓ Fundamental differences between IPTV and IP (over-the-top) video
 - ✓ Features of various types of streaming protocols
 - ✓ Principles of HTTP adaptive streaming
 - ✓ Content generation, distribution and consumption workflows
 - ✓ Current and future research on unmanaged video delivery
 - ✓ The MPEG DASH standard

Agenda

- Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming
 - OTT Delivery and Example Services
 - Media Delivery over the Internet
 - HTTP Adaptive Streaming Building Blocks
 - Workflows for Content Generation, Distribution and Consumption
 - Overview of the MPEG DASH Standard
- Part II: Common Problems in HTTP Adaptive Streaming
 - Multi-Client Competition Problem
 - Consistent-Quality Streaming
 - QoE Optimization
 - Inter-Destination Media Synchronization
- Part III: Open Issues and Future Research Directions

First Things First IPTV vs. IP (Over-the-Top) Video

IPTV

Emphasis on quality

Linear TV plus VoD

Paid service

IP Video

Best-effort delivery

Quality not guaranteed

Mostly on demand

Paid or free service

Three Dimensions of the Problem

Content, Transport and Devices

Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming

- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard

Internet Video Essentials

Reach	Reach all connected devices
Scale	 Enable live and on-demand delivery to the mass market
Quality of Experience	Provide TV-like consistent rich viewer experience
• Enable revenue generation thru paid content, subscript targeted advertising, etc.	
Regulatory	 Satisfy regulations such as captioning, ratings and parental control

Creating Revenue - Attracting Eye Balls

- High-End Content
 - Hollywood movies, TV shows
 - Sports
- Excellent Quality
 - HD/3D/UHD audiovisual presentation w/o artifacts such as pixelization and rebuffering
 - Fast startup, fast zapping and low glass-to-glass delay
- Usability
 - Navigation, content discovery, battery consumption, trick modes
- Service Flexibility
 - Linear TV
 - Time-shifted and on-demand services
- Reach
 - Any device, any time
- Auxiliary Services
 - Targeted advertising, social network integration

Internet TV vs. Traditional TV in 2010

- Areas most important to overall TV experience are:
 - Content
 - Timing control
 - Quality
 - Ease of use
- While traditional TV surpasses Internet TV only in quality, it delivers better "overall experience"

When comparing traditional and Internet TV, which option is better?

	Traditional	Internet
Content	7%	≻ 79%
Timing / Control	7%	▶ 83%
Quality	≻ 80%	16%
Ease of Use	23%	≻ 52%
Control (FF, etc.)	9%	≻ 77%
Portability	4%	▶ 92%
Interactivity	31%	≻ 52%
Sharing	33%	> 56%
Overall Experience	> 53%	33%

Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming

- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard

The Lines are Blurring between TV and the Web

AT&T U-verse - US

Verizon FlexView - US

ABC TV - Australia

Onet - Poland

TiViBu – Turkey

Amazon – US

14

Netflix

Content

Over 100K titles (DVD) Shipped 1 billionth DVD in 02/07 Shipped 2 billionth DVD in 04/09 Today: SuperHD and 3D. Plans for UltraHD Revenue \$1.3B in Q3 2014 \$4.3B ('13), \$3.6B ('12), \$3.2B ('11), \$2.1B ('10) **Streaming Subscribers** 37.2M (US) by Q3 2014 (15.8M in 40 countries) [6M DVD subscribers in the US by Oct. 2014] Competitors Hulu Plus, Amazon Prime, TV Everywhere Difficulties

ISP data caps

ISP/CDN throughput limitations

Big Data at Netflix

Library: 3PB

Ratings: 4M/day, searches: 3M/day, plays: 30M/day

5B hours streamed in Q3 2013 (2B in Q4 2011, 3B in Q3 2012)

Plans

Unlimited streaming (only) for \$7.99 (US and Canada)

(4-stream plan at \$11.99)

[Supported by over 450 devices]

1 DVD out at-a-time for \$7.99 (US)

Blu-rays for an additional \$2 per month (US)

HBO GO

Delivery of TV Content to IP-Enabled Devices

- Subscribers can watch HBO content via the Internet or cellular (US only)
 - First launched in Feb. 2010 with Verizon FiOS
 - Later expanded to AT&T U-Verse, DirecTV, DISH Network, Suddenlink, WOW!, Comcast Xfinity, Time Warner Cable (Beta available for Cox, Harvard, etc.)
 - Content includes more than 1,400 titles, every episode of every season of HBO series
 - HBO plans to serve consumers directly in 2015

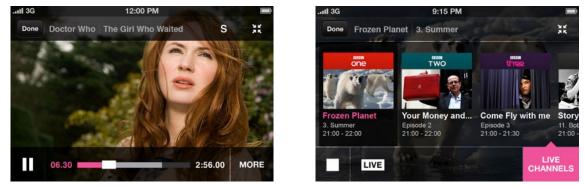
http://www.hbogo.com/

Hulu

Summary

- Available in the US and Japan
- Ad-supported subscription service business model
 - 4M+ Hulu Plus subscribers by the end of Q1 2013
- Revenue of \$700M (2012), \$420M (2011), \$263M (2010), \$108M (2009) and \$25M (2008)
- Expected revenue of \$1B for 2013
- Content
 - Catch-up TV (60000+ episodes, 2300 TV series)
 - 50000+ hours of video
 - 430+ content partners
 - Encoded at 480, 700, 1000, 2500 and 3200 Kbps
- Devices
 - Primarily PC and Mac
 - Smartphones and tables (only w/ Hulu Plus)
 - Internet-connected TV (only w/ Hulu Plus)

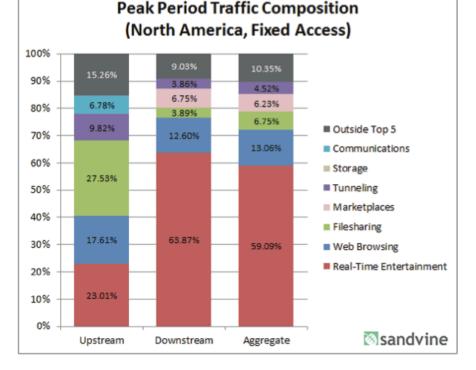
NBCUniversal


FOX

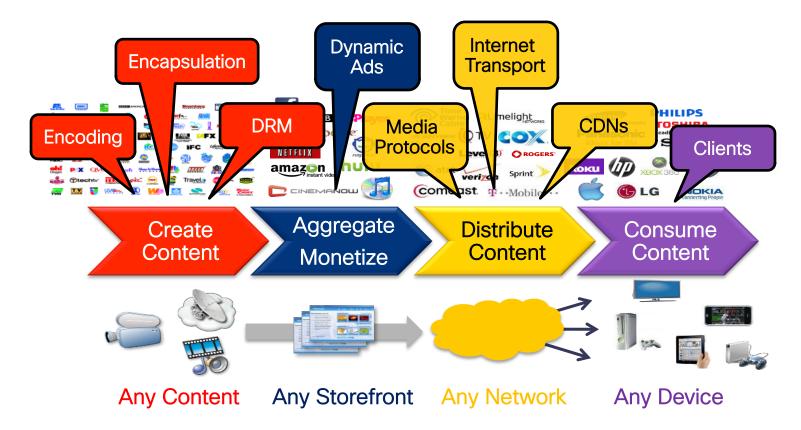
BBC iPlayer Available (Almost) Globally

- Statistics for August 2014
 - Total Requests
 - 179M for TV programs (15% of the requests were for live streams)
 - 64M for radio programs (79% of the requests were for live streams)
 - Devices
 - 30% computers (-), 23% tablets (+), 19% mobile devices (+), 13% TV platform operators (~), %3 game consoles (~)
- 3G streaming is still unavailable on some platforms/operators

Source: http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-aug14.pdf



Internet Video in the US April 2014


	Unique Viewers (x1000)	Videos (x1000)	Minutes per Viewer
Google Sites	155,613	11,069,548	294.0
Facebook	88,424	4,592,878	79.9
AOL, Inc.	69,385	1,314,206	49.5
Yahoo Sites	55,674	579,452	63.1
NDN	50,945	558,226	81.3
Blinkx	43,660	600,692	29.4
Turner Digital	39,765	392,635	53.1
Vimeo	37,975	170,131	33.1
Amazon Sites	37,659	164,205	25.0
AnyClip.com	36,626	437,140	51.0
Total	187,791	46,637,320	1,066.8

Multimedia is Predominant on the Internet

- Real-time entertainment
 - Streaming video and audio
 - More than 50% of Internet traffic at peak periods
- Popular services
 - YouTube (13.2%), Netflix (34.2%), Amazon Video (1.9%), Hulu (1.7%)
 - All delivered over the top

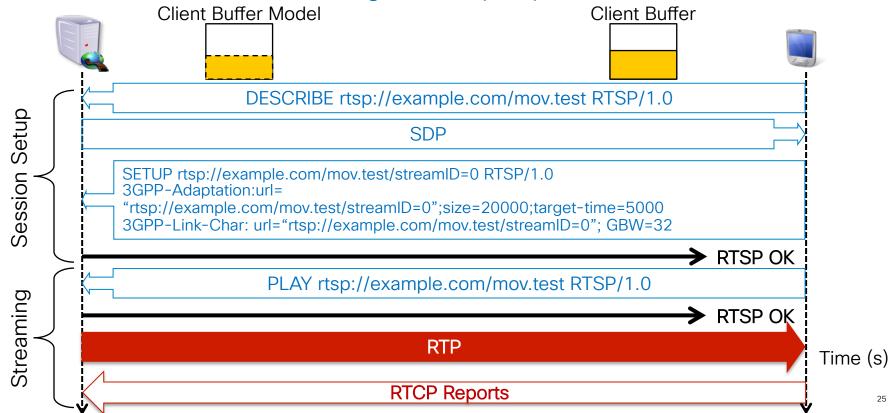
Open Digital Media Value Chain

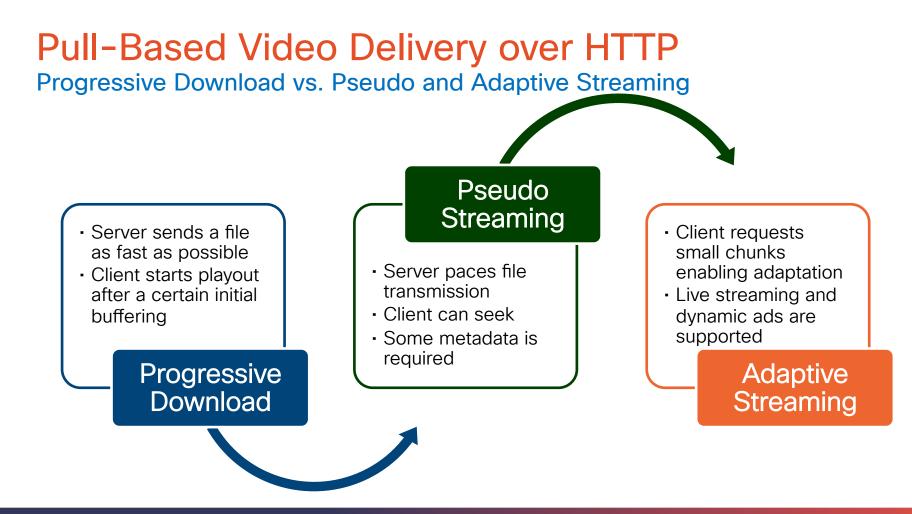
Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming

- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard

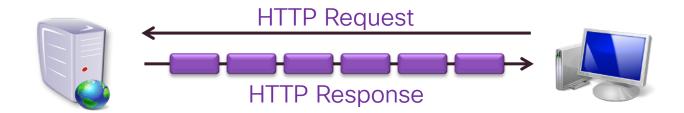
Some Background

Broadcast, Broadband, Hybrid Broadcast Broadband


- Broadcast: MPEG2-TS, DVB, etc.
- Broadband, Push-based Streaming
 - Sender-initiated, content is pushed towards clients (unicast, multicast); intelligent servers, infrastructure, dump clients; typically managed networks
 - Real-time Transport Protocol (RTP) and RTSP, RTCP (sender/receiver reports), SDP, SAP ... requires codec-specific payload formats
 - User Datagram Protocol (UDP): simple, connection-less but unreliable
 - Dedicated streaming architecture and corresponding infrastructure
 - Adaptivity through explicit feedback loop, automatic repeat requests, server-based real-time adaptation or stream switching
 - NAT/Firewall issues: requires STUN/TURN/etc. protocols
- Broadband, Pull-based Streaming
 - Client-initiated, content is pulled from server (unicast); intelligent clients, existing infrastructure, servers; typically unmanaged networks OTT streaming
 - Manifest and segments formats (MPEG2-TS, ISO-BMFF)
 - Hypertext Transfer Protocol (HTTP): port 80, no NAT/firewall issues
 - Transmission Control Protocol (TCP): connection-oriented
 - Re-use of existing infrastructure for Web content (server, proxy, cache, CDN)
 - Adaptivity through smart client decisions adaptation logic
- Hybrid Broadband Broadcast
 - Synchronization issues

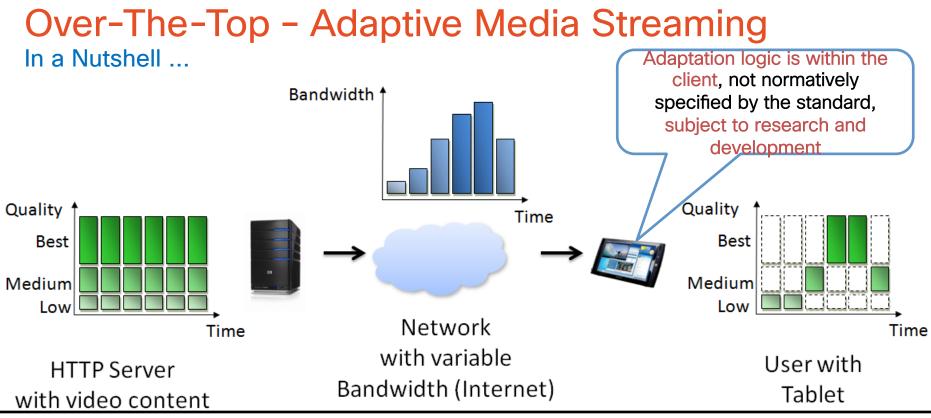

Push and Pull-Based Video Delivery

	Push-Based Delivery	Pull-Based Delivery
Source	Broadcasters/servers like Windows Media Apple QuickTime, RealNetworks Helix Cisco VDS/DCM	Web/FTP servers such as LAMP Microsoft IIS Adobe Flash RealNetworks Helix Cisco VDS
Protocols	rtsp, rtp, udp	HTTP, RTMPx, FTP
Video Monitoring and User Tracking	RTCP for RTP transport	(Currently) Proprietary
Multicast Support	Yes	No
Caching Support	No	Yes for HTTP


Push-Based Video Delivery over RTSP

3GPP Packet-Switched Streaming Service (PSS)

Progressive Download One Request, One Response



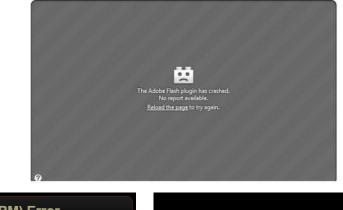
What is Streaming?

