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Abstract

Universal Multimedia Access (UMA) calls for solutions where content is created
once and subsequently adapted to given requirements. With regard to UMA
and scalability, which is required often due to a wide variety of end clients, the
best suited codecs are wavelet based (like the MC-EZBC) due to their inherent
high number of scaling options. However, most transport technologies for deliv-
ering videos to end clients are targeted toward the H.264/AVC standard or, if
scalability is required, the H.264/SVC. In this paper we will introduce a map-
ping of the MC-EZBC bitstream to existing H.264/SVC based streaming and
scaling protocols. This enables the use of highly scalable wavelet based codecs
on the one hand and the utilization of already existing network technologies
without accruing high implementation costs on the other hand. Furthermore,
we will evaluate different scaling options in order to choose the best option for
given requirements. Additionally, we will evaluate different encryption options
based on transport and bitstream encryption for use cases where digital rights
management is required.

Keywords: Scalable Video Coding (MC-EZBC), In-network Adaptation,
RTP/SRTP MANE, generic Bitstream Syntax Description (gBSD), Video
Encryption, Selective Encryption, Format Compliance

1. Introduction

The use of digital video in today’s world is ubiquitous. Content consumers
desire to retrieve content through a multitude of networks, from 3G to broad-
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band Internet, on a broad range of consumer devices, from cell phones to high
performance PCs. However, consumers do not care about the technicality nec-
essary to provide the content over this wide range of networks but rather about
their quality of experience (QoE), i.e., they want to consume the best possible
quality in a timely manner. This creates a problem for content providers since
it is costly, in both time and storage space consumption, to provide content for
every conceivable end device and network link. Re-encoding on the other hand
is expensive in the way that it requires significant time which reduces the QoE
for end users.

The solution to this problem is called Universal Multimedia Access (UMA)
[1]. The goal of UMA is to encode content once and adapt it in a timely
manner to current end user requirements. One of the enabling technologies of
UMA is the use of scalable video coding. This averts the need for transcoding
on the server side and enables the server to scale the video. However, even
scaling requires computation time and reduces the number of connections the
server can accept. Furthermore, variable bandwidth conditions, which happen
frequently on mobile devices, further tax the server with the need to adapt the
video stream. The solution to this is usually in-network adaptation, shifting
the need to scale to the node in the network where a change in bandwidth is
occurring. The core adaptation with these restrictions takes place on the server
and adaptation due to actual channel capability is done in-network.

For video streaming in the UMA environment, i.e., a high number of possible
bandwidths and target resolutions, wavelet based codecs should be considered.
Wavelet based codecs are naturally highly scalable and rate adaptation as well
as spatial and temporal scaling is easily achieved. Furthermore, wavelet based
codecs achieve a coding performance similar to H.264/SVC, c.f. Lima et al. [2].
Under similar considerations Eeckhaut et al. [3] developed a complete server to
client video delivery chain for scalable wavelet-based video. However, there are
already standardized ways of transporting multimedia data, namely the Real-
time Transport Protocol (RTP) [4]. Similarly, there is a protocol for handling a
single or several time-synchronized stream of continuous media, e.g., audio and
video, the Real Time Streaming Protocol (RTSP) [5] which can use RTP as its
mode of transportation. Besides RTP and RTSP the MPEG-21 Part 7 ”Digital
Item Adaptation” (DIA) [6] can be used to provide content related metadata.
A codec agnostic description, the generic Bitstream Syntax Description (gBSD)
[7], can also be used as a basis for an informed adaptation process.

In order to use existing technology, i.e., RTP streaming and in network
adaptation, modules for handling the motion compensated embedded zero bit
codec (MC-EZBC) have to be created to facilitate packetization for RTP and
media awareness for adaptation nodes. However, the existing technology can
already deal with H.264/SVC, e.g., [8] describes the H.264/AVC payload for
RTP and multimedia aware network elements (MANE) and [9] extends this
to H.264/SVC. Since the H.264/* bitstream is build from network abstraction
layer units (NALUs), the fastest route to utilize the existing infrastructure is
to encapsulate the MC-EZBC into a NALU bitstream which presents itself as
H.264/SVC to those components. Following this route it is, apart from the
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MC-EZBC to NALU conversion, trivial to use the existing infrastructure. Also
note that, while we only take a look at MC-EZBC to NALU conversion, such a
conversion can be constructed for other scalable video codecs and the theoretical
and experimental analysis will by and large also hold for those conversions.

