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Abstract—TCP-based video streaming encounters difficulties
in unreliable networks with unanticipated packet loss. In com-
bination with high round trip times, the effective throughput
deteriorates rapidly and TCP connection resets or stalls may
occur. In this paper, we propose a client-driven video transmission
scheme which utilizes multiple HTTP/TCP streams. The scheme
is largely insensitive to unanticipated packet loss and thereby
reduces throughput fluctuations. Since it is based on HTTP, the
scheme can easily be deployed in existing network infrastructures.
It fosters scalability on the server side by shifting complexity from
the server to the clients. Certain features of request-response
schemes allow maintaining fairness, despite of using multiple
HTTP streams. Making use of TCP, the scheme inherently adapts
to congested network links.

Index Terms—video streaming, TCP, HTTP, client-driven,
fairness, TCP-friendliness

I. INTRODUCTION

Video streaming based on TCP has become popular be-
cause of its easy handling and deployment. TCP features in-
order delivery and reliable end-to-end transport, which makes
additional tools, like error concealment, unnecessary. In low-
latency networks, TCP features good throughput performance
and low end-to-end delays, which even makes TCP-based
interactive services possible. The inherent TCP-behavior as-
sures that only a fair share of the network bandwidth is
consumed by a video stream. In congested networks, though,
throughput variations may occur, which can disrupt the video
consumption. Furthermore, TCP streaming encounters diffi-
culties in unreliable networks with unanticipated packet loss,
because TCP streaming inherits all basic problems of TCP,
which are mostly related to packet loss. The effects are
highly variable throughput, throughput limitations, and TCP
connection timeouts or stalls.

The typical deployment scenario for TCP video streaming
is the Internet. Video portals like YouTube are streaming
the content throughout the whole world. The delivery of
YouTube is almost centralized [7], which leads to round
trip times (RTT) of up to 200 ms and more. This makes
retransmissions, which may occur due to congestion or packet
corruption, challenging. In our use case (see Figure 1), we
focus on asymmetric access networks which are assumed to
form the bottleneck links. Random packet losses, which may
be introduced by changing network conditions, are limited due
to link layer retransmissions in the access network. However,
these retransmission may result in increased delay and jitter
values.

Fig. 1. Use case

In our work we review this inherent problem of TCP
regarding packet loss and propose a new client-driven transport
mechanism based on HTTP [3]. By utilizing multiple HTTP
streams, we are able to reduce throughput fluctuations in error-
prone networks. We can maintain the TCP-friendliness of our
approach, although using multiple HTTP streams. The usage
of HTTP introduces some overhead, but enables advantages in
terms of deployment and re-use of existing HTTP software.
The proposed transmission scheme avoids complexity, by
placing the streaming logic only at the client. To support the
in-time delivery of the video data, the system assigns priorities
to certain parts of the media stream.

In the next section the characteristics of TCP-based stream-
ing under packet loss are investigated. TCP-based request-
response schemes are analyzed in Section III. Section IV
presents our client-driven approach, which shows how request-
response schemes may be used for video streaming. In Section
V an evaluation w.r.t. robustness and TCP-friendliness of our
approach will be given. Section VI concludes the paper.

II. LIMITS OF TCP-BASED STREAMING

The usage of TCP in video streaming is popular due to
its reliability, adaptability to fluctuating network conditions
and easy deployment. Because reliable transmission in TCP is
based on acknowledgments and retransmissions, the through-
put rate r of TCP is limited by the maximum segment size
(MSS) and the round trip time (RTT ). Assuming that after
the successful transmission of 1/p packets one packet is lost,
the upper bound for the TCP throughput rmax is [6]:

r =
data per cycle

time per cycle
<

(
MSS

RTT

)
1
√

p
= rmax (1)

According to Equation 1, it is obvious that the maximum
throughput of a single TCP connection is limited by the
packet loss p for a given RTT. An additional characteristic
of TCP is induced by the additive-increase/multiplicative-
decrease (AIMD) algorithm used for congestion control. The



MD step reduces the TCP window (and therefore the through-
put) in case of packet loss drastically, before the AI step tries
to increase the window once again. This leads to a notable
variation of the throughput in networks with large RTTs. The
streaming performance of TCP under different network con-
ditions was evaluated in [1]. It was shown that TCP streaming
offers good performance when the achievable TCP throughput
is twice the media bit rate. This over-provisioning is reasonable
for Internet streaming at low bit rates, but for emerging
services, like high definition video streaming, it may not be
feasible to supply twice the bit rate. Although the bandwidth
of last-mile links has increased (a significant number of hosts
have downlink bandwidths greater than 4 Mbps [4]), the high
bit rates needed for high definition video prevent the use of
this kind of over-provisioning.