Streaming is transmission of a continuous content from a server to a client and its simultaneous consumption by the client

Two Main Characteristics

- 1. Client consumption rate may be limited by real-time constraints as opposed to just bandwidth availability
- 2. Server transmission rate (loosely or tightly) matches to client consumption rate

C. Timmerer and C. Griwodz, "Dynamic adaptive streaming over HTTP: from content creation to consumption", *In Proceedings of the 20th* **ACM international conference on Multimedia (MM '12)**, Nara, Japan, Oct./Nov. 2012.


http://www.slideshare.net/christian.timmerer/dynamic-adaptive-streaming-over-http-from-content-creation-to-consumption

29

Common Annoyances in Streaming Stalls, Slow Start-Up, Plug-In and DRM Issues

- Wrong format
- Wrong protocol
- Plugin requirements
- DRM issues
- Long start-up delay
- Poor quality
- Frequent stalls
- Quality oscillations
- No seeking features

Digital Rights Management (DRM) Error Error Code: N8151

We're sorry, but there is a problem playing protected (DRM) content on your system.

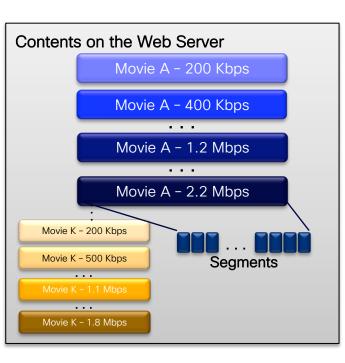
To resolve this problem:

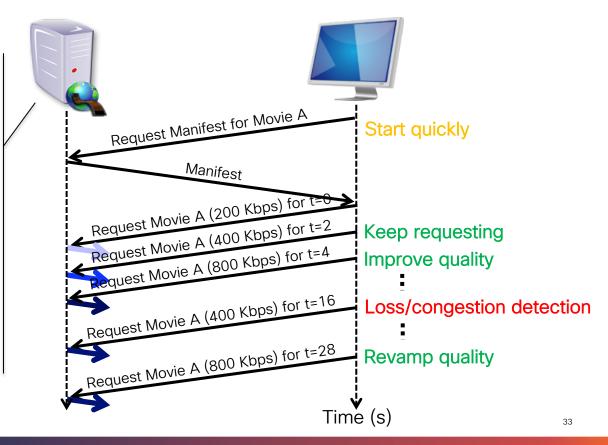
1. Close your browser.

2. Then reopen the browser and try playing again.

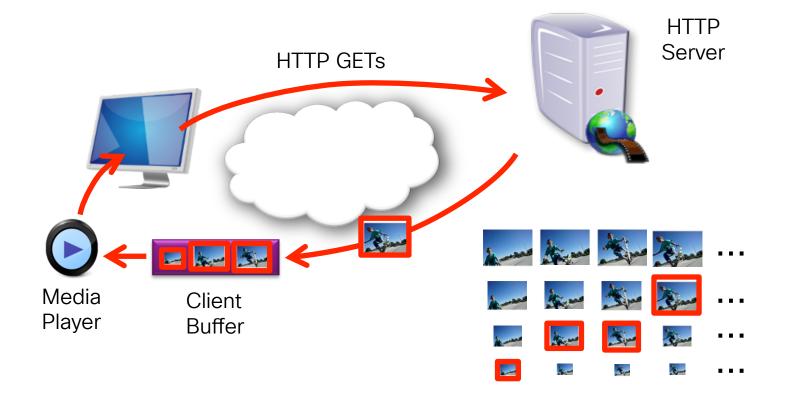
If the problem persists, call Netflix at 866-579-7113.

Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming


- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard


Adaptive Streaming over HTTP

Adapt Video to Web Rather than Changing the Web

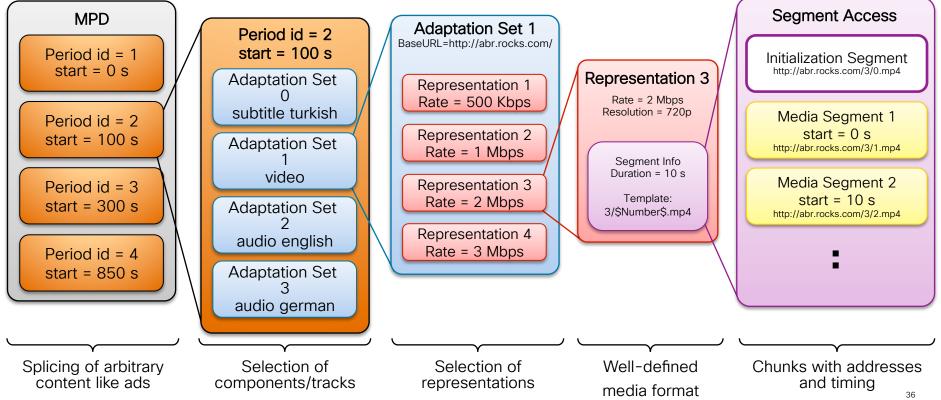

- Imitation of Streaming via Short Downloads
 - Downloads desired portion in small chunks to minimize bandwidth waste
 - Enables monitoring consumption and tracking clients
- Adaptation to Dynamic Conditions and Device Capabilities
 - Adapts to dynamic conditions anywhere on the path through the Internet and/or home network
 - Adapts to display resolution, CPU and memory resources of the client
 - Facilitates "any device, anywhere, anytime" paradigm
- Improved Quality of Experience
 - Enables faster start-up and seeking (compared to progressive download), and quicker buffer fills
 - Reduces skips, freezes and stutters
- Use of HTTP
 - Well-understood naming/addressing approach, and authentication/authorization infrastructure
 - Provides easy traversal for all kinds of middleboxes (e.g., NATs, firewalls)
 - Enables cloud access, leverages existing HTTP caching infrastructure (Cheaper CDN costs)

Multi-Bitrate Encoding and Representation Shifting

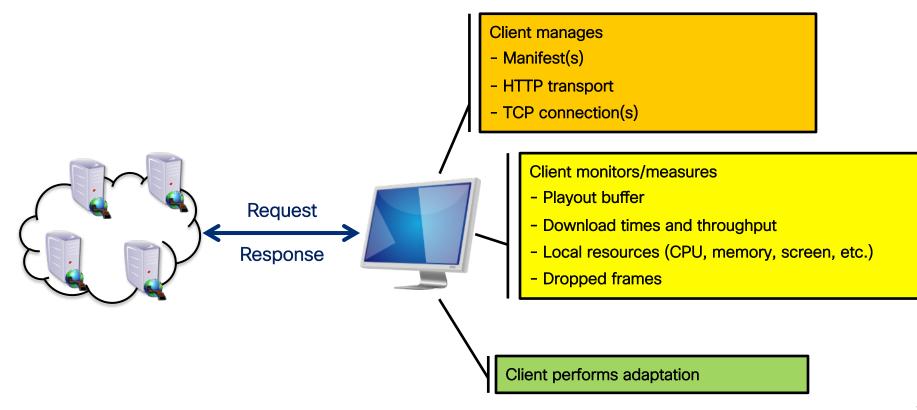
Adaptive Streaming over HTTP

Example Representations

Vancouver 2010


	Encoding Bitrate	Resolution	Frame Rate	
Representation #1	3.45 Mbps	1280 x 720	30 fps	Re
Representation #2	1.95 Mbps	848 x 480	30 fps	Re
Representation #3	1.25 Mbps	640 x 360	30 fps	Re
Representation #4	900 Kbps	512 x 288	30 fps	Re
Representation #5	600 Kbps	400 x 224	30 fps	Re
Representation #6	400 Kbps	312 x 176	30 fps	Re

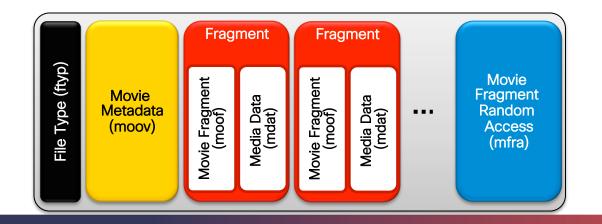
Sochi 2014


	Encoding Bitrate	Resolution	Frame Rate
Representation #1	3.45 Mbps	1280 x 720	30 fps
Representation #2	2.2 Mbps	960 x 540	30 fps
Representation #3	1.4 Mbps	960 x 540	30 fps
Representation #4	900 Kbps	512 x 288	30 fps
Representation #5	600 Kbps	512 x 288	30 fps
Representation #6	400 Kbps	340 x 192	30 fps
Representation #7	200 Kbps	340 x 192	30 fps

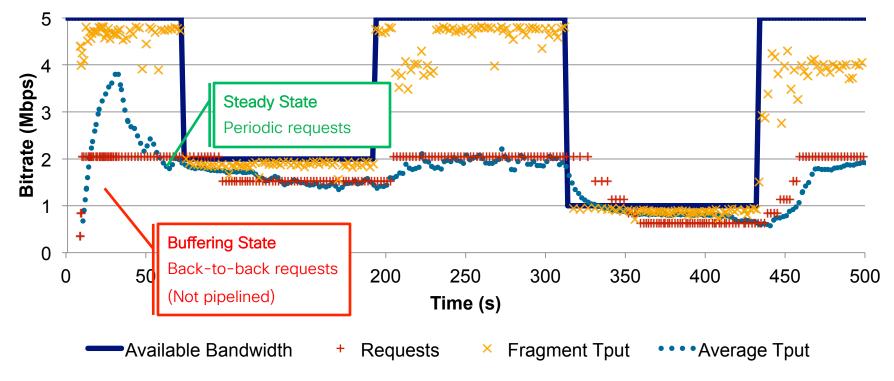
An Example Manifest Format

List of Accessible Segments and Their Timings

Smart Clients


Microsoft Smooth Player Showing Adaptation

http://www.iis.net/media/experiencesmoothstreaming


Example Request and Response Microsoft Smooth Streaming

- Client sends an HTTP request
 - GET 720p.ism/QualityLevels(572000)/Fragments(video=160577243) HTTP/1.1
- Server
 - 1. Finds the MP4 file corresponding to the requested bitrate
 - 2. Locates the fragment corresponding to the requested timestamp
 - 3. Extracts the fragment and sends it in an HTTP response

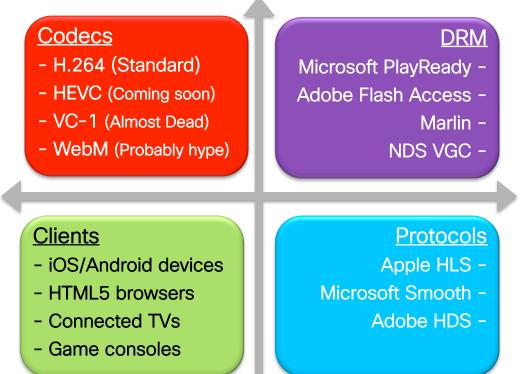
Demystifying the Client Behavior

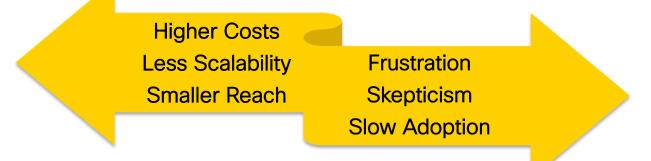
Microsoft Smooth Streaming Experiments

Reading: "An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP," ACM MMSys 2011

Initial and Current Players in the Market

- Move Adaptive Stream (Now Echostar)
 - http://www.movenetworks.com
- Microsoft Smooth Streaming
 - http://www.iis.net/expand/SmoothStreaming
- Apple HTTP Live Streaming
 - http://tools.ietf.org/html/draft-pantos-http-live-streaming
 - http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/
- Netflix
 - http://www.netflix.com
- Adobe HTTP Dynamic Streaming
 - http://www.adobe.com/products/httpdynamicstreaming/
- bitmovin
 - bitdash: http://dash-player.com/

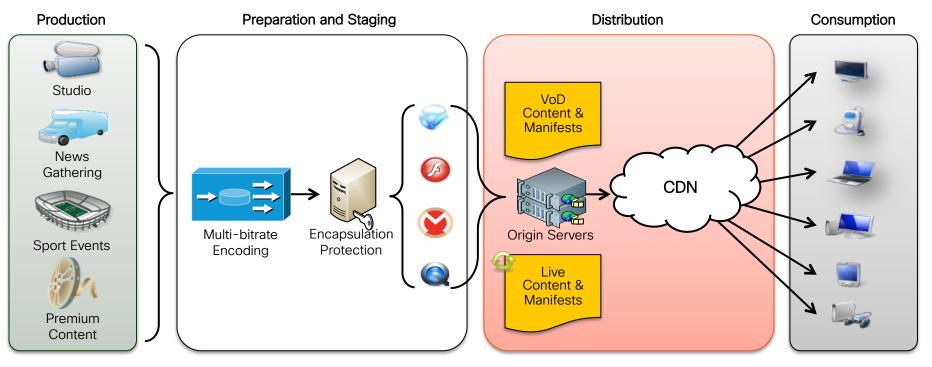



Where does the Market Stand Today? Fragmented!