In this paper we will provide a method of encapsulating the MC-EZBC into
a NALU bitstream. Additionally, we will investigate how this encapsulated bit-
stream can be transported, encrypted, and scaled, and at what cost in terms of
payload overhead and network delay. Furthermore, we will look at surrounding
issues which have to be taken into account, e.g., initial vectors for encryption.

In section 1.1 we will describe the basics of the chosen wavelet based video
codec, the MC-EZBC, in section 2.1 a description of the layout of the bitstream
will be given and the adaptation to the RTP packetization scheme will be given
in section 2.2. An overview of the MPEG-21 DIA generic Bitstream Syntax
Description (gBSD) will be given in section 2.3. Section 2.4 describes additional
requirements for the RTP streaming process for the MC-EZBC and presents the
outline of the encapsulation process.

The main concern of research regarding UMA is usually performance with
respect to scaling and in-network adaptation. However, digital rights manage-
ment and security is also a prime concern for providers of commercial videos.
Furthermore there are a range of other aspects of video streaming, ranging from
server requirements to protocols, to QoS etc., Wu et al. [10] give a good overview
of these aspects. General principles and possible goals of digital rights manage-
ment (DRM) will be explained in section 1.2 and application of encryption to
the MC-EZBC codec will be discussed in section 3.

In section 4 we will compare the different aspects and options of the adap-
tation and streaming process theoretically and experimentally.

1.1. The Motion Compensated Embedded Zero Bit Codec (MC-EZBC)

For reasons of scalability which fit the UMA principle we use the enhanced
MC-EZBC wavelet based video codec for in-network adaptation. This choice
was made mainly because the source code is available 1, which enables our
experiments. The MC-EZBC codec [11, 12, 13, 14] is a scalable t-2D video codec
which uses motion compensated temporal filtering, with 5/3 CDF wavelets,
followed by regular spatial filtering, with 9/7 CDF filtering, an overview of the
encoding pipeline is given in fig. 1a. This method, temporal first and spatial
later, is referred to as t+2D coding scheme, see fig. 1b for an example of this
decomposition for a group of picture (GOP) size of 8. For temporal filtering a
full decomposition is used and thus the GOP size is discernible by the number
of temporal decomposition levels. Both temporal and spatial filtering is done
in a regular pyramidal fashion. Statistical dependencies are exploited by using
a bit plane encoder, the name giving embedded zero bit coder. Motion vectors
are encoded with DPCM followed by an arithmetic coding scheme.

1The source for the ENH-MC-EZBC is available from
http://www.cipr.rpi.edu/research/mcezbc/.
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(a) Overview of the coding pipeline.
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(b) Decomposition of a GOP of size 8 showing the arrange-
ment of temporally and spatially decomposed frames in
the bitstream.

Figure 1: MC-EZBC encoding overview.

For an overview of wavelet based video codecs and a performance analysis
as well as techniques used in those codecs see the overview paper by Adami et
al. [15]. Again, while we concentrate only on the MC-EZBC in this paper the
encapsulation process described later can in a modified version still be applied
to other scalable video codecs. Likewise the analysis performed will also be
indicative for other scalable video codecs.

1.2. Overview of Encryption and Digital Rights Management

Shannon’s work [16] on security and communication shows that the highest
security is reached through a secure cipher operating on almost redundancy free
plain text. Current video codecs exploit redundancy for compression and we
can consider the bitstream to be a redundancy free plain text in the sense of
Shannon. Thus for maximum security we just need to encrypt the whole bit-
stream with an state of the art cipher, i.e., the Advanced Encryption Standard
(AES) [17]. However, the choice was made to keep information in plain text
in order to facilitate scalability in the encrypted sequence. Regarding security,
Lookabaugh et al. [18] showed that such a selective encryption is sound and
demonstrated its relation to Shannon’s work. However, Said [19] showed that
side information can compromise security.

Thus, we can differentiate between:

Traditional Encryption or full encryption where the full range of the plain-
text is encrypted and security in the sense of Shannon is achieved.
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Selective Encryption or partial encryption where, carefully selected, parts
of the plaintext are left unencrypted. Two common reasons for this ap-
proach are reduction in resources, usually time saved when only a part of
a plaintext is encrypted, or maintaining properties of the plaintext in the
encrypted domain.