Significant research on enhancing TCP performance was
done. New TCP implementations like CUBIC [9] address
the TCP performance problem on network links with high
bandwidth-delay-products. These implementations achieve
better link utilization, but tend to be potentially unfair to TCP
Reno [2]. In addition they all share a similar performance
problem with unanticipated packet loss, which is based on the
MD step in the congestion control. There have also been inves-
tigations concerning the use of multiple TCP connections to
stabilize TCP throughput [8], [10]. In general TCP connections
share the available bandwidth in a fair manner. Aggregating
multiple TCP streams for a single use is potentially unfair to
concurrent single connections. While being able to stabilize
and enhance the throughput, the solution in [10] exhibits this
unfairness. The approach described in [8] tries to provide
TCP-friendliness to concurrent single TCP connections, by
adjusting the rate of each TCP stream such that the aggregated
rate corresponds to the rate of a concurrent single TCP
connection. The described approaches using multiple TCP
streams try to enhance the TCP streaming performance, but
at the cost of high deployment effort. Our work avoids this
complexity, by placing the streaming logic only at the client. In
short, no new TCP implementation is needed and no additional
feedback loop between the server and the client. Additionally,
the described approaches need a rather complex feedback loop
between the client and the server, which has to coordinate the
transmission in case of connection aborts. Our client-driven
approach responds faster to changing network conditions and
enables easy recovery from connection stalls or aborts, because
the control loop is at the client.

Another way to transport data via TCP is the use of
short lived TCP connections, like in Web browsing. While
introducing additional overhead in comparison to a continuous
TCP connection, such request-response schemes may also
exhibit favorable characteristics, which will be discussed in
the following section.

III. TCP-BASED REQUEST-RESPONSE SCHEMES

TCP-based request-response protocols (e.g., like HTTP)
inherit all basic features of TCP. In general, the client requests
data from the server. After receiving the request, the server

creates a response and sends the data to the client. For
large blocks of data (or infinite-source data), the response
behaves like a classical TCP connection, but in case of smaller
responses a different behavior can be observed. Because small
responses are short-lived, they may experience unfairness from
infinite-source TCP connections [5]. In addition, TCP features
no throughput fairness between connections with different
RTTs [5].

Considering these two facts, we can create a system to steer
TCP-friendliness in request-response schemes. By inserting
temporal gaps between the requests (inter-request gap tgap),
we can emulate a TCP connection with increased RTT. As a
result, we can aggregate multiple submissive request-response
streams, which exhibit the same TCP-friendliness as a single
TCP connection.

In the following, we introduce a simple model which allows
us to define an upper bound for the throughput of the request-
response (rr) streams. We assume that the data (of size ld ≈
nd ∗ MSS) is transferred within a single RTT. In addition,
nc concurrent, but not-interfering request-response streams are
used for the transmission of the data. The upper bound for the
throughput without packet loss rrr in absence of congestion
can now be defined as:

data per cycle

time per cycle
< nc

(
ld

RTT + tgap

)
= rrr (2)

By using nc request-response streams and nd packets per
data block, a total of np = nc ∗ nd packets are transmitted.
Assuming the same packet loss as described before, we can
define the maximum number of lost packets nl as:

nl =
⌈

np

1 + 1/p

⌉
(3)

Using the simplified assumption that the packet loss is equally
distributed over all request-response streams and each con-
nection does not experience more than one lost packet per
transported data block (nl ≤ nc), the upper bound for the
throughput under packet loss rrrmax of the request-response
streams would be:

rrrmax = (nc−nl)
(

ld
RTT + tgap

)
+nl

(
ld

2 ∗RTT + tgap

)
(4)

The request-response streams with a single packet loss have
to retransmit the lost packet and need in the best case an
additional RTT for the transmission of the data. Equation 4
shows that even under packet loss we are able to tune the
throughput with the help of nc and ld. In addition, tgap can
be used to adjust the TCP-friendliness, but has obviously a
negative impact on the throughput. Thus, a trade-off has to be
found between these parameters. The idea is to be more error
resilient than a single TCP connection, while stabilizing and
enhancing the overall throughput, but also to be fair to other
connections in case of congestion.