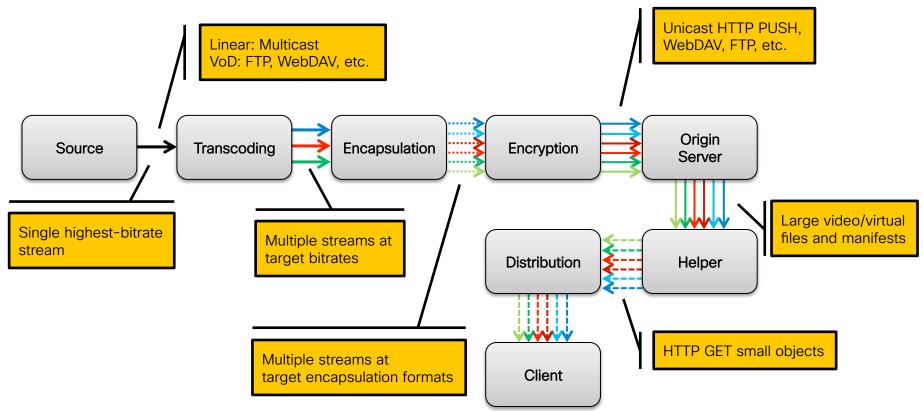
What does This Mean?

- Fragmented architectures
 - Advertising, DRM, metadata, blackouts, etc.
- Investing in more hardware and software
 - Increased CapEx and OpEx
- Lack of consistent analytics

- Preparing and delivering each asset in several incompatible formats
 - Higher storage and transport costs
- Confusion due to the lack of skills to troubleshoot problems
- Lack of common experience across devices for the same service
 - Tricks, captions, subtitles, ads, etc.


More Details Later...

DASH intends to be to the Internet world ... what MPEG2-TS has been to the broadcast world


Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming

- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard

End-to-End Over-the-Top Adaptive Streaming Delivery

Adaptive Streaming Content Workflow

Source Representation

	Container	Manifest	Packaging Tools
Move	2-s chunks (.qss)	Binary (.qmx)	Proprietary
Apple HLS	Fixed-duration MPEG2-TS segments (.ts)	Text (.m3u8)	Several vendors
Adobe Zeri	Aggregated MP4 fragments (.f4f - a/v interleaved)	Client: XML + Binary (.fmf) Server: Binary (.f4x)	Adobe Packager
Microsoft Smooth	Aggregated MP4 fragments (.isma, .ismv - a/v non-interleaved)	Client: XML (.ismc) Server: SMIL (.ism)	Several vendors MS Expression
MPEG DASH	MPEG2-TS and MP4 segments	Client/Server: XML	Several vendors

- Source containers and manifest files are output as part of the packaging process
 - These files are staged on to origin servers
 - Some origin server implementations could have integrated packagers
- Adobe/Microsoft allow to convert aggregated containers into individual fragments on the fly
 - In Adobe Zeri , this function is called a Helper
 - In Microsoft Smooth, this function is tightly integrated as part of the IIS
- Server manifest is used by Helper modules to convert the large file into individual fragments

Staging and Distribution

	Origin Server	Packager \rightarrow OS Interface	Distribution
Move	Any HTTP server	DFTP, HTTP, FTP	Plain Web caches
Apple HLS	Any HTTP server	HTTP, FTP, CIFS	Plain Web caches
Adobe Zeri	HTTP server with Helper	Integrated packager for live and JIT VoD Offline packager for VoD (HTTP, FTP, CIFS, etc.)	Plain Web caches → Helper running in OS Intelligent caches → Helper running in the delivery edge
Microsoft Smooth	IIS	WebDAV	Plain Web caches Intelligent IIS servers configured in cache mode
MPEG DASH	Any HTTP server	HTTP, FTP, CIFS	Plain Web caches

	Client	# of TCP Connections	Transaction Type
Move	Proprietary Move player	3-5	Byte-range requests
Apple HLS	QuickTime X	1 (interleaved)	Whole-segment requests Byte-range requests (iOS5)
Adobe Zeri	OSMF client on top Flash player	Implementation dependent	Whole-fragment access Byte-range access
Microsoft Smooth	Built on top of Silverlight	2 (One for audio and video)	Whole-fragment requests
MPEG DASH	DASH client	Implementation dependent	Whole-segment requests Byte-range requests

- In Smooth, fragments are augmented to contain timestamps of future fragments in linear delivery
 - Thus, clients fetch the manifest only once
- In HLS, manifest is continuously updated
 - Thus, clients constantly request the manifest

Issues for Content and Service Providers

- Technologies that enabled rapid innovation for IP video delivery to diverse CE endpoints has also created incompatible implementations
 - Players
 - Streaming methods
 - DRM methods
 - Screen sizes, etc.
- Innovation is being driven by CE vendors, not by service or content providers
 - SPs have a significant investment in MPEG2-TS infrastructure and want to leverage existing investments where possible
- Serving each client in its native technology requires creation, storage and delivery of multiple formats and representations

Two high-level options for service delivery

- Transform in the cloud to create media for each client in its native media format
- Serve a common format from the cloud and transform client behavior via apps/plugins

Transform Content in the Cloud Pros vs. Cons

Pros

- Optimal performance on clients by using their native formats and delivery methods
- Potentially better customer experience through integration with the native player capabilities
- Easier to manage services in the cloud than to manage client app versioning
- Better service velocity (re-use existing client capabilities)
- Ability to transform content for use across multiple client platforms (future-proof)
- Ability to reach across new and legacy systems

Cons

- Additional encode/encapsulation/encrypt processing resources
- Additional storage for multiple representations
- Development effort to support new formats

Transform Content at the Client Pros vs. Cons

Pros

- Minimized cloud processing resources for encoding, encapsulation and encryption
- Minimized content storage in the cloud due to a single representation
 - Codec
 - Encapsulation
 - Encryption
- More efficient cache utilization in the distribution network
- Potentially, common player ingest from the cloud drives common behavior across client platforms

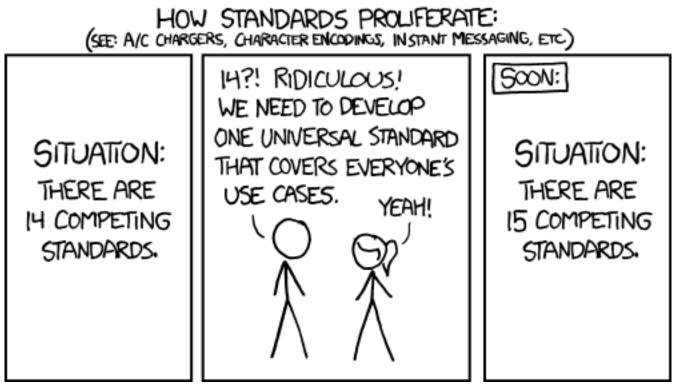
Cons

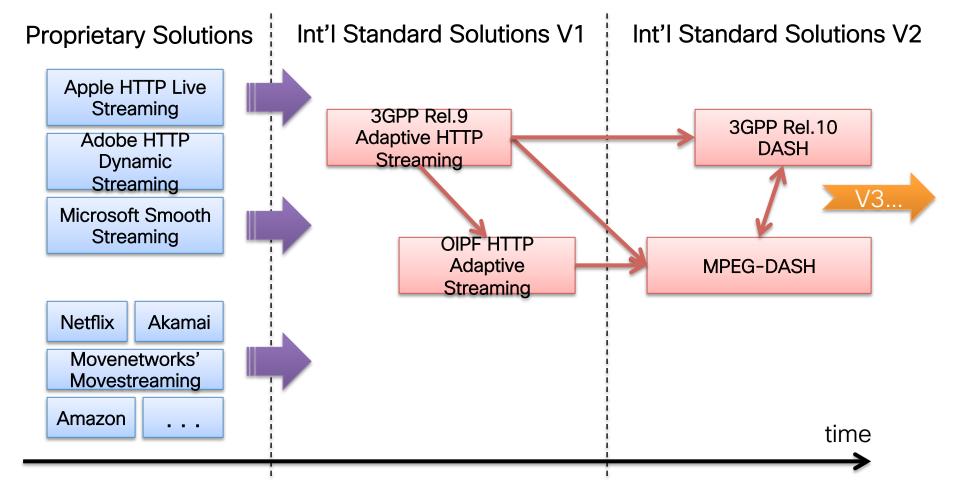
- Some target devices will not be using their native player
- Suboptimal rendering quality, battery life, etc. by not using hardware optimizations
- Harder to integrate with native media player features and leverage inter-app capabilities
- Ties the service provider tightly into a thirdparty relationship
- Third-party tools may not exist across all client platforms
- Unknown willingness of some client manufacturers for approval process

Part I: Over-the-Top (OTT) Video and HTTP Adaptive Streaming

- OTT Delivery and Example Services
- Media Delivery over the Internet
- HTTP Adaptive Streaming Building Blocks
- Workflows for Content Generation, Distribution and Consumption
- Overview of the MPEG DASH Standard

What is DASH?

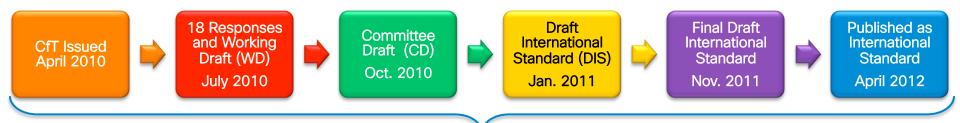




Initial Situation

Reading: http://multimediacommunication.blogspot.com/2010/05/http-streaming-of-mpeg-media.html

MPEG – Dynamic Adaptive Streaming over HTTP A New Standard: ISO/IEC 23009

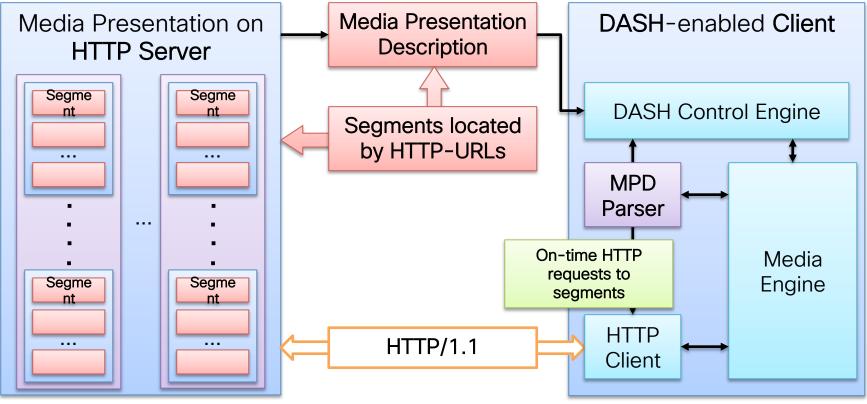

Goal

- Develop an international, standardized, efficient solution for HTTP-based streaming of MPEG media

Some Objectives

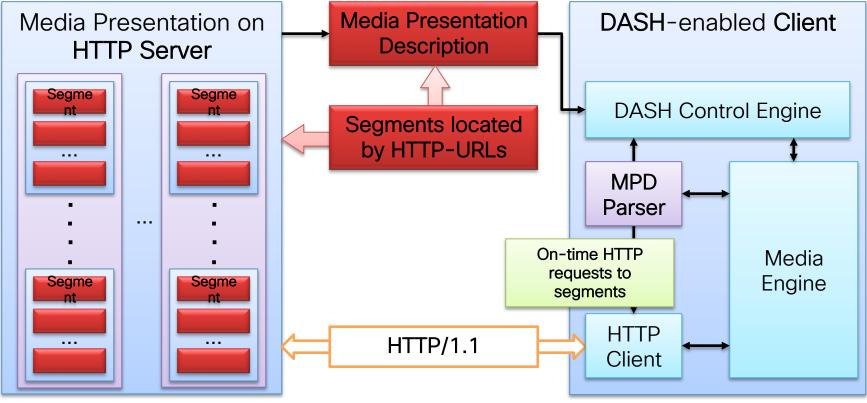
- Do the necessary, avoid the unnecessary
- Be lazy: reuse what exists in terms of codecs, formats, content protection, protocols and signaling
- Be backward-compatible (as much as possible) to enable deployments aligned with existing proprietary technologies
- Be forward-looking to provide ability to include new codecs, media types, content protection, deployment models (ad insertion, trick modes, etc.) and other relevant (or essential) metadata
- Enable efficient deployments for different use cases (live, VoD, time-shifted, etc.)
- Focus on formats describing functional properties for adaptive streaming, not on protocols or end-to-end systems or implementations
- Enable application standards and proprietary systems to create end-to-end systems based on DASH formats
- Support deployments by conformance and reference software, implementation guidelines, etc.

ISO/IEC 23009-1 Timeline


Fastest time ever that a standard was developed in MPEG to address the demand of the market

Other Relevant Specifications

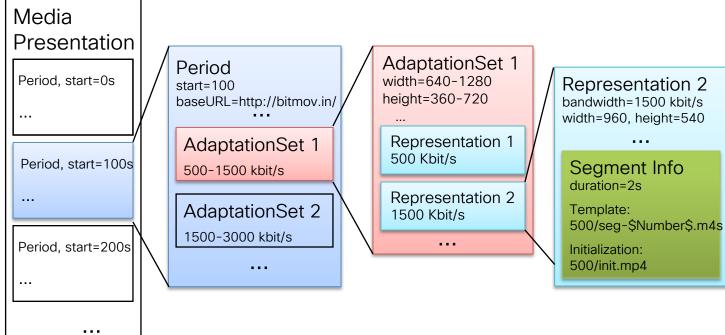
- 14496-12: ISO Base Media File Format
- 14496-15: Advanced Video Coding (AVC) File Format
- 23001-7: Common Encryption in ISO-BMFF
- 23001-8: Coding-Independent Code Points
- 23001-10: Carriage of Timed Metadata Metrics of Media in ISO Base Media File Format


Scope of MPEG DASH

What is specified - and what is not?