The encryption approach used for the MC-EZBC is of the second kind where
the objective is to retain the ability to scale the encrypted bitstream, which is
not possible when using traditional encryption.

Furthermore selective encryption can be utilized to protect only parts of
the bitstream for digital rights management (DRM) scenarios, e.g., a freely
decodeable preview version with embedded but encrypted high quality version.
The possible security goals we want to achieve with selective encryption in
different DRM scenarios are as follows:

Confidentiality Encryption means MP security (message privacy). The for-
mal notion is that if a system is MP-secure an attacker can not efficiently
compute any property of the plaintext from the ciphertext [20].

Sufficient Encryption means we do not require full security, just enough secu-
rity to prevent abuse of the data. Regarding video this could for example
refer to destroying visual quality to a degree which prevents a pleasant
viewing experience.

Transparent Encryption means we want consumers to be able to view a
preview version of the video but in a lower quality while preventing them
from seeing a full version. This is basically a pay per view scheme where
a lower quality preview version is available from the outset to attract the
viewer’s interest. The distinction is that for sufficient encryption we do
not have a minimum quality requirement, and often encryption schemes
which can do sufficient encryption cannot ensure a certain quality and are
thus unable to provide transparent encryption.

2. Particulars of the Protocols

In this section we will describe the details of the MC-EZBC bitstream which
are required to perform scaling. Furthermore we will describe the NALU bit-
stream requirements related to the encapsulation of the MC-EZBC bitstream
in order to provide scalability on the transport layer. Likewise, the subset of
gBSD syntax elements related to describing the MC-EZBC bitstream are dis-
cussed. The requirements introduced by utilizing the RTP are explained and an
overview of the process which encapsualtes the MC-EZBC bitstream into gBSD
and NALU with respect to RTP are presented.

2.1. MC-EZBC Bitstream

The basic layout of the MC-EZBC bitstream is depicted in fig. 2a and a more
detailed overview of the ’image data’ required for fine grain scalability is shown
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Figure 2: Layout of the MC-EZBC bitstream.

Figure 3: Grouping of decompositions for a frame with two spatial decomposi-
tion levels.

in fig. 2b. The bitstream is lead by a general header giving resolution, frame
rate, prediction options etc., most of which stay the same during scaling. The
header however has three fields we need to adjust when scaling is performed:
a bitrate field giving the bit rate to which the bitstream is scaled, t_level
giving the number of temporal layers dropped and s_level giving the number
of spatial layers dropped. The header is followed by a GOP size list giving the
size of a GOP without GOP header size and motion field, i.e., only specifying
the image data size. For any scaling done the GOP size list has to be adjusted
to reflect the new size of image data.

Following this general information are the motion and image data ordered
by GOP, i.e.: Header, motion vectors of GOP 1, image data of GOP 1, motions
vectors of GOP 2, and so on. Each GOP contains a GOP header, containing
scene change information, i.e., which frames are encoded as I frames. Following
the GOP header is the motion field for the current GOP. The GOP header and
motion field are not changed during scaling, i.e., motion vectors are not scaled
with the image data. Following the motion field is the image data in frame order
of temporal decomposition, c.f. fig. 1b and fig. 2 lower part.

The layout of the image data consists of a number of data chunks consisting
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+---------------+---------------+---------------+---------------+

|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|

+-+---+---------+-+-+-----------+-+-----+-------+-----+-+-+-+---+

|F|NRI| Type |R|I| PRID |N| DID | QID | TID |U|D|O| RR|

+-+---+---------+-+-+-----------+-+-----+-------+-----+-+-+-+---+

Figure 4: Schematic of the NALU header with SVC extension.

of size information and data. For each frame every spatial decomposition level
is given as one chunk where color information and direction of decomposition
are grouped together, fig. 3 illustrates this. The order of these chunks in the
bitstream is from lowest subband to highest subband. For scaling, the size
information of the chunks needs to be reset to the reduced data in the chunk,
consequently a description of the bitstream which allows scaling has to include
access to chunk size information. For a limited number of scaling options, this
would be enough since the chunk data can be subdivided into blocks which we
can remove. In each chunk there is a three byte header which must never be
removed for regular scaling, however when the whole resolution is dropped these
three bytes can be dropped too.