This simplification is usable for the estimation of the achiev-
able bandwidth for small nc, and to explore which parameters
do influence the throughput of the request-response streams.
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Fig. 2. Theoretical upper bounds for throughput of a single TCP connection
(TCP) rmax and request-response streams rrrmax (MSS = 1460 bytes,
ld = 20480 bytes, nc = 10, tgap = 350 ms) under packet loss p.

For larger nc, the concurrency may introduce additional queu-
ing delay in the routers and scheduling effort on the server
and the client, which may result in much smaller throughput
values. In Figure 2 the upper bounds for a single TCP
connection and the request-response streams (RR) according to
Equations 1 and 4, respectively, are shown. It can be seen, that
the performance of the single TCP connection highly depends
on the packet loss and the RTT. The variation of the throughput
for RR w.r.t. RTT and packet loss is significantly reduced.
The next section presents a streaming system based on these
findings. An evaluation of this system in Section V validates
our theoretical assumptions on throughput stability and TCP-
friendliness.

IV. REQUEST-RESPONSE-BASED CLIENT-DRIVEN
STREAMING

We propose a new transmission scheme for video data
which is beneficial in case of bad network conditions. The use
of multiple request-response streams allows us to reduce the
quality fluctuations by stabilizing the transmission rate. There-
fore the scheme needs less over-provisioning than a single
TCP connection. As will be shown in Section V, a streaming
system based on request-response streams is able to provide
TCP-friendliness, although using multiple HTTP streams. The
basic architecture of our request-response-based client-driven
streaming system is shown in Figure 3. The system is based
on HTTP such that it allows easy deployment, enables reuse
of existing infrastructure (HTTP server, client, encryption,
etc.) and enables application-layer multicast structures through
HTTP proxies. Persistent connections as defined in HTTP/1.1
[3] are used to minimize the effort for the establishment of
TCP connections.

Before streaming, the video is split into chunks of size ld
and nc HTTP streams are used to fetch them. Therefore, for
each HTTP stream, a queue with video chunks is created
on the client (see Figure 4). The number of parallel HTTP

Fig. 3. Request-response-based client-driven streaming system

Fig. 4. Three HTTP streams/queues on the client with priority management

requests nc and the chunk size ld are fixed at start-up time,
based on available bandwidth. A trade-off between parallel
HTTP requests, chunk size and TCP-friendliness (tgap) (see
Equation 4) has to be found and is addressed in Section V-A.
After the initial setup, the chunks are retrieved via HTTP
according to their order within the queue. The streaming
client coordinates the in-order transmission of the chunks and
attempts to maximize the in-order throughput. Our approach
uses a simple strategy for fetching the chunks, which calculates
the timeout for establishing the transfer timeout for the chunks
(in the following denoted as timeout) dynamically. In addition
to the timeout management, priority management is applied
to the requests, which handles the transmission of late video
chunks. In the following, the two basic mechanisms of our
streaming system are described in detail.

A. Timeout Management

Because we only investigate small chunk sizes, we can
consider the transfer of a chunk to be stalled if the chunk
is not retrieved within 1000 ms to 3000 ms. This estimation is
based on the assumption that the RTT is 200 ms at maximum,
which means that a chunk has to be retrieved at least after 15
“attempts” (15 ∗ 200 ms ≈ 3000 ms). The lower bound of
the timeout is set to 1000 ms, to enable retransmissions on
congested links with little packet loss and delay. The timeout
is initialized as 2000 ms. The transfer duration of each chunk
is monitored at the client. The timeout is calculated from
a moving average over the last 20 transfer durations plus a
tolerance of 30%. Also expired transfers are considered (with a
penalty) in the moving average, in order to supply the timeout
management with early feedback on stalled transfers.

B. Priority Management

Timeliness is most important for video streaming because
late video frames reduce the quality of experience. Therefore



Fig. 5. Test setup

priority management is applied to the multiple request-
response streams in order to prioritize the transfer of chunks
required in the near future. The video chunks are numbered
in order of appearance within the video stream. As depicted
in Figure 4, each HTTP stream fetches the chunks in the
same order as located in the queue, i.e., in priority order.
If the transfer of a chunk stalls and reaches a timeout (as
chunk 4 in Figure 4), it will be fetched by two HTTP streams
again, to increase the probability of successful transmission.
Although sounding greedy, queuing a chunk twice does not
change the number of used HTTP streams. As a result it also
does not change the TCP-friendliness. The back-off in case
of congestion is done implicitly by the HTTP streams, since
they are based on TCP.