Scope of MPEG DASH

What is **specified** – and what is not?



61

DASH Design Principles

- DASH is not
 - system, protocol, presentation, codec, interactivity, DRM, client specification
- DASH is an enabler
 - It provides formats to enable efficient and high-quality delivery of streaming services over the Internet
 - It is considered as one component in an end-to-end service
 - System definition left to other organizations (SDOs, fora, companies, etc.)
- Design choices
 - Enable reuse of existing technologies (containers, codecs, DRM etc.)
 - Enable deployment on top of HTTP-CDNs (Web Infrastructures, caching)
 - Enable very high user-experience (low start-up, no rebuffering, trick modes)
 - Enable selection based on network and device capability, user preferences
 - Enable seamless switching
 - Enable live and DVD-kind of experiences
 - Move intelligence from network to client, enable client differentiation
 - Enable deployment flexibility (e.g., live, on-demand, time-shift viewing)
 - Provide simple interoperability points (profiles)

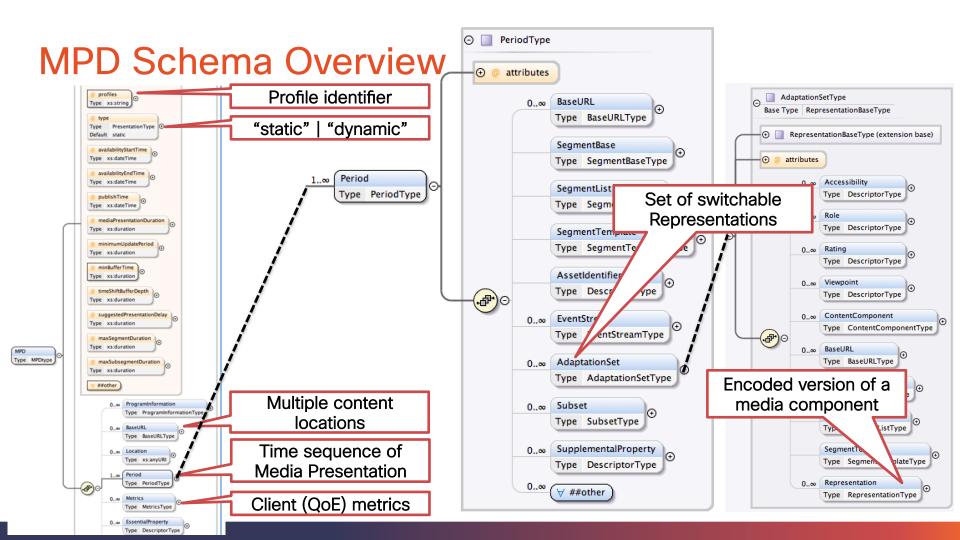
DASH Data Model

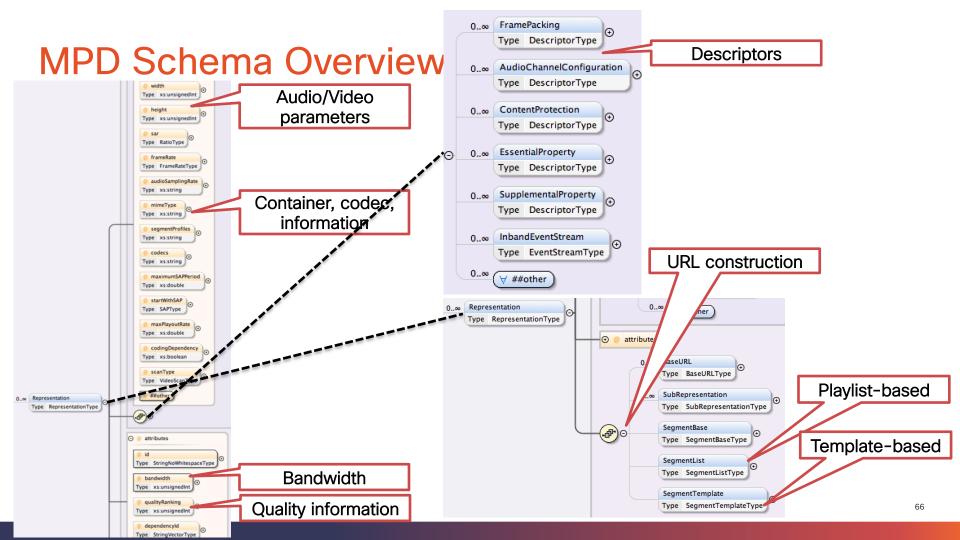
Segment Info

Initialization Segment http://bitmov.in/500/init.mp4

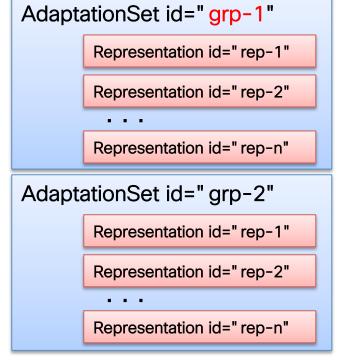
Media Segment 1 start=100s http://bitmov.in/500/ seg-1 m4s

Media Segment 2 start=102s http://bitmov.in/500/ seg-2 m4s


Media Segment 3 start=104s http://bitmov.in/500/ seg-3.m4s


0
0
0
0
٥
0
Ű
Ű

Media Segment 50 start=198s http://bitmov.in/500/ seg-50.m4s

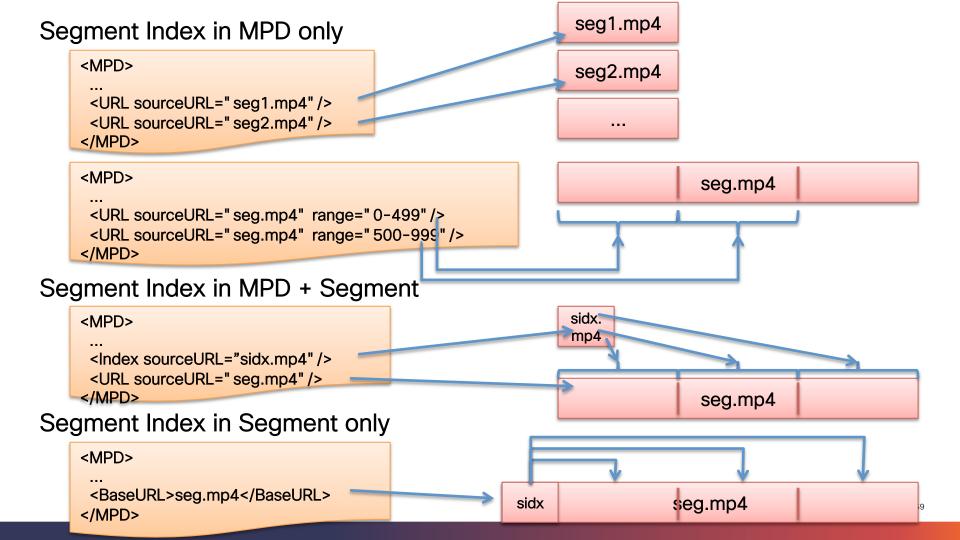

Media Presentation Description

- Redundant information of Media Streams for the purpose to initially select or reject AdaptationSets of Representations
 - Examples: Codec, DRM, language, resolution, bandwidth
- Access and Timing Information
 - HTTP-URL(s) and byte range for each accessible Segment
 - Earliest next update of the MPD on the server
 - Segment availability start and end time in wall-clock time
 - Approximated media start time and duration of a Media Segment in the media presentation timeline
 - For live service, instructions on starting playout such that media segments will be available in time for smooth playout in the future
- Switching and splicing relationships across Representations
- Relatively little other information

DASH AdaptationSets & Subsets

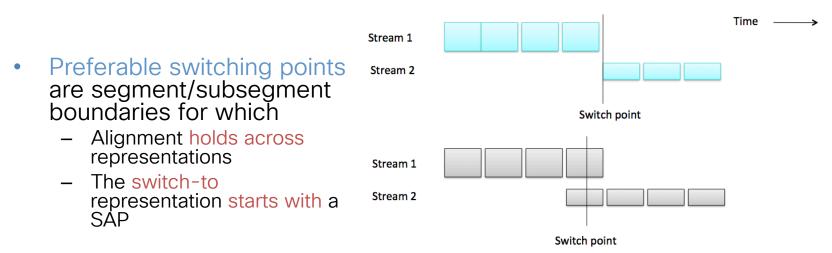
AdaptationSet id="grp-m" Representation id="rep-1" AdaptationSet by codec, language, resolution, bandwidth, views, etc. – very flexible (in combination with xlink)!

 Ranges for the @bandwidth, @width, @height and @frameRate

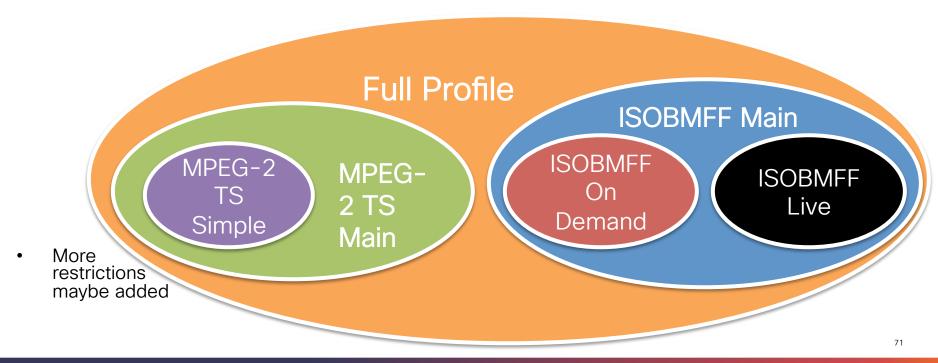

Subset id=" ss-1"		
	Contains group="grp-1"	
	Contains group=" grp-4"	
	Contains group=" grp-7"	

Subsets

- Mechanism to restrict the combination of *active* Groups
- Expresses the intention of the creator of the Media Presentation


Segment Indexing

- Provides binary information in ISO box structure on
 - Accessible units of data in a media segment
 - Each unit is described by
 - Byte range in the segments (easy access through HTTP partial GET)
 - Accurate presentation duration (seamless switching)
 - Presence of representation access positions, e.g. IDR frames
- Provides a compact bitrate-over-time profile to client
 - Can be used for intelligent request scheduling
- Generic Data Structure usable for any media segment format, e.g. ISO BMFF, MPEG-2 TS, etc.
- Hierarchical structuring for efficient access
- May be combined with media segment or may be separate


Switch Point Alignment

- Segment alignment
 - Permits non-overlapping decoding and presentation of segments from different representations
- Stream Access Points (SAPs)
 - Presentation time and position in segments at which random access and switching can occur
- Bitstream Switching
 - Concatenation of segments from different representations results in conforming bitstream
- Alignment and SAPs can also apply for subsegments

Profiles

- Subset (restrictions) of the functionality, target specific applications/domains
- As of now, mainly related to supported segment formats

Major Functional Components – Data Model

- Provide information to a client, where and when to find the data that composes $A/V \rightarrow MPD$
- Provide the ability to offer a service on the cloud and HTTP-CDNs → HTTP-URLs and MIME Types
- Provide service provider the ability to combine/splice content with different properties into a single media presentation
 → Periods
- Provide service provider to enable the client/user selection of media content components based on user preferences, user interaction device profiles and capabilities, using conditions or other metadata → Adaptation Sets
- Provide ability to provide the same content with different encodings (bitrate, resolution, codecs) → Representations
- Provide extensible syntax and semantics for describing representation/adaptation set properties → Descriptors
- Provide ability to access content in small pieces and do proper scheduling of access → Segments and Subsegments
- Provide ability for efficient signaling and deployment optimized addressing → Playlist, Templates, Segment Index
- Provide ability to enable reuse of existing encapsulation and parsing tools → MPEG2-TS and ISO-BMFF

Major Functional Components - Timing

Common Media Presentation Time

- Provide ability to present content from different adaptation sets synchronously
- Provide ability to support seamless switching across different representations

Switching Support Features

- Signaling of Stream Access Points
- Segment Alignment to avoid overlap downloading and decoding
- Playout Times per Segment and Track Fragment Decode Times
 - Provide ability to randomly access and seek in the content

Segment Availability Time

- Mapped to wall-clock time
- Expresses when a segment becomes available on the server and when ceases it to be available
- Provide ability to support live and time-shift buffer services with content generated/removed on the fly

Major Functional Components – Operations

- Provide ability for personalized access to media presentation, e.g. targeted advertisement → MPD Assembly with xlink
- Provide ability to provide redundant content offering → Multiple Base URLs
- Provide ability to announce unforeseen/unpredictable events in live services → MPD Updates
- Provide ability to send events associated with media times → In-band and MPD-based Event Messages
- Provide the ability to log and report client actions → DASH Metrics
- Provide ability to efficiently support trick modes → Dedicated IDR-frame Representations and Sub-representations
- Provide ability to signal collection of a subset/extension of tools → Profiles and Interoperability Points

ISO/IEC 23009 Parts

- 23009-1: Media Presentation Description and Segment Formats
 - 2nd edition has been published in 2014
 - Includes fixes (corrigenda) and new features (1st amendment) including xlink changes, push events and extended audio configuration
 - 1st amendment (extended profiles) is in progress (w14349)
 - 2nd amendment (SRD, generalized URLs, etc.) is in progress (w14624)
- 23009-2: Conformance and Reference Software
 - 1st edition has been published in 2014
 - WD for 2nd edition is in progress (w14625)
- 23009-3: Implementation Guidelines
 - 1st edition is done, will be published in 2014
 - 2nd edition is in progress (w14629)
- 23009-4: Segment Encryption and Authentication
 - Published by ISO in 2013
- 23009-5: Server and Network Assisted DASH (SAND)
 - WD is in w14661