2.2. NALU Bitstream

The layout of the MC-EZBC bitstream lends itself naturally to the trans-
formation into a NALU bitstream. In the following we will describe the layout
of a valid NALU bitstream as well as an adaptation scheme of the MC-EZBC
bitstream. The NALU bitstream is composed of NALU headers, marker seg-
ments and payload. In order to properly parse the NALU bitstream, the headers
need to be valid, the payload must not contain marker sequences and a marker
sequence has to properly indicate the end of a payload segment.

Figure 4 shows the NALU header with SVC header extension, which is used
exclusively in our case.

The fields we use for adaptation are:

PRID The priority ID is a 6-bit field which provides application specific priority
settings and is used to specify the encoded bitstream part.

TID Temporal ID is a 3-bit field specifying the temporal level and is mapped
to the temporal decomposition level.

DID Dependency ID is a 3-bit field which provides inter-layer dependency,
i.e., higher DID depends on lower DID, and is used to indicate spatial
decomposition level.

QID The quality ID is a 4-bit field specifying quality level dependency and
is used to further subdivide a spatial decomposition level into bit rate
adaptation cutting points.
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More specifically, since we always use the SVC extension header, the header
type (denoted by Type) is always set to 20. The priority ID reflects the type of
data from the original MC-EZBC bitstream: header information (PID 0), GOP
header information (PID 1), motion field (PID 2) and image data (PID 3). The
GOP length information of the original MC-EZBC bitstream is dropped.

In order to ensure that no marker sequences appear in the bitstream, an
escape sequence can be used to escape such marker information. The following
table shows the transforms:

0x000000 → 0x00000300

0x000001 → 0x00000301

0x000002 → 0x00000302

0x000003 → 0x00000303

Also note that the escaped sequences are not allowed to appear in the bitstream
but since this is done by inserting 0x03 and the fact that 0x000003 is also in
the marker sequence list this problem solves itself.

Another problem with transforming the bitstream is that the NALU header
is prefixed with a marker sequence which is of the form 0x0000 (00)* 01.
Usually three byte sequences are used, except for the the first header which
uses a four byte sequence as a synchronization marker. The problem is the
arbitrary number of zero bytes in the marker sequence. The specification was
done with H.264/SVC in mind where an encoded slice can not end in 0x00. For
the MC-EZBC however this is not the case and thus a trailing zero byte would
be counted as belonging to a marker and be lost. To fix this, we append 0x03

to the end of every payload.
The transformation from the NALU bitstream to a MC-EZBC bitstream is a

bit more complicated. The data in the NALU bitstream follows the same order
as the bitstream representation of the MC-EZBC, i.e., no reordering has to be
performed. But since we need to reconstruct the header information for the
MC-EZBC bitstream in case scaling occurred, we need to put the information
in a treelike structure representing the temporal and spatial decompositions of
the MC-EZBC. This is done by monitoring drops in NALU header fields, i.e., a
drop in a field refers to parsing a lower *ID value than the previous parsed *ID
value. For example, if a drop in the QID occurs we move to a different spatial
decomposition or a different frame, depending if a drop in DID is also detected,
or to a different GOP and so on. After this is done, we need to restructure
the whole bitstream in order to find the maximum decomposition levels, e.g., if
there is a resolution drop in one GOP, the other GOPs need to be adjusted to
reflect this, in order to properly determine a resolution for the overall header.
When this is done the overall header information is calculated and corrected
and the GOP length information which was dropped in the transformation to
the NALU bitstream is reconstructed.

2.3. gBSD

The gBSD is part of the MPEG-21 part 7 ”Digital Item Adaptation” and is
used to describe a bitstream in a format agnostic way. This enables devices to
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understand a single high level interface (gBSD) and thus perform operations on
a bitstream, e.g., scaling, without knowledge about the actual bitstream. While
the gBSD allows more structural information to go into the description, we will
keep the bitstream description simple so as not to generate too much overhead.
For more information on the tags and attributes used see MPEG-21 part 7 [6].

The gBSD is prefaced with a dia:DIA root tag specifying namespaces fol-
lowed by a dia:Description tag specifying the description type (gBSDType)
followed by address information. Since the MC-EZBC bitstream is byte based,
we set it to addressUnit="byte" and addressMode="Absolute". The address
mode gives the method of accessing parts of the bitstream, this is reflected by
the use of start and length attributes in subsequent tags. For the bitstream
description we need two different types of tags.