The proposed transmission scheme uses HTTP and features
low complexity on the server (basic HTTP service), resulting
in high scalability at the cost of increased client complexity.
It stabilizes the in-order throughput by utilizing multiple
HTTP streams. In addition, the system assigns priorities to
certain parts of the video, which supports the in-time delivery
of the video data.

V. EVALUATION

Our evaluation on request-response-based client-driven
streaming is divided into two parts. First, the robustness
w.r.t. packet loss and delay is investigated in Section V-A.
The metric for comparing TCP Reno with our client-driven
approach is the average throughput. Second, an evaluation
concerning the TCP-friendliness of the client-driven streaming
will be given in Section V-B.

The test setup consists of two servers, two routers and
two clients each running Ubuntu Linux, kernel 2.6.27, as
illustrated in Figure 5. The routers are using Netem1 for
network emulation. Router1 emulates the symmetric end-to-
end delay of the Internet and the provider network, with a
normal distributed delay with 10% standard deviation, which
is applied to all packets. The access network to the clients is
emulated by Router2, which limits the up- and downstream
bandwidth (BW), while allowing a maximum queuing delay
of 400 ms. In addition, the packets are dropped in a random
fashion to emulate packet loss. On all computers, the TCP
implementation Reno is used. The Apache2 HTTP Server
is employed for serving the video chunks. Our prototype
software uses Python and the HTTP library libcurl3.

1http://www.linuxfoundation.org/en/Net:Netem
2http://httpd.apache.org
3http://curl.haxx.se
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Fig. 6. Measured throughput of a single TCP connection (TCP) and
request-response streams (BW = 8192 kbps, MSS = 1460 bytes,
ld = 20480 bytes, nc = 10, tgap = 350 ms) under packet loss p.

For our investigation of transmission overhead, we analyzed
the packets sent for an HTTP request and a single TCP trans-
fer. The packet trace was created using wireshark4. Using a
standard HTTP client (libcurl) and server (Apache), the HTTP
request without the URL is approx. 200 bytes long and the
HTTP response approx. 300 bytes. Apart from establishing the
TCP connection there is an absolute overhead of approx. 600
bytes. The relative overhead for chunk sizes of 10240, 20480
and 40960 bytes is 5.8%, 2.9% and 1.5%, respectively. To keep
the overhead of establishing the TCP connections minimal,
persistent connections as defined in HTTP/1.1 are used.

A. Streaming Performance

In this section, the performance of request-response-based
client-driven streaming and TCP streaming using a single TCP
connection is evaluated under different network conditions, to
show the robustness with respect to packet loss and network
delay. In addition, the results should clarify if the models for
the upper bound of the throughput as presented in Sections II
and III are valid.

For the evaluation Server1 and Client1 are used. The net-
work bandwidth (BW) was set to 8192 kbps, which should
not limit the maximum throughput. The test video streams
are emulated by an infinite data source, to assure the correct
measurement of the maximum achievable throughput. Each
test run lasts for 500 seconds and every 10 seconds the in-order
throughput is measured. In Figure 6 the average throughput
for a single TCP connection and the request-response streams
are shown. In networks with small RTTs, the request-response
and the single TCP approach are able to cope with packet loss
via retransmissions. With increasing delay and packet loss, the
single TCP approach deteriorates rapidly, while the impact on
the request-response system is limited. The direct comparison
with the model (see Figure 2) reveals a good correlation to the
measured results. Although lower, the values for the maximum

4http://www.wireshark.org
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Fig. 7. TCP-friendliness of request-response streams (BW = 2048 kbps,
MSS = 1460 bytes, ld = 20480 bytes, nc = 10).

throughput are shaped equally and behave according to our as-
sumptions. In our model, the upper bound for request-response
systems is defined in a very optimistic manner, because the
model assumes that the whole data block is transmitted within
a single RTT and no server processing is considered. In
reality, multiple RTTs may be needed, depending on the used
configuration (ld = 20480 bytes, nc = 10) and the network
conditions. The handling of the request on the server also
increases the effective RTT. The priority management of our
streaming system may also decrease the achieved in-order
throughput, but enhances the stability of the throughput.

The results show that our approach has a notable advantage
over the single TCP approach in networks with unanticipated
packet loss. It can stabilize the in-order throughput regarding
RTT and packet loss. In the next section, we will show how to
enable TCP-friendliness for our request-response-based client-
driven streaming system.