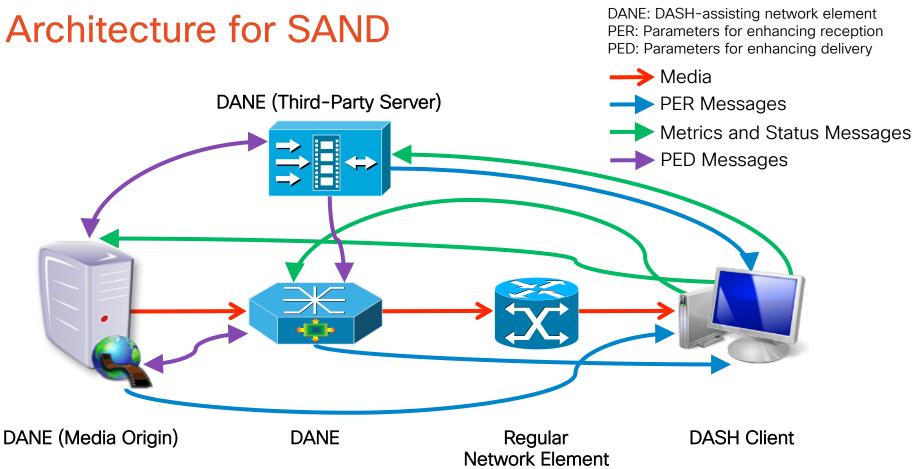
Ongoing Work in MPEG DASH (as of MPEG 110)

Currently Running Core Experiments

- Server and Network Assisted DASH
- DASH over Full Duplex HTTP-based Protocols
- URI Signing for DASH
- SAP-Independent Segment Signaling
- Technologies under Consideration
 - Service-level Service Protection Using Segment Encryption
 - Support for 3DV with Depth
 - Support for Controlled Playback in DASH
 - Editorial Adaptation Set Continuity across Periods
 - Playout Continuity of Adaptation Sets across Periods

Server and Network Assisted DASH (SAND) All Started with a Workshop in July 2013

- A half-day workshop was held on this subject and Cisco gave a joint presentation with Qualcomm
- Program, contributions and slides are available at:
 - http://multimediacommunication.blogspot.co.at/2013/05/mpeg-workshop-onsession-management-and.html


Possible Control Points in the Ecosystem

- I want to make sure that I provide the best possible video quality
- I want to control the general quality-of-experience of all my subscribers, potentially differentiate and avoid overload and congestion situations
- I want to make sure that my cheaper distribution is used when it is available
- I want to make sure that my content is protected and does not leak
- I want to make sure that my ad is viewed and I know that it is viewed
- I want to make sure that the servers in the network are properly used

How to Control (Actually Assist) the Streaming Clients?

- (Blind) Bandwidth throttling ×
- Manifest offerings, manipulations and updates ×
- Event signaling ×
- HTTP operation (Redirects) ×
- Control plane and session management \checkmark

Organizations Working on DASH

MPEG DASH

- http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
- Mailing List: http://lists.uni-klu.ac.at/mailman/listinfo/dash
- DASH Industry Forum
 - http://dashif.org
- 3GPP PSS and DASH
 - http://ftp.3gpp.org/specs/html-info/26234.htm
 - http://ftp.3gpp.org/specs/html-info/26247.htm
- DECE UltraViolet
 - http://www.uvvu.com/
- HbbTV (Hybrid Broadcast Broadband TV)
 - http://www.hbbtv.org/pages/about_hbbtv/specification.php
- Digital TV Group (DTG)
 - http://www.dtg.org.uk/publications/books.html
- Digital Video Broadcasting (DVB)
 - http://www.dvb.org

Part II: Common Problems in HTTP Adaptive Streaming

- Multi-Client Competition Problem
- Consistent-Quality Streaming
- QoE Optimization
- Inter-Destination Media Synchronization

Some Interesting Stats from Conviva CONVIVA

Based on Analysis of 22B Streams for Netflix, ESPN, HBO, Viacom, VEVO, MLB, USA, NBC, etc.

Poor quality is pervasive:

- Viewer interruption from re-buffering affected 20.6% of streams
 - For live video streams, viewers not impacted by buffering watch 10 times longer
- 19.5% were impacted by slow video startup
- 40% were plagued by grainy or low-resolution picture quality caused by low bitrates

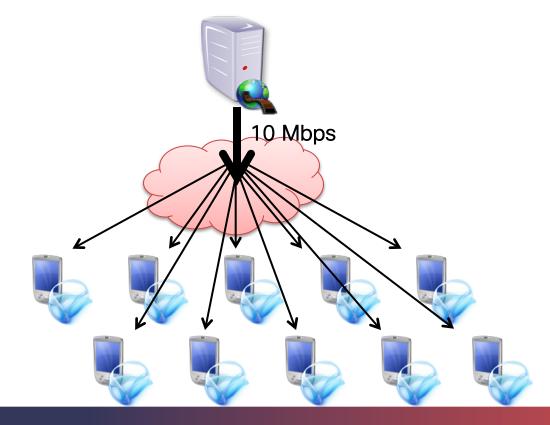
Viewers are less tolerant:

- In 2011, a 1% increase in buffering resulted in 3 minutes less of VoD viewing time per view
- In 2012, a 1% increase led to 8 minutes lost in viewing time per view for similar content
- Startup time is critical:
 - If startup time exceeds 2 seconds, the number of people that abandon viewing dramatically increases
- Access the full report at http://www.conviva.com/vxr/

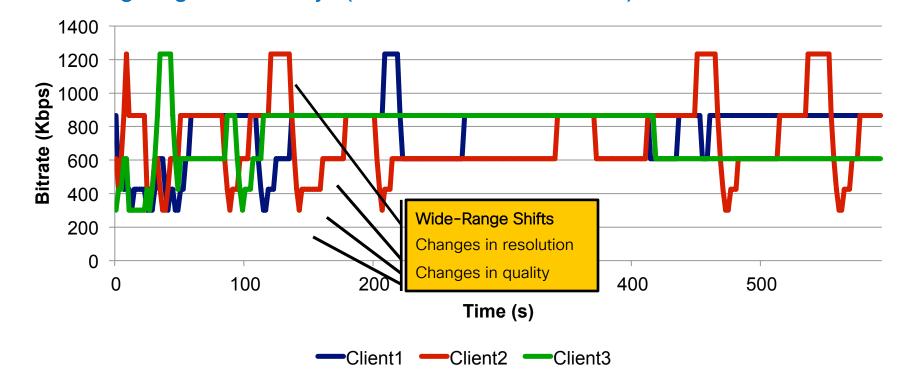
Part II: Common Problems in HTTP Adaptive Streaming

- Multi-Client Competition Problem
- Consistent-Quality Streaming
- QoE Optimization
- Inter-Destination Media Synchronization

Streaming over HTTP – The Promise

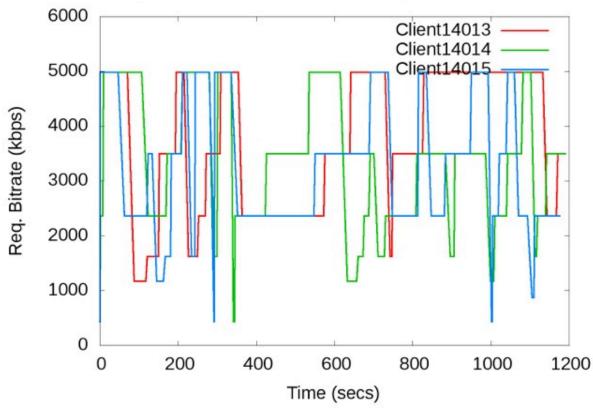

- Leverage tried-and-true Web infrastructure for scaling
 - Video is just ordinary Web content!
- Leverage tried-and-true TCP
 - Congestion avoidance
 - Reliability
 - No special QoS for video

It should all "just work" 😳

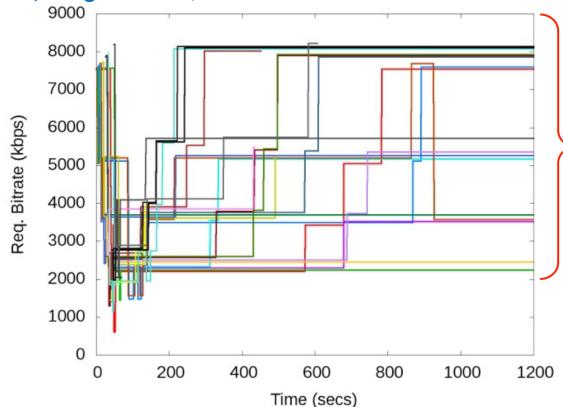

Does Streaming over HTTP Scale?

- When streaming clients compete with other traffic, mostly yes
- But when streaming clients compete with each other for bandwidth, we begin to see problems:
 - The clients' adaptation behaviors interact with each other:
 - One client upshifts \rightarrow Other clients get less bandwidth and may downshift
 - One client downshifts \rightarrow Other clients get more bandwidth and may upshift
 - The competing clients form an "accidental" distributed control-feedback system
 - Such systems often exhibit unanticipated behaviors
 - A variety of such behaviors can be seen with widely deployed streaming clients
- Unless adaptation mechanisms are carefully designed to work when competing with other clients, unexpected behaviors will result in places like
 - Multiple screens within a household
 - ISP access and aggregation links
 - Small cells in stadiums and malls

Simple Competition Experiment 10 Microsoft Smooth Clients Sharing 10 Mbps Link

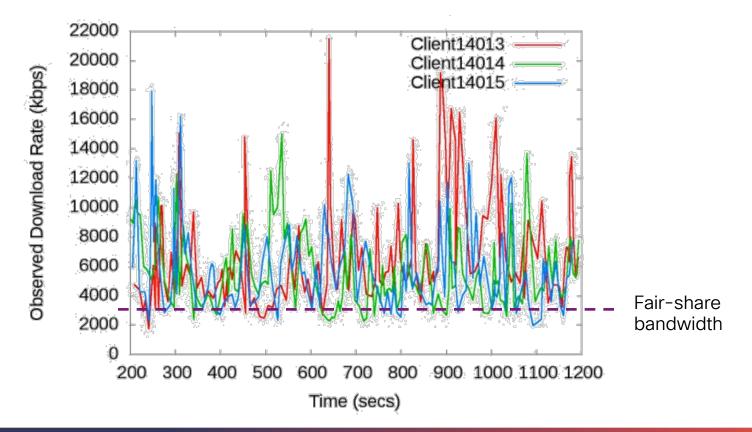


10 Microsoft Smooth Clients Sharing 10 Mbps Link Streaming "Big Buck Bunny" (Three Clients are Shown)



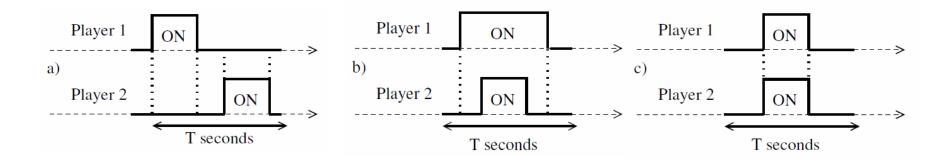
Available Representations: 300, 427, 608, 866, 1233, 1636, and 2436 Kbps

30 Apple Clients (Lion) Sharing 100 Mbps Link 50 ms RTT, Single RED Queue

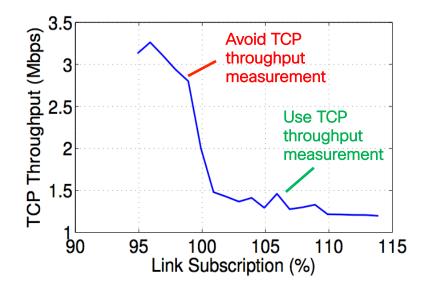


22 Apple Clients (Mavericks) Sharing 100 Mbps Link 50 ms RTT, Single RED Queue

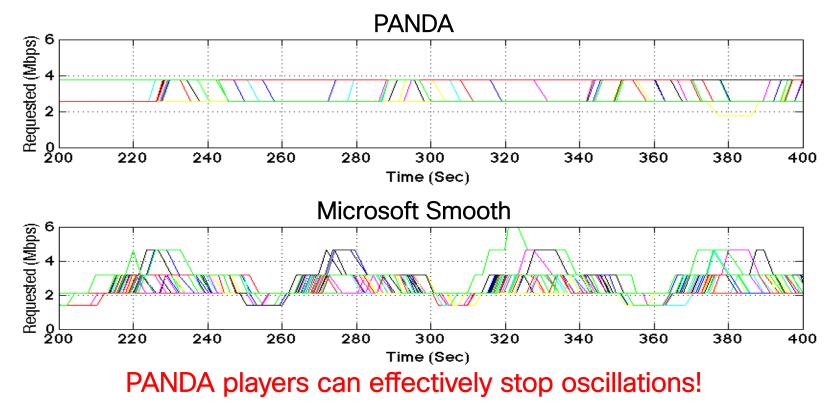
Clients seem to "lock in" after a while; persistent unfairness?


Download Rates Experienced by Individual Clients

Understanding the Root Cause Two Competing Clients


- Depending on the timing of the ON periods:
 - Unfairness, underutilization and/or instability may occur
 - Clients may grossly overestimate their fair share of the available bandwidth

Clients cannot figure out how much bandwidth to use until they use too much



Client-Side Approaches The PANDA Algorithm

- Avoid the root cause that triggers bitrate oscillation
 - Use the TCP throughput measurement only when the link is over-subscribed
- How to tell when the link is under/oversubscribed?
 - Apply "probing" (i.e., small increments of data rate)
 - Additive-Increase, Multiplicative-Decrease (AIMD) for probing (similar to TCP)
- How to continuously vary the data rate (the video bitrate is discrete)?
 - Fine-tune the inter-request time

36 PANDA vs. Smooth Clients Sharing 100 Mbps

Network-Based Approaches

Could Network QoS in the Core and Edge Help?