First we need a copy descriptor specifying that a part of the original bit-
stream should be retained in the scaled version. The gBSDUnit tag is used
for this purpose, it takes start and length information to mark a part of the
bitstream to be kept.

Additionally we need access to the bitstream in positions where the header
has to be adapted, e.g., size information in a scaling case. Such information can
not be copied over from the original bitstream but has to be adapted depending
on the target resolution or bitrate. The Parameter tag is used for this purpose
and gives the length of the data block to insert into the bitstream. The actual
information contained in the parameter is given by the required child Value.
The attribute xsi:type gives the type of data and the content of the tag gives
the actual value.

By using Parameter and Value we can access the actual value and change
it according to the adaptation, while the gBSDUnit tags let us copy parts of the
actual bitstream. Both Parameter and gBSDUnit also have an attribute marker
which allows to give a handle to the tag to access it directly.

Figure 5 shows a part of the description of the bitstream for the flower
sequence which can be used to scale to 1024kbps and 512kbps. It also shows the
description of the header where it can be seen that only the bitrate has to be
described as Parameter and that it needs to be set to 1024 to properly reflect
the bitrate of the stream. The resulting description of the bitstream consists of
two gBSDUnit descriptions discerning between 512 and 1024 kbps.

In order to perform repeated adaptations in the network, the gBSD has to
encompass all adaptation possibilities and has to be kept accurate. In order to
do this, the gBSD has to be adapted via extensible stylesheet language trans-
formations (XSLT) which is done on the network adaptation node. However,
the more fine grained the adaptation choices should be, the more fine grained
the gBSD has to be which results in a bigger gBSD file and a more complicated
XSLT script. The gBSD together with the XSLT script produce an overhead
which limits the size of the actual bitstream, so it is best to keep them as simple
as possible. Furthermore, if no more adaptation steps are necessary, the gBSD
file can be dropped, i.e., from the last node in the network to the end device
the full channel bandwidth can be used.

Figure 6 illustrates how gBSD is used for adaptation, fig. 6a shows the overall
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...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q0">

<Value xsi:type="xsd:unsignedShort">1024</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">118</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<gBSDUnit start="545793" length="100" marker="data Q0"/>

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">185</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

<gBSDUnit start="545916" length="164" marker="data Q0"/>

</dia:Description>

</dia:DIA>

Figure 5: gBSD representation of the flower sequences quality scaling options
for 1024 kbps and 512kbps.

layout of an adaptation process, a bitstream and a corresponding gBSD are sent
together. According to an adaptation scheme the adaptation engine can scale
the bitstream, and adapt the gBSD to fit the scaled bitstream. The adaptation
scheme can be fixed, i.e., only certain fixed scaling options are included, or
it can be generated based on user preference or requirement, this part of the
adaptation engine process is illustrated in fig. 6b. The adaptation based on user
preference, especially if more than one user is involved, however increases the
size of the gBSD since more options have to be taken into account. Furthermore,
either the overhead is increased by creating a more complex adaptation scheme,
which anticipates possible user preferences, or the delay is increased by having
the adaptation engine request a custom adaptation scheme from the server.
A more detailed information about the gBSD adaptation of the MC-EZBC is
available in [21]. The paper also shows that there are problems with the gBSD
for different types of sequence, like the increase in relative gBSD description
size in low motion sequences.

2.4. RTP

Apart from the NALU encapsulation the RTP streaming requires timing
information for the packetization, cf. [8]. Furthermore, in order to stream
the gBSD with along the same channel utilizing RTP it has to be embedded
in the NALU bitstream. This is done by adding supplemental enhancement
information (SEI) messages, cf. [22], to the NALU bitstream.

In order to produce timing information for the RTP server, the conversion
from MC-EZBC to NALU will also produce an XML output which describes
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Figure 6: Overview of the gBSD adaptation planning process.

the resulting NALU bitstream, including timing information which can be calcu-
lated from the framerate given in the original MC-EZBC header and the frame
number. This XML description can be used not only as a source of timing in-
formation but also as a basis to generate interleaved gBSD descriptions. Should
a gBSD be required the produced XML description can be annotated to create
the basis of an SEI embedded gBSD description. The annotated XML file can
then be broken up to conform to the desired access units (AU) of the bitstream,
i.e., the interleaving granularity. This AU gBSD fragments are then compressed
and wrapped in an SEI message and inserted into the NALU bitstream in such a
way that they precede the AU which they describe. Figure. 7 gives a schematic
overview of the transformation process.

