
AdViSE: Adaptive Video Streaming Evaluation Framework for
the Automated Testing of Media Players

Anatoliy Zabrovskiy, Evgeny
Kuzmin, Evgeny Petrov

Petrozavodsk State University
Lenina, 33

Petrozavodsk, Russia 185000
{z anatoliy,kuzmin,johnp}@petrsu.

ru

Christian Timmerer
Alpen-Adria-Universität Klagenfurt

/ Bitmovin Inc.
Universitätsstraße 65-67
9020 Klagenfurt, Austria

christian.timmerer@itec.aau.at

Christopher Mueller
Bitmovin Inc.

301 Howard Street, Suite 1800
San Francisco, California 94105

christopher.mueller@bitmovin.com

ABSTRACT

Today we can observe a plethora of adaptive video stream-
ing services and media players which support interoperable
formats like DASH and HLS. Most of the players and their
rate adaptation algorithms work as a black box. We have de-
veloped a system for easy and rapid testing of media players
under various network scenarios. In this paper, we introduce
AdViSE, the Adaptive Video Streaming Evaluation frame-
work for the automated testing of adaptive media players.
The presented framework is used for the comparison and
testing of media players in the context of adaptive video
streaming over HTTP in web/HTML5 environments.

The demonstration showcases a series of experiments with
different media players under given context conditions (e.g.,
network shaping, delivery format). We will also demonstrate
the real-time capabilities of the framework and offline anal-
ysis including several QoE metrics with respect to a newly
introduced bandwidth index.

CCS CONCEPTS

�Networks �Network performance modeling; Net-
work experimentation; Network reliability; �Information
systems �Multimedia streaming;

KEYWORDS

Evaluation framework; AdViSE; Adaptive streaming; Me-
dia players; MPEG-DASH; Network emulation; Automated
Testing; Mininet; Selenium; Quality of Experience; Metrics

ACM Reference format:

Anatoliy Zabrovskiy, Evgeny Kuzmin, Evgeny Petrov, Christian
Timmerer, and Christopher Mueller. 2017. AdViSE: Adaptive

Video Streaming Evaluation Framework for the Automated Testing
of Media Players. In Proceedings of MMSys’17, Taipei, Taiwan,
June 20-23, 2017, 4 pages.

DOI: http://dx.doi.org/10.1145/3083187.3083221

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys’17, Taipei, Taiwan

© 2017 Copyright held by the owner/author(s). 978-1-4503-5002-
0/17/06. . . $150.00
DOI: http://dx.doi.org/10.1145/3083187.3083221

1 INTRODUCTION

Adaptive video streaming over HTTP is becoming more and
more the primary technology for video delivery in the open
internet. For example, Netflix and YouTube alone account
for more than 50% of the traffic [12] thanks to open, inter-
operable formats such as MPEG-DASH [14] or HLS [11]. In
the past, we have witnessed many deployments in web envi-
ronments implemented using Javascript by utilizing HTML5
and media source extensions (MSE) enabling a plugin free
video streaming.

The technology behind adaptive video streaming over
HTTP implies media representation switching (e.g., bitrate/
resolution) depending on context conditions such as network
characteristics and client device properties. An integral part
of each player implementation is the usage of an appropriate
rate adaptation algorithm which aims to follow dynamically
changing context conditions. Thus, we are in a situation with
many unknown variables and the problem of choosing the
appropriate media player for video streaming and playback
arises.

In this demo paper, we introduce AdViSE , an Adaptive
Video Streaming Evaluation framework which enables the
automated testing of media players — and, thus, rate adap-
tation algorithms — under various context conditions (e.g.,
client devices/platforms, network characteristics/conditions).
The main focus of AdViSE is the provisioning of tools for
easy and rapid experimentation with media players and al-
gorithms as they appear on the market including updates
thereof which become available in relatively short periods.

The rest of this paper is organized as follows. Section 2
describes the underlying scientific problems leading to the
development of AdViSE. In Section 3, we present the archi-
tecture of the designed system and its components. Section 4
provides a brief description about the demo itself and Sec-
tion 5 concludes the paper.

2 UNDERLYING SCIENTIFIC
PROBLEM

Nowadays, there exists a large number of different play-
ers/algorithms (including commercially available ones) and
most of them have been implemented in JavaScript. How-
ever, no common performance evaluation framework/system



MMSys’17, June 20-23, 2017, Taipei, Taiwan Anatoliy Zabrovskiy et al.

for adaptive media players exists enabling easy/rapid in-
tegration of new players and algorithms as they become
available (including updates thereof). Researchers and de-
velopers find themselves in situations where there is no pub-
lic, reliable information about the performance of adaptive
media players, specifically the rate adaptation algorithms
of commercially available players. Mostly related is proba-
bly TAPAS [6], which focuses on algorithms and written in
Python. Whereas our focus is on media players written in
JavaScript for web/HTML5 environments.