- Idea: Apply QoS to downstream streams to stabilize client rate selections
- Questions:
 - What QoS policy will help?
 - How to recognize which service flows carry adaptive streaming traffic?
 - Can the solution fit within existing platform QoS mechanisms?
 - Can solution work with existing clients?
- We are actively investigating these questions

Control Plane Approaches

Server(s) and Network Providing Assistance to Clients

- Control plane that enables to exchange messages between the client and other elements
 - Control plane typically has 1:1 correspondence and is bi-directional
 - Control plane carries operational data in both directions
 - Control plane is independent from the media/manifest distribution

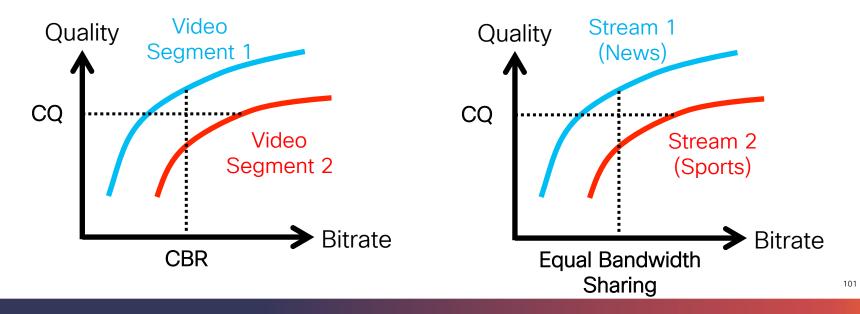
Part II: Common Problems in HTTP Adaptive Streaming

- Multi-Client Competition Problem
- Consistent-Quality Streaming
- QoE Optimization
- Inter-Destination Media Synchronization

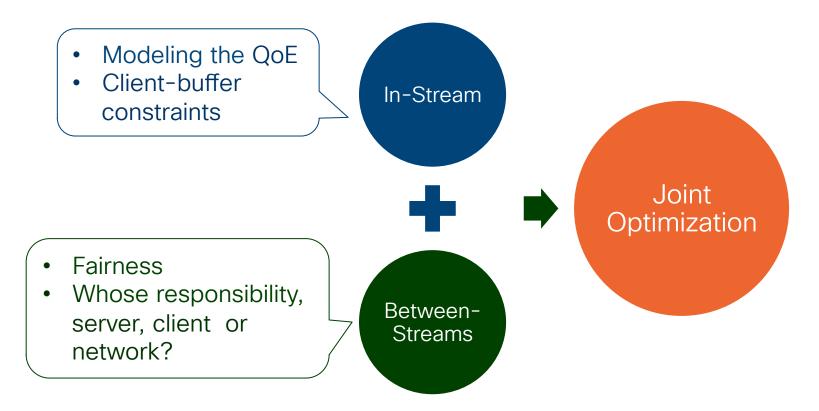
What is Wrong with Existing Solutions?

- Each segment is more or less constant-bitrate (CBR) encoded
- Client fetches segments based on bitrate information only
- Viewer quality of experience varies because of
 - Low-motion/complexity vs. high-motion/complexity scenes
 - Upshifts and downshifts dictated by the adaptation logic

Thought Process: Shift Bits between Scenes


- If we can steal some bits from the simple scene and stuff them into the complex scene, the overall viewing experience would have been better
- This boils down to an optimization problem that temporally allocates bits among video segments to yield an optimal overall quality

Tradeoffs in Adaptive Streaming



Dimensions - In-Stream vs. Between-Streams

- Same principle applies to both:
 - In-stream Case: Temporal bit shifting between segments
 - Between-streams Case: Bit shifting between streams sharing a bottleneck link

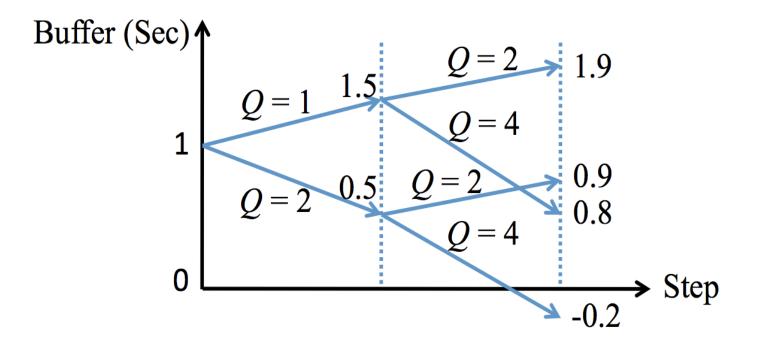
Scope of Optimization

In-Stream Bitrate Allocation: Challenges

- Challenge 1: How to measure video quality?
 - How to measure the quality of each segment?
 - Temporal pooling How a viewer forms an overall impression over a sequence of segments?
- Challenge 2: We must meet client-buffer constraints
 - We must not drain the buffer
 - We must maintain buffer below an upper bound, too
- Challenge 3: Optimization is myopic
 - Client does not know available bandwidth in the future
 - Only a finite horizon of video information might be available

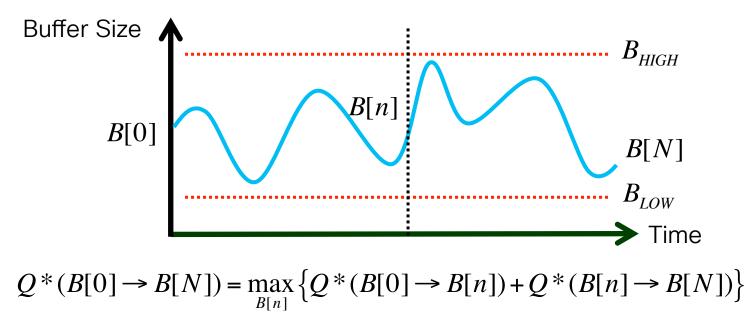
Video Quality – A Generic Framework

- Quality score for a segment: PSNR, -MSE, SSIM, JND, ...
- Temporal Pooling: Possible objective functions
 - Max-Sum: Maximize the sum of (or average) quality over segments
 - Max-Min: Maximize the worst-case quality over segments
- Temporal pooling using a-fairness utility function [Srikant'04]

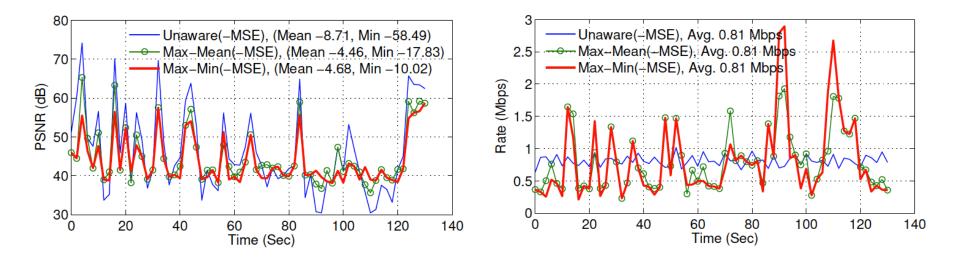

max
$$\sum_{n} U_{\alpha}(Q(n))$$
, where $U_{\alpha}(q) := \frac{q^{1-\alpha}}{1-\alpha}$

- Special cases
 - Max-Sum (a=0)
 - Max-Min (a=∞)
 - Proportional fairness (a=1)

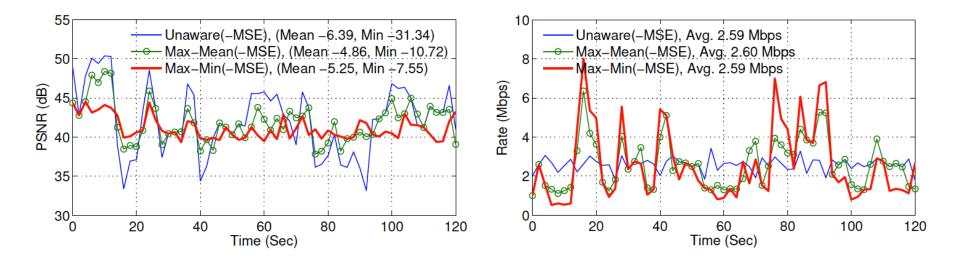
Bandwidth and Video Bitrate Variability


- Quality optimization poses higher risk of buffer underrun/overshoot than conventional streaming
- We need to
 - Impose lower and upper bounds on buffer evolution
 - Have a fast algorithm to detect bandwidth drops
 - Have proper balance between these two
- Proposed Solution
 - Use a fast algorithm (e.g., PANDA) to quickly detect bandwidth changes
 - Apply an online algorithm to adapt to network bandwidth step by step
 - Use dynamic programming (DP) to program buffer evolution within a sliding window

A Toy Example


Dynamic Programming Solution

- Brute-force search has exponential complexity
 - \rightarrow Dynamic programming reduces processing time to polynomial time


Simulation Results - Elysium

Quality-Unaware vs. Mean Quality Optimized vs. Minimum Quality Optimized

Simulation Results - Avatar

Quality-Unaware vs. Mean Quality Optimized vs. Minimum Quality Optimized

Demo

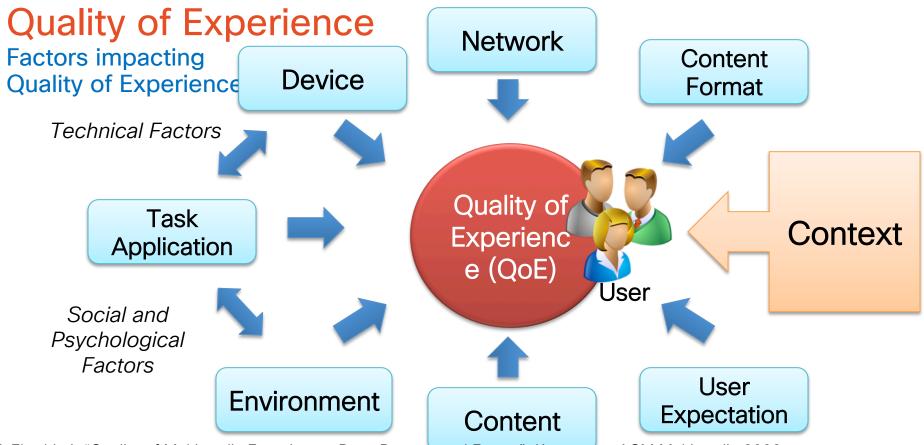
- Sample 1: CBR encoded, quality-unaware streaming at 800 Kbps
- Sample 2: VBR encoded, quality-unaware streaming at 800 Kbps
- Sample 3: VBR encoded, consistent-quality streaming at 800 kbps
- Also available at https://sites.google.com/site/cqhttpstreaming

Part II: Common Problems in HTTP Adaptive Streaming

- Multi-Client Competition Problem
- Consistent-Quality Streaming
- QoE Optimization
- Inter-Destination Media Synchronization

What is Quality?

Many definitions but in general, it's like an elephant


The blind men and the elephant, Poem by John Godfrey Saxe

→ see also F. Pereira, "On Quality of Multimedia Experiences", QUALINET Final Workshop, Delft, The Netherlands, Oct. 2014.

Quality of Service vs. Experience Moving into QoE

- Quality of Service: Value of the average user's service richness estimated by a service/product/content provider
- Quality of Experience: Value (estimated or actually measured) of a specific user's experience richness
- Quality of Experience is the dual (and extended) view of Quality of Service
 - QoS == provider-centric
 - QoE == user-centric

T. Ebrahimi, "Quality of Multimedia Experience: Past, Present and Future", Keynote at ACM Multimedia 2009, Beijing, China, Oct 22, 2010. http://www.slideshare.net/touradj_ebrahimi/qoe

Quality of Experience for DASH

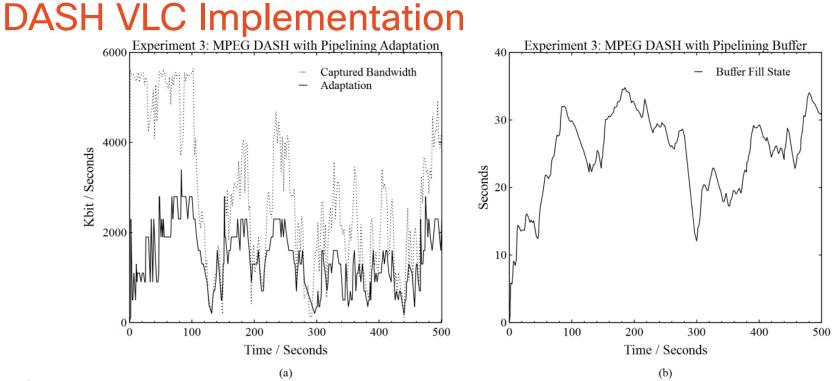
- Quality of Experience
 - "... is the degree of delight or annoyance of the user of an application or service..."
 - Factors influencing / features of QoE may lead to application-specific definitions
- QoE of DASH-based services
 - Startup delay (low)
 - Buffer underrun / stalls (zero)
 - Quality switches (low) and media throughput (high)
- Subjective quality assessments
 - Laboratory [ITU-T B.500 / P.910]
 - Crowdsourcing with special platforms or social networks

P. Le Callet, S. Möller and A. Perkis, eds., "Qualinet White Paper on Definitions of Quality of Experience (2012)", *European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003)*, Lausanne, Switzerland, Version 1.2, March 2013."

How to Evaluate DASH?