MC-EZBC

NALU

gBSD XML

timing

NALU over RTP

AUAU

gBSD AU XML

annotated

embed SEI
SEI MC-EZBCSEI MC-EZBC

NALU with SEI

MC-EZBCMC-EZBC

gBSD XML

NALU with SEI over RTP

timing

Figure 7: Scheme for MC-EZBC to NALU encapsulation with SEI embedding.

3. Encryption

In order to encrypt the content and still retain the ability to scale there are
two options, content encryption, i.e., encrypt the bitstream either on a MC-
EZBC or NALU level, or transport encryption. Both methods have advantages
and disadvantages regarding computational requirements and security provided.

3.1. Transport Encryption

Transport encryption can be done by using the Secure Real-time Transport
Protocol (SRTP), defined in RFC3711 [23]. SRTP is a profile to the Real-
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Time Transport Protocol (RTP), defined in RFC3550 [4], providing encryption,
message authentication and protection against replay attacks for both uni- and
multicast.

The drawback of using the SRTP is the need to decrypt the whole commu-
nication on any MANE, where potential scaling takes place. The decryption on
each MANE is required, whether scaling is performed or not, in order to inspect
the bitstream to determine if scaling has to be performed. This puts a high
computational strain on the MANE, which has to decrypt as well as encrypt,
compared to encryption only on the server and decryption only on the client.
Furthermore, since the key for decryption has to be known on any MANE where
scaling can take place each MANE introduces a potential attack point to the
system.
On the other hand, we gain security against replay attacks since the whole of
the communication is encrypted. Furthermore, the delay for delivery to the con-
sumer is reduced in comparison to prior encryption. Since no prior encryption
is employed the streaming can start sooner and the overhead of encryption is
distributed in time over the whole streaming process.
However, this option still does not provide confidential security akin to tra-
ditional encryption. Due to the headers of the encapsulating SRTP packages
remaining in plain text, the length information can be used combined with side
channel attacks to compromise security, see Hellwagner et al. [24].

3.2. Bitstream Encryption

For bitstream encryption the choices are either to encrypt the MC-EZBC
prior to encapsulating it into a NALU bitstream, or to directly encrypt the
NALU bitstream. However, the use of the NALU bitstream for encryption is
somewhat problematic. A cipher should optimally produce output resembling
a uniform distribution, and thus can create marker sequences which have a spe-
cial meaning, cf. section 2.2. However, the creation of marker sequences can
be prevented or remedied, for a more detailed discussion of NALU encryption
see Hellwagner et al. [24], in this paper we will not look into encryption on a
NALU level. Encrypting the MC-EZBC on the other hand is easier in technical
terms. Through the length information in data chunks, no marker sequences
are needed and the content of a chunk can be directly encrypted. Furthermore,
the transformation to NALU automatically takes care of possible NALU marker
sequences as described in section 2.2. When utilizing UMA, a highest quality
source video is used; thus in order to reduce computational cost, encryption
should be performed after defining quality levels, i.e., only a part of the source
video is used. Furthermore to reduce parsing cost the best option is to in-
clude encryption into the NALU encapsulation process. When the encryption
is applied just prior to NALU encapsulation, the occurrence of possible marker
sequences is automatically taken care of by the encapsulation process.

There are a number of options on how to encrypt the MC-EZBC bitstream
depending on the desired results in terms of DRM, i.e., transparent or sufficient
encryption, discussed in more detail in [25]. However, in order to allow scaling
in the encrypted domain, information about the bitstream has to be kept in
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plaintext, i.e., headers. This information can be used in side channel attacks as
shown in [26]. In these side channel attacks, the fact that the lengths of encoded
video sequence parts correlate to the contained video material is exploited. This
can be combined with the information of possible streaming content (the side
channel) to identify which video is streamed. While this does not allow an
attacker to reconstruct the visual material, the confidentiality is broken. In this
section we will mainly look initial vectors for encryption, how the encryption
schemes presented in [25] can be used in the NALU encapsulation scenario and
how they compare to transport encryption (SRTP).