B. TCP Friendliness

For the investigation of TCP-friendliness of our approach
and the impact of tgap on it, we use the throughput ratio metric
[2] as an indicator of how the transmission system behaves to-
wards a concurrent TCP Reno connection. A throughput ratio
greater than one indicates that the request-response streams are
unfair to the concurrent TCP Reno connection, while values
lower than one indicate a submissive behavior. The system
is regarded to be TCP-friendly if it allows a concurrent TCP
Reno stream to gain its fair bandwidth share (ratio = 1),
while the two streams compete for their bandwidth share on
a congested network link.

The test setup was configured in such a manner that con-
gestion on the access network link would occur. In parallel
to the client-driven system (running on Server1 and Client1),
an HTTP download from Server2 to Client2 is started and
competes for its network share. Again, each test run lasts for
500 seconds and every 10 seconds the in-order throughput
is measured. The throughput of the request-response-based

client-driven streaming system is about 2048 kbps, assuming
ld = 20480 bytes, nc = 10 and tgap = 350 ms (see Figure
6). So the network bandwidth BW is reduced to 2048 kbps
and the packet loss set to 0 %, to assure congestion on the
network link. After this, the throughput ratio is measured for
different RTTs, while tgap is varied around 350 ms.

Figure 7 shows the throughput ratio for the different RTTs.
It clearly points out that, with the help of temporal gaps (tgap)
between the requests, the TCP-friendliness of our approach
can be steered. Around tgap = 350 ms the throughput ratio is
≈ 1, which means that for the configuration ld = 20480 bytes
and nc = 10, a temporal gap of tgap = 350 ms would lead to
a TCP-friendly request-response stream.

VI. CONCLUSION

We introduced a client-driven streaming system based on
the request-response scheme of HTTP. It features good per-
formance, even on network links with high delay and jitter,
because it is not as prone to network errors and bandwidth
fluctuations as a single TCP connection. Our client-driven
approach uses multiple HTTP streams to mitigate throughput
variations, but still adapts to congested network links and does
not lead to starvation of a concurrent TCP connection. The
TCP-friendliness of our approach is steerable by temporal gaps
between the single requests. The achievable throughput of the
system is influenced by the selection of the parameter for the
temporal gap. Therefore a careful selection of this parameter
is required. Future work will cover a detailed investigation of
the selection of this parameter, considering a given chunk size
and the number of concurrent HTTP streams.

VII. ACKNOWLEDGMENT

This work was supported by the Austrian Science Fund
(FWF) under project “Adaptive Streaming of Secure Scalable
Wavelet-based Video (P19159)” and by the EC in the context
of the P2P-Next project (FP7-ICT-216217).

REFERENCES

[1] B. Wang, J. Kurose, P. Shenoy and D. F. Towsley. Multimedia streaming
via TCP: An analytic performance study. ACM TOMCCAP, 4(2), 2008.

[2] D. Miras, M. Bateman and S. Bhatti. Fairness of High-Speed TCP
Stacks. In Proc. AINA, 2008.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999.

[4] M. Dischinger, A. Haeberlen, K. P. Gummadi and S. Saroiu. Charac-
terizing Residential Broadband Networks. In Proc. IMC, 2007.

[5] M. Hassan and R. Jain, editor. High Performance TCP/IP Networking:
Concepts, Issues, and Solutions. Pearson Prentice Hall, 2004.

[6] M. Mathis, J. Semke, J. Mahdavi. The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm. ACM SIGCOMM Computer
Communication Review, 27(3), 1997.

[7] M. Saxena, U. Sharan, S. Fahmy. Analyzing Video Services in Web
2.0: A Global Perspective. In Proc. NOSSDAV, May 2008.

[8] R. P. Karrer, J. Park, J. Kim. TCP-ROME: Performance and fairness
in parallel downloads for web and real time multimedia streaming
applications. Technical report, Deutsche Telekom Labs, September 2006.

[9] S. Ha, I. Rhee, L. Xu. CUBIC: a new TCP-friendly high-speed TCP
variant. ACM SIGOPS Operating Systems Review, 42(5), 2008.

[10] S. Tullimas, T. Nguyen, R. Edgecomb, S. Cheung. Multimedia streaming
using multiple TCP connections. ACM TOMCCAP, 4(2), 2008.


	Introduction
	Limits of TCP-based Streaming
	TCP-based Request-Response Schemes
	Request-Response-based Client-driven Streaming
	Timeout Management
	Priority Management

	Evaluation
	Streaming Performance
	TCP Friendliness

	Conclusion
	Acknowledgment
	References