- Methodology
 - Dataset
 - Common evaluation setup
 - Bandwidth traces (real/synthetic) vs. models

Bandwidth


Shaping

Network

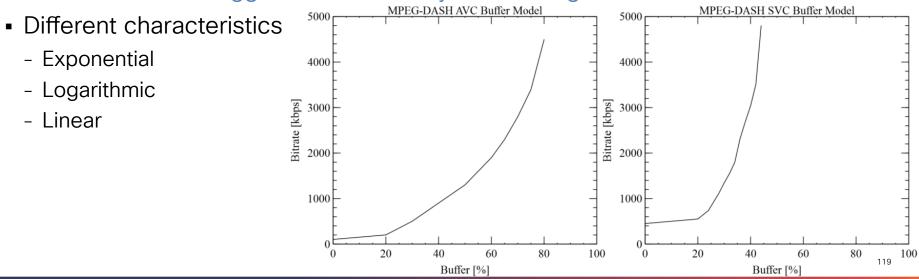
Emulation

HTTP Server

- Metrics
 - Average media bitrate/throughput at the client
 - Number of representation/quality switches
 - Number of stalls (in seconds) buffer level

- Simple throughput-based adaptation logic
- Non stepwise switching
- Good average bitrate and stable buffer

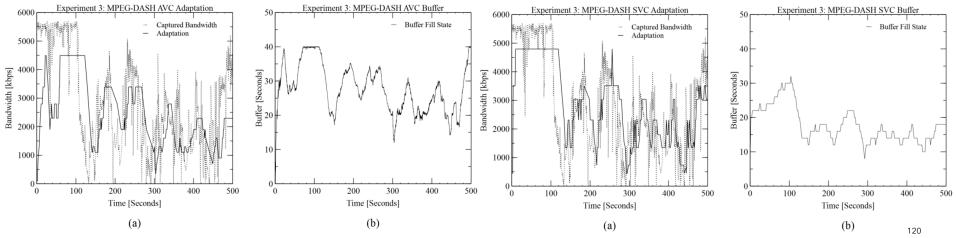
Summary of the Results


Name	Average Bitrate [kbps]	Average Switches [Number of Switches]	Average Unsmoothness [Seconds]
Microsoft	1522	51	0
Adobe	1239	97	64
Apple	1162	7	0
DASH VLC	1045	141	0
DASH VLC Pipelined	1464	166	0

• Similar results for Web-based DASH player (DASH-JS)

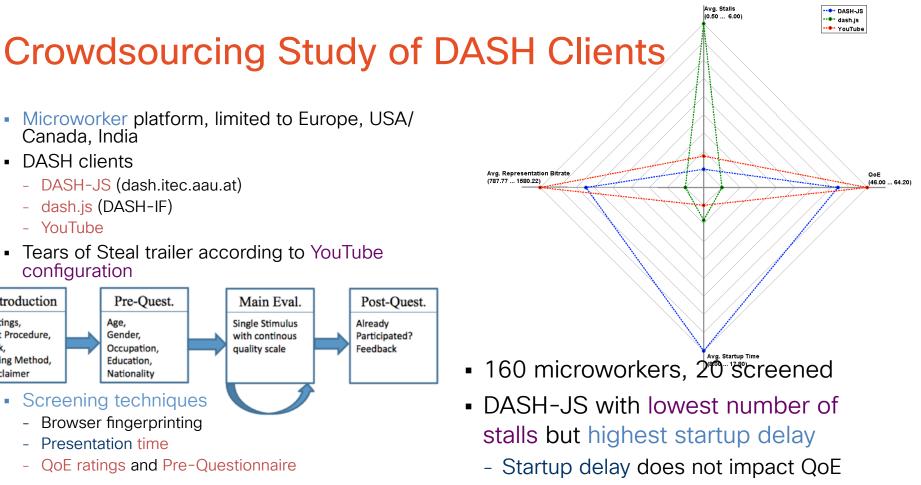
C. Mueller, S. Lederer, C. Timmerer, "An Evaluation of Dynamic Adaptive Streaming over HTTP in Vehicular Environments", *In Proceedings of the Fourth Annual ACM SIGMM Workshop on Mobile Video (MoVid12)*, Chapel Hill, North Carolina, February 2012.

Improving the Adaptation Logic


- Adaptation based on the buffer model with exponential characteristic
 - to reduce the number of quality switches
 - to enable a smooth playback
- SVC model more aggressive due to layered coding scheme

DASH AVC vs. SVC

- AVC smooth playback
- Increased throughput compared to prev. implementations
- Stable adaptation process and buffer


- SVC better bandwidth utilization than AVC
- Accurate reaction to bandwidth changes
- Still stable buffer

Summary of the Results

Name	Average Bitrate [kbps]	Average Switches [Number of Switches]	Average Unsmoothness [Seconds]
Microsoft	1522	51	0
Adobe	1239	97	64
Apple	1162	7	0
DASH VLC	1045	141	0
DASH VLC Pipelined	1464	166	0
DASH-AVC	2341	81	0
DASH-SVC	2738	101	0

C. Mueller, D. Renzi, S. Lederer, S. Battista, C. Timmerer, "Using Scalable Video Coding for Dynamic Adaptive Streaming over HTTP in Mobile Environments", *In Proceedings of the 20th European Signal Processing Conference (EUSIPCO12),* Bucharest, Romania, August 2012.

Canada, India DASH clients

- YouTube

configuration

dash.js (DASH-IF)

Pre-Quest.

Age,

Screening techniques

Presentation time

Browser fingerprinting

Gender.

Occupation,

Education,

Nationality

•

-

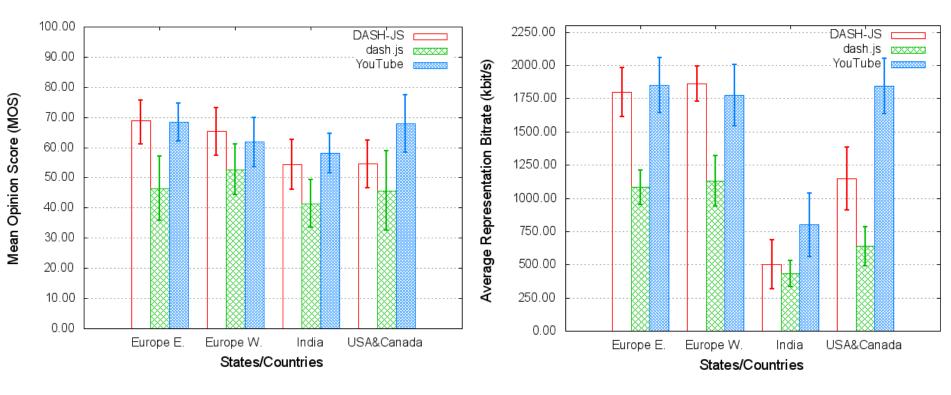
Introduction

Test Procedure.

Rating Method,

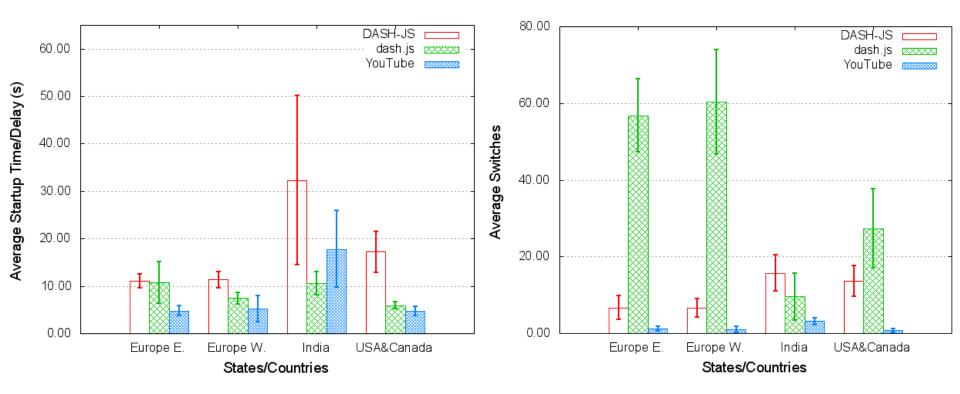
_

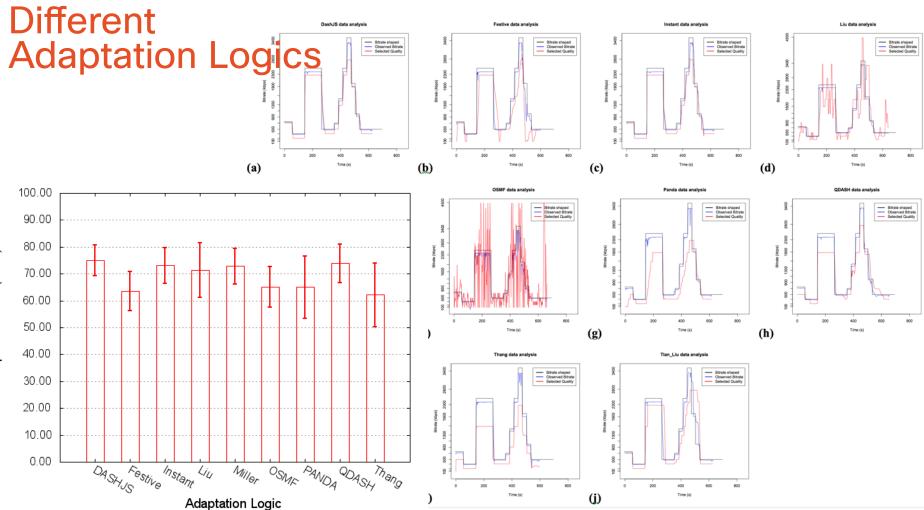
_


Disclaimer

Settings,

Task,


- Stalls and avg. bitrate impact QoE

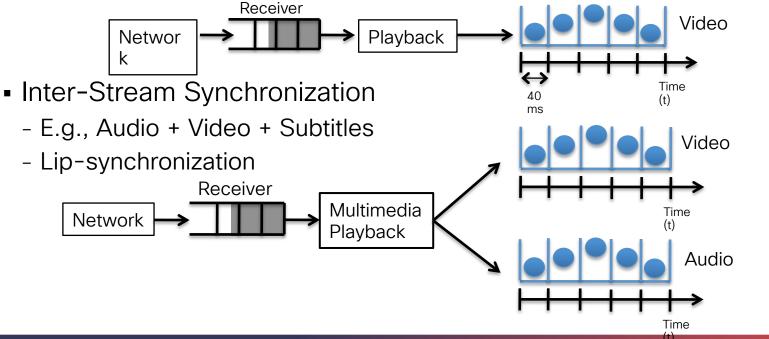

Mean Opinion Score – Average Bitrate

Average Startup Times -

Average Switches

Mean Opinion Score (MOS)

Concluding Remarks

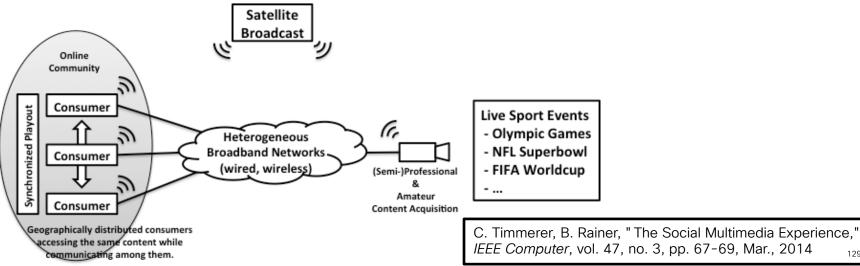

- QoE for DASH-based services (a rule of thumb)
 - Startup delay (low [but live vs. on-demand])
 - Buffer underrun / stalls (zero)
 - Quality switches (low) and media throughput (high)
- Simplicity rules out complexity in terms of "performance"
 - E.g., DASH-JS has a simple adaptation logic but always performs very good in various situations (among the best)
 - Make things as simple as possible but not simpler
- No general applicable QoE model for DASH
 - (Too) many factors influencing / features of QoE for DASH-based services
 - Methodology for reproducible research is in place and well established
 - Ample research opportunities

Part II: Common Problems in HTTP Adaptive Streaming

- Multi-Client Competition Problem
- Consistent-Quality Streaming
- QoE Optimization
- Inter-Destination Media Synchronization

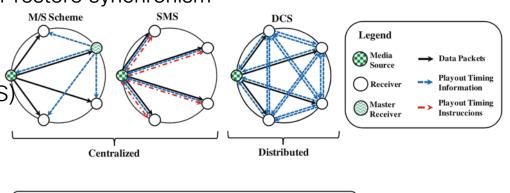
Types of Synchronization

- Intra-Stream Synchronization
 - Avoid jitter between the presentation of two consecutive media units



Inter-Destination Media Synchronization

IDMS == the playout of media streams at two or more geographically distributed locations in a time synchronized manner [draft-ietf-avtcore-idms-13]


129

- Use case: two friends watching football using a online platform and communicating via realtime communication channel
 - A: Gooooaaaaallill! Have you seen this?
 - B: Whoaaat? No, here they're still preparing for the free kick, thanks for the spoiler, dude!