According to a recent survey [13] there are many different
QoE models available where each of them proposes their own
metrics. In many cases, these metrics are not considered
to be used in the context of real-world streaming solutions
and deployments. The goal of AdViSE is the integration of
existing or even new QoE metrics in our framework which
allows us to get results about the QoE almost in real-time
and also for offline analysis.

In terms of context conditions, adaptive media players
have to cope with a heterogeneous environment and having
even one change in the context condition might have a big
impact on the player behavior. The context conditions can
be categorized into several areas:

• Access network: wired, WiFi, mobile 3G/4G/5G;
• Network architecture/paradigm: content deliver net-

work (CDN), software-defined networking (SDN),
information-centric networking (ICN);

• Client device: desktop, laptop, mobile, TV, set-
top box, virtual reality (VR)/head-mounted display
(HMD);

• Client device condition/state: in motion, fixed;
• Server infrastructure: single server, direct stream

from Internet of Multimedia Things (IoMT) device;
and

• Content characteristics: live or video on-demand,
segment size (e.g., 2s, 4s, 6s or 9s), number of rep-
resentations (bitrates, resolutions, languages), video
codec, content profile.

Moreover, new versions of players are released in a short
period (i.e., from two weeks to several months) and also
new algorithms become available. Unfortunately, all players
have their own application programming interface (API) and
sometimes they do not work well (e.g., provide erroneous
data or no data at all). Therefore, the most critical challenge
for an effective adaptive media player comparison is to have
a common, ideally standardized API.

In practice, however, all clients expect to observe low
video startup time, smooth and high quality video playback
without interruptions (stalls/rebuffering events). To better
understand the efficiency and the major features of popu-
lar media players and their rate adaptation algorithms, the
AdViSE framework has been designed. It provides powerful
tools to both researchers and practitioners which enables
easy and rapid testing of new media player solutions and rate
adaptation algorithms under a variety of context conditions.

Figure 1: System Architecture.

Table 1: Overview of Adaptive HTML5 Players

Media player Version Web site (last access:
Feb 27, 2017)

Bitmovin Player 7.0 https://bitmovin.com

dash.js 2.4.0 http://dashif.org

Flow Player 6.0.5 https://flowplayer.org

HAS Player 1.7 https://github.com/
Orange-OpenSource/
hasplayer.js

JW Player 7.6.1 https://www.jwplayer.com

Radiant MP 3.10.8 https://www.
radiantmediaplayer.com

Shaka Player 2.0.3 https://github.com/google/
shaka-player

THEOPlayer 2.8.1 https://www.theoplayer.com

VideoJS Player 5.9.2 http://videojs.com

3 DEMO SYSTEM ARCHITECTURE

Our proposed system includes the following components:

• Web server with standard HTTP hosting the seg-
mented video content and a MySQL database.

• Network emulation server with customized Mininet [3]
environment for bandwidth shaping.

• Selenium [4] server for running adaptive media play-
ers on various platforms.

• Web management interface for (i) conducting the
experiments and (ii) running the adaptive media
players.

The demo system architecture is shown in Figure 1 and
the details for each component are described in the following
subsections. It defines a flexible system that allows adding
new adaptive media players relatively fast. Table 1 comprises
a list of players (in alphabetic order) which already have been
integrated in our system including version and web site.

https://bitmovin.com
http://dashif.org
https://flowplayer.org
https://github.com/Orange-OpenSource/hasplayer.js
https://github.com/Orange-OpenSource/hasplayer.js
https://github.com/Orange-OpenSource/hasplayer.js
https://www.jwplayer.com
https://www.radiantmediaplayer.com
https://www.radiantmediaplayer.com
https://github.com/google/shaka-player
https://github.com/google/shaka-player
https://www.theoplayer.com
http://videojs.com


Demo: AdViSE MMSys’17, June 20-23, 2017, Taipei, Taiwan

Figure 2: Picture of the Server Infrastructure.

The server infrastructure comprises three servers with dis-
tinct functionalities running Ubuntu OS (version 16.04 LTS)
and connected using Gigabit Ethernet switches. The Web
server hosts the video content for the adaptive streaming
and also hosts a MySQL database for collecting all the perfor-
mance measurements. The Selenium server provides means
for the automation of adaptive media players and requests
video content through the Network emulation server based
on Mininet. Finally, the Web management interface is hosted
on the Web server and allows to configure and conduct the
actual experiments. It is accessible from outside the con-
trolled environment, everything else is within a controlled
environment in order to avoid any cross-traffic that may influ-
ence the experiments. A picture of the real system is shown
in Figure 2.

3.1 Web Server

The Web server hosts the video content for adaptive stream-
ing over HTTP and currently AdViSE supports MPEG-
DASH [14] and HLS [11] as delivery formats.

In addition to the video content, the web server also hosts
a MySQL database for collecting all the performance mea-
surements and the web management interface for configuring
and conducting the experiments.

3.2 Selenium Server

The Selenium server is an open source software testing frame-
work for web applications [4] which is used to automatically
conduct our experiments with different adaptive media play-
ers running within a web browser. In our case we adopted the
Google Chrome browser but it is also possible to use other
browsers on various platforms (desktop, mobile, different op-
erating systems). The Selenium server is activated through
the web management interface to run the various experiments
automatically according to a given configuration.

3.3 Network Emulation Server

For the network emulation server we have adopted the Mininet
emulator [3]. Although this emulator is basically used for
emulating software-defined network (SDN) environments, it
has been also used for adaptive streaming environments [15].
It provides a straightforward and extensible Python API for
network creation and prototyping. We have utilized that
functionality to create a virtual link with changeable network
throughput characteristics.

Our network emulation server comprises two network in-
terfaces (eth0, eth1) and we have installed Mininet version
2.3.0d1. A python script is used to create a virtual network
which consists of one switch connected to the real network
using a TCLink [5]. By creating a virtual node in a root
name space, connecting it to the virtual switch and assigning
an IP address from a separate network we connect our virtual
environment with the real network. The network emulation
server has the role of the router between the real and the
virtual networks (cf. Figure 1).

A real network interface eth1 of the server is configured
as a port of that virtual switch. This network interface
and the eth1 network interface of the Selenium server are
connected to the same switch and, thus, they are in the same
broadcast domain. We assign an IP address of our virtual
network to the eth1 network interface of the Selenium server
and, consequently, the traffic to that network interface goes
trough the TCLink.

With the help of the Minievents framework [2] we setup our
TCLink to change its characteristics at the specified moments
of time. The schedule is stored within a file using the JSON
format. To make this schedule configurable through our web
management interface, a special PHP script was prepared
and is accessible within the network. This script retrieves the
schedule of TCLink parameters through the HTTP POST
request in JSON format, prepares the configuration file, and
runs our python script. If the test is already started, it replies
with error and ignores the request.

3.4 Web Management Interface

The web management interface provides two functions, (i)
one for configuring and conducting the experiments and (ii)
one for presenting the player with real-time information about
the currently conducted experiment. The former allows to
define the following items and parameters:

• management of network emulation profiles including
the configuration of the bandwidth trajectory, packet
loss, and packet delay;

• specification of the number of runs of an experiment;
and

• selection of the adaptive media player and the uti-
lized adaptive streaming protocol (MPEG-DASH or
HLS).

The result page provides a list of conducted experiments.
The analytics section provides various metrics of the con-
ducted experiments and it is possible to generate graphs of



MMSys’17, June 20-23, 2017, Taipei, Taiwan Anatoliy Zabrovskiy et al.

the results by using Highcharts [1] and exporting the raw
values for further offline analysis.

Before starting the experiment we need to create a band-
width trajectory profile. For each profile we can define dura-
tion of each stage, bandwidth, delay, and packet loss. As soon
as we start an experiment within the web management inter-
face, the Google Chrome browser is automatically launched
on the Selenium server and the selected network profile in-
cluding the link parameters is sent to network emulation
server. The actual requests for the video content towards the
web server goes through the network emulation server.

When running an experiment it is possible to display the
currently selected adaptive media player (including the video
streaming) and real-time information about the currently
conducted experiment and its parameters.

4 DEMONSTRATION

During our demonstration we are going to run a number of
experiments on our testbed. Remote access from the demo
presentation room to the system will be organized by the
TeamViewer remote access tool or VNC Viewer. Throughout
all experiments the quality parameters are recorded in a
MySQL database. It is possible to create a new bandwidth
trajectory scheme or use a predefined one which is used by
the network emulation server to adjust the bandwidth, e.g.:
750 kbps, 350 kbps, 2500 kbps, 500 kbps, 700 kbps, 1500
kbps, 2500 kbps, 3500 kbps, 2000 kbps, 1000kbps and 500
kbps. Such a scheme of bandwidth trajectory inevitably
causes quality switches of DASH/HLS streams.

In our experiments we use the Big Buck Bunny video
sequence which is also commonly used in similar testbeds
within this experimentation domain [8]. Other sequences
can be added easily. In the demo the content is encoded
and prepared according to DASH/HLS utilizing two differ-
ent profiles. The first comprises a FullHD profile with five
different representations: 426x238 pixels (400kbps), 640x360
(800), 854x480 (1200), 1280x720 (2400), and 1920x1080
(4800). For the second configuration we reverse-engineered
the Amazon Prime video service which offers 15 different rep-
resentations: 400x224 (100), 400x224 (150), 512x288 (200),
512x288 (300), 512x288 (500), 640x360 (800), 704x396 (1200),
704x396 (1800), 720x40 (2400), 720x40 (2500), 960x540
(2995), 1280x720 (3000), 1280x720 (4500), 1920x1080 (8000),
and 1920x1080 (15000). In both cases we adopted a segment
length of four seconds as it provides the best trade-off with
respect to streaming performance and coding efficiency [8]
which is also used in commercial deployments like Netflix.