IDMS Building Blocks

- Building blocks
 - Session management
 - Identify the synchronization point and threshold of asynchronism
 - Signal timing and control information among the participating entities
 - Adapt the media playout to establish or restore synchronism
- IDMS schemes
 - Server/client (aka master/slave, MS)
 - Synchronization maestro scheme (SMS)
 - Distributed control scheme (DCS)

M. Montagud, F. Boronat, H. Stokking, R. van Brandenburg, "Inter-destination multimedia synchronization: schemes, use cases and standardization", *Multimedia Systems* (2012),

Adaptive Media Playout

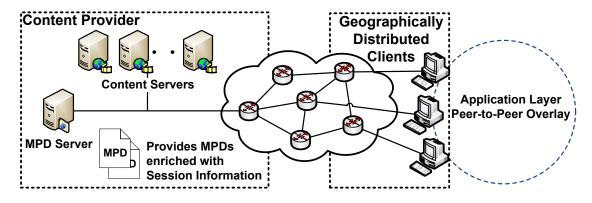
- Initially introduced for compensating the impact of error prone communication channels on the smoothness of the multimedia playout to avoid buffer under-/ overruns
- Static, simple, naïve approach
 - Skip/pause content sections
 - Easy to implement, non-negligible QoE impact
- Dynamic Adaptive Media Playout (AMP)
 - Dynamically increase/decrease the playout rate for certain content sections
 - Find appropriate content sections where the media playout rate can be modified without significant impact on the QoE

QoE for IDMS

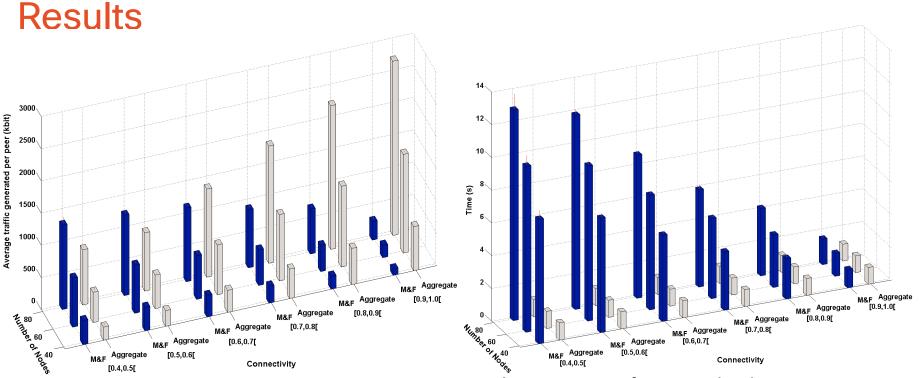
- Increasing/decreasing media playout rate
 perceptual distortion in audio and/or video
- Select appropriate metrics, e.g.:
 - Audio: the spectral energy of an audio frame
 - Video: the average length of motion vectors between two consecutive frames
- How do metrics correlate with QoE? Find out...

Subjective quality assessments (w/ crowdsourcing)

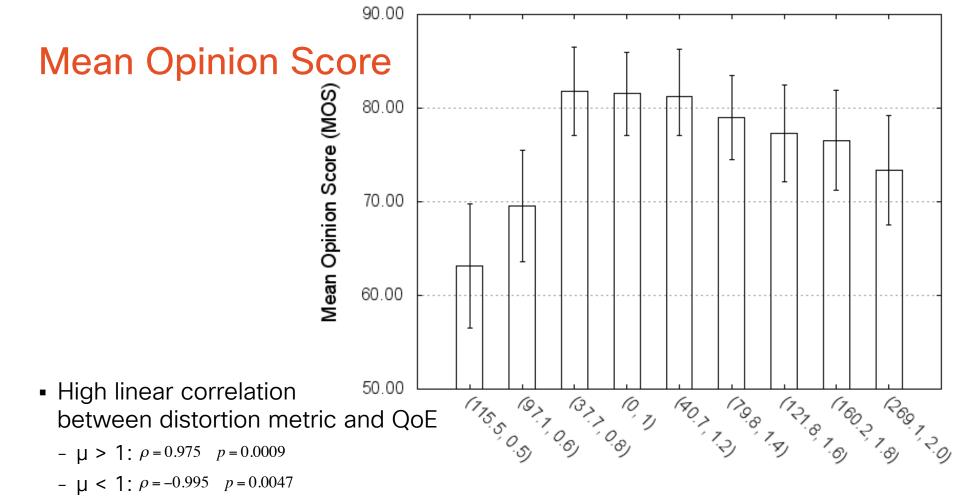
 Define a utility model and incorporate into the media client to carry out the IDMS


B. Rainer, C. Timmerer, "A Quality of Experience Model for Adaptive Media Playout", *In Proceedings of QoMEX 2014*, Singapore, Sep 2014.

B. Rainer, C. Timmerer, "Self-Organized Inter-Destination Multimedia Synchronization for Adaptive Media Streaming", accepted for


publication in ACIVI Multimedia 2014, Orlando, Florida, Nov. 2014.

Self-Organized IDMS for Adaptive Media Streaming

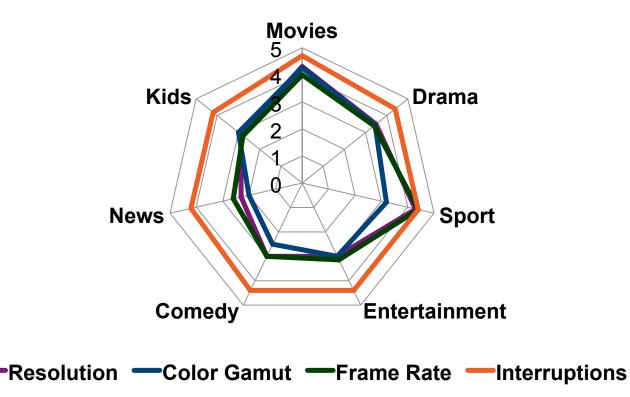

 Include IDMS Session Object (ISO) within MPEG-DASH Media Presentation Description

- Time bounded entity to which a set of peers is assigned to
- Unique identifier for a certain multimedia content
- P2P overlay construction & coarse synchronization
 - UDP & predefined message format; start segment for new peers
- Self-organized fine synchronization
 - Merge & Forward: flooding-based algorithm & bloom filters

- Total amount of traffic decreases with higher a connectivity of the overlay network
- Aggregate performs optimal
- M&F tradeoff between overhead and time

Concluding Remarks

- QUALINET white paper on QoE definitions
 - Generally agreed definition of QoE
 - Factors influencing / features of QoE
- Application-specific Quality of Experience
 - Identify those QoE factors/features
 - Derive a utility/QoE model
 - Validate through subjective tests
- IDMS is an interesting application area for a broad range of QoE topics
 - Everyone is invited get involved in and excited about IDMS!


Part III: Open Issues and Future Research Directions

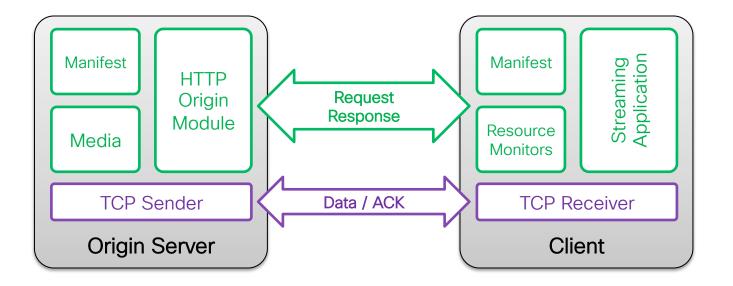
Four Major Areas of Focus

Things We Assume We Know All about

- Content Preparation
 - Choosing target bitrates/resolutions to make switching as seamless as possible
 - Determining segment durations
 - Encoding the content so that the perceived quality is stable and good even in the case of frequent up/downshifts
- Distribution and Delivery
 - Current approaches treat network as a "black box"
 - Intuitively, exchange of information should provide improvement
 - Can or should we provide controlled unfairness on the server or in the network?
 - Would better caching/replication/pre-positioning content avoid the overload?
 - Is there a better transport than TCP, maybe MPTCP, DCCP, SCTP, or QUIC?
 - Should we consider IP multicast to help reduce bandwidth usage?
- Quality-of-Experience (QoE) Modeling and Client Design
- Analytics, Fault Isolation and Diagnostics

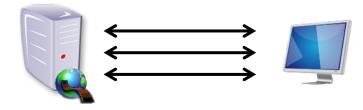
One Strategy may not Work for All Content Types

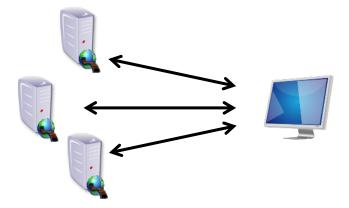
Source: Screen Digest (Higher value indicates more importance)


Modeling and Measuring Quality of Experience Understanding the Impact of QoE on Viewer Engagement

- How can we
 - Model adaptive streaming dynamics such as rate/resolution shifting for different genres?
 - Take into account shorter buffering and faster trick modes in this model?
- Does QoE impact viewer engagement?
 - If yes, how?

We need to be able to answer these questions for:


- Designing a client that takes QoE into account
- Keeping viewers happy and engaged, subsequently increasing ad revenues


Inner and Outer Control Loops

There could be multiple TCPs destined to potentially different servers

Streaming with Multiple TCP Connections

- Using multiple concurrent TCPs
 - Is not necessarily for greedily getting a larger share of the bandwidth
 - Helps mitigate head-of-line blocking
 - Allows fetching multiple (sub)segments in parallel
 - Allows to quickly abandon a non-working connection without having to slow-start a new one

Performance deteriorates if many clients adopt this approach and they do not limit their aggregated bandwidth consumption

Research Directions in Streaming Reading

"Probe and adapt: rate adaptation for HTTP video streaming at scale," IEEE JSAC, Apr. 2014

"Streaming video over HTTP with consistent quality," ACM MMSys, 2014

"Caching in HTTP adaptive streaming: friend or foe?," ACM NOSSDAV, 2014

"Self-organized inter-destination multimedia synchronization for adaptive media streaming," ACM Multimedia, 2014

"The social multimedia experience," IEEE Computer, 2014

"Crowdsourcing quality-of-experience assessments," IEEE Computer, 2014

Ongoing Projects and Future Directions

- We are currently working on
 - QoE modeling
 - Video quality temporal and spatial pooling (See the MMSys 2014 paper)
 - Control plane approach (How can the network help?)
 - Transport-layer interactions and alternate transports (SPDY, QUIC-HTTP/UDP, MPTCP)
- We plan to work on
 - Streaming over wireless (WLAN and cellular links)
 - Analytics, fault isolation and diagnostics
 - Tricks to make content preparation better
 - Interaction of adaptive streaming with caching in CDNs (See the NOSSDAV 2014 paper)

Cisco Research Seeking Proposals

http://www.cisco.com/research

- Several RFPs about video delivery, though RFP-2010-010 is specifically designed for adaptive streaming research
- Interest Areas
 - Design of server-side, client-side, and network-based adaptation methods and hybrids of the three
 - Comparison of reliable multicast distribution vs. adaptive unicast streaming for broadcast (live) content
 - Investigation of the impact of adaptive transport in large-scale deployments
 - Development of instrumentation needed to assess the effectiveness of adaptive transport

2015

ACM INTERNATIONAL CONFERENCE ON INTERACTIVE EXPERIENCES FOR TELEVISION AND ONLINE VIDEO

Association for Computing Machinery

SUBMISSION DEADLINE: 2ND MARCH 2015

WORK IN PROGRESS, TVX IN INDUSTRY, DEMOS, DOCTORAL CONSORTIUM SUBMISSIONS

SUBMISSION DEADLINE: 15TH NOVEMBER 2014

WORKSHOP AND COURSE PROPOSALS

SUBMISSION DEADLINE: 12TH JANUARY 2015

FULL AND SHORT PAPER SUBMISSIONS

3rd - 5th JUNE 2015 BRUSSELS, BELGIUM

TVX 2015 - ACM INTERNATIONAL CONFERENCE ON INTERACTIVE EXPERIENCES FOR TV AND ONLINE VIDEO **Further Reading and References**

Further Reading and References Adaptive Streaming

- Overview Articles
 - "Watching video over the Web, part 2: applications, standardization, and open issues," IEEE Internet Computing, May/June 2011
 - "Watching video over the Web, part 1: streaming protocols," IEEE Internet Computing, Mar./Apr. 2011
- VideoNext workshop in ACM CoNEXT 2014
 - http://conferences2.sigcomm.org/co-next/2014/Workshops/VideoNext/
- Special Issue on Adaptive Media Streaming
 - IEEE JSAC Apr. 2014
- Special Session in Packet Video Workshop 2013
 - Technical program and slides: http://pv2013.itec.aau.at/
- Special Sessions in ACM MMSys 2011
 - Technical program and slides: at http://www.mmsys.org/?q=node/43
 - VoDs of the sessions are available in ACM Digital Library
 - http://tinyurl.com/mmsys11-proc (Requires ACM membership)

Multimedia Communication Blog

- http://multimediacommunication.blogspot.co.at
- W3C Web and TV Workshops
 - http://www.w3.org/2013/10/tv-workshop/
 - http://www.w3.org/2011/09/webtv
 - http://www.w3.org/2010/11/web-and-tv/

Further Reading and References

Source Code for Adaptive Streaming Implementations

- DASH Industry Forum
 - http://dashif.org/software/
- Open Source Implementations/Frameworks
 - http://dash.itec.aau.at/
 - http://gpac.wp.mines-telecom.fr/
 - libdash: https://github.com/bitmovin/libdash

Microsoft Media Platform: Player Framework

- http://playerframework.codeplex.com/
- Adobe OSMF
 - http://sourceforge.net/adobe/osmf/home/Home/
- OVP
 - http://openvideoplayer.sourceforge.net
- LongTail Video JW Player
 - http://www.longtailvideo.com/jw-player/about/

Further Reading and References Adaptive Streaming Demos

DASH

- http://dash-mse-test.appspot.com/dash-player.html
- http://dashif.org/reference/players/javascript/index.html

Akamai HD Network

- http://wwwns.akamai.com/hdnetwork/demo/flash/default.html
- http://wwwns.akamai.com/hdnetwork/demo/flash/hds/index.html
- http://wwwns.akamai.com/hdnetwork/demo/flash/hdclient/index.html
- http://bit.ly/testzeri

Microsoft Smooth Streaming

- http://www.iis.net/media/experiencesmoothstreaming
- http://www.smoothhd.com/
- Adobe OSMF
 - http://www.osmf.org/configurator/fmp/
 - http://osmf.org/dev/2.0gm/debug.html
- Apple HTTP Live Streaming (Requires QuickTime X or iOS)
 - http://devimages.apple.com/iphone/samples/bipbopall.html
- bitdash
 - http://www.dash-player.com/
- OVP
 - http://openvideoplayer.sourceforge.net/samples