Demonstration attendees will be able to see the media
player launched on a Selenium server in a Google Chrome
browser and to observe real-time statistics about the cur-
rently conducted experiment. After the completion of the
experiment the results will be presented in the result web
interface of the system in tables and charts. The following
quality parameters and metrics are available:

• download video bitrate (or selected video quality);
• video buffer length (or video buffer level);

• video startup time;
• stalls (or buffer underruns);
• number of quality switches;
• instability and inefficiency [7];
• average video bitrate;
• Bandwidth index combining instability, inefficiency,

and average video bitrate;
• QoE metrics: QoEMäki [9], which takes into account

the number of stalls, total stalling time; QoEMok [10],
which depends on video start-up time, stalling fre-
quency and average duration of a stalling event.

5 CONCLUSIONS

AdViSE allows us to conduct many experiments in an auto-
matic mode and to make a deep analysis of the obtained re-
sults using different video streaming parameters and QoS/QoE
metrics/models. Our future work will include adding new
players and QoE metrics, investigating how different adap-
tive media players compete for the available bandwidth in a
shared network.

REFERENCES
[1] Highcharts. http://www.highcharts.com/, (Online: accessed Jan-

uary 24, 2017).
[2] Minievents framework. https://github.com/cgiraldo/minievents,

(Online: accessed January 24, 2017).
[3] Mininet. http://mininet.org/, (Online: accessed January 24,

2017).
[4] Selenium server. http://www.seleniumhq.org/, (Online: accessed

January 24, 2017).
[5] TCLink. http://mininet.org/api/classmininet 1 1link 1 1TCLink.

html, (Online: accessed January 24, 2017).
[6] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. TAPAS:

A Tool for rApid Prototyping of Adaptive Streaming Algorithms.
In Proceedings of the 2014 Workshop on Design, Quality and
Deployment of Adaptive Video Streaming, VideoNext ’14, pages
1–6, New York, NY, USA, 2014. ACM.

[7] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streaming With
Festive. IEEE/ACM Trans. Netw., 22(1):326–340, Feb. 2014.

[8] S. Lederer, C. Müller, and C. Timmerer. Dynamic Adaptive
Streaming over HTTP Dataset. In Proceedings of the 3rd Multi-
media Systems Conference, MMSys ’12, pages 89–94, New York,
NY, USA, 2012. ACM.

[9] T. Mäki, M. Varela, and D. Ammar. A Layered Model for Quality
Estimation of HTTP Video from QoS Measurements. In 2015 11th
International Conference on Signal-Image Technology Internet-
Based Systems (SITIS), pages 591–598, Nov 2015.

[10] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang. Measuring
the Quality of Experience of HTTP Video Streaming. In 12th
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2011) and Workshops, pages 485–492, May
2011.

[11] R. Pantos and W. May. HTTP Live Streaming. Internet-Draft
draft-pantos-http-live-streaming-20, Internet Engineering Task
Force, Sept. 2016. Work in Progress.

[12] Sandvine. 2016 Global Internet Phenomena Report: Latin Amer-
ica & North America, 2016. Online: http://sandvine.com/ .

[13] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and
P. Tran-Gia. A Survey on Quality of Experience of HTTP
Adaptive Streaming. IEEE Communications Surveys Tutorials,
17(1):469–492, Firstquarter 2015.

[14] I. Sodagar. The MPEG-DASH Standard for Multimedia Stream-
ing Over the Internet. IEEE MultiMedia, 18(4):62–67, 2011.

[15] A. Zabrovskiy, E. Kuzmin, E. Petrov, and M. Fomichev. Emula-
tion of Dynamic Adaptive Streaming over HTTP with Mininet.
In 2016 18th Conference of Open Innovations Association and
Seminar on Information Security and Protection of Information
Technology (FRUCT-ISPIT), pages 391–396, April 2016.

http://www.highcharts.com/
https://github.com/cgiraldo/minievents
http://mininet.org/
http://www.seleniumhq.org/
http://mininet.org/api/classmininet_1_1link_1_1TCLink.html
http://mininet.org/api/classmininet_1_1link_1_1TCLink.html

	Abstract
	1 Introduction
	2 Underlying Scientific Problem
	3 Demo System Architecture
	3.1 Web Server
	3.2 Selenium Server
	3.3 Network Emulation Server
	3.4 Web Management Interface

	4 Demonstration
	5 Conclusions
	References