3.2.1. Considerations for the Initial Vectors

The high scalability of the MC-EZBC bitstream introduces some require-
ments for a potential encryption method. First and foremost is the ability to
perform quality scalability which enables the bitstream to be cut at byte aligned
positions. This enforces the use of stream ciphers or block ciphers in streaming
mode, e.g., AES in CBC, CFB, OFB or counter mode, [27]. Additionally, due
to the scalability in temporal and spatial resolutions as well as scalability in
quality, a cipher needs to be restarted for each new chunk. Ciphertext feed-
back (CBC, CFB) is obviously not able to bridge the resulting gap of data,
since ciphertext feedback uses prior ciphertext information to generate a key
for following ciphertext. In case of missing data, the keystream for following
ciphertext can no longer be constructed. But since information about the origi-
nal length of a chunk is not kept, pre-ciphertext feedback (OFB, CTR) are also
unable to continue over this gap of data. In this case the ciphertext itself is not
needed but an iteration is performed in order to construct the keystream and
the number of iterations is tied to the length of the missing data. This requires
some form of providing an initial vector (IV) for each chunk of data. The data
of a chunk has no fixed minimal length and can be scaled down to arbitrary
small size. This prohibits the use of plaintext or ciphertext for crafting new IVs
for the next chunk in the bitstream.

The solution is to send IVs separately or generate them from a separate
source. A separate source could be a single IV which is encrypted to gener-
ate a different IV and thus iteratively generate the IVs of the chunks as they
appear in the bitstream. This can however lead to synchronization errors, i.e.,
when a whole GOP is dropped, the next chunk in the bitstream and all sub-
sequent chunks would receive faulty IVs. This happens because the GOPs are
not numbered and synchronization can not be restored. Something similar can
happen when a whole frame is dropped, then from this frame forward the rest
of the GOP would receive a faulty IV. However the next GOP can be properly
synchronized because the number of frames in a GOP is known. Similarly, a
dropped spatial resolution level would result in the faulty IVs for the rest of the
frame and be synchronized at the beginning of the next frame.

This leads to the following options:

• Send a limited number of IVs and generate subsequent IVs by iterated
encryption:
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– A single IV is sent at the beginning, resulting in the lowest overhead
but can result in synchronization loss for the whole bitstream when
a whole GOP is dropped during transport.

– An IV is sent for each GOP, leading to synchronization at the GOP
borders but frame drops can destroy the rest of the current GOP.

– An IV is sent for each frame, synchronization is now per frame but
a resolution drop can destroy the rest of the current frame.

• Send a single IV for each chunk of data in the bitstream. This has the
highest overhead but desynchronization can not occur.

Regarding overhead we can give a simple upper bound by looking at the
number of spatial resolutions. The number of frames per GOP remains the
same since full temporal decomposition is used. Assuming a framerate of f
with s spatial decomposition levels we can simply give the overhead as:

oIV = f ∗ (s+ 1) ∗ b,

for a block size of b. For AES of a PAL video, a resolution of 768x576, 6
decomposition steps and 25 frames per second, this would result in an overhead
of oIV = 21.875kbps. To put this into relation, consider streaming over an
old, low bandwidth IEEE 802.11 WLAN with a channel capacity of 2Mbps this
would be ≈ 0.01% of the channel capacity. In essence, the overhead of sending
frequent IVs is negligible and does hardly impact channel bandwidth. For newer
WLAN standards featuring higher bandwidth the overhead of sending frequent
IVs becomes even less of a problem.

4. Comparison and Evaluation

In this section we will compare the overhead introduced by encapsulation
in NALU and gBSD respectively. Since RTP is used as transport protocol for
both NALU and gBSD, we will not take into account the RTP overhead since
it is the same for both formats.

4.1. Protocol Overhead

In [28] it is shown that seven quality levels are usually enough to support
almost all required target applications. While this is a reasonable goal for
comparison we will look at the overhead in a more general fashion. This is
done mainly because if a request for a certain bandwidth, framerate or bitrate
is issued the MC-EZBC source can be transformed on the fly to support the
requested target scalability which can lead to an actual lower number of scaling
options. As a result of a lower number of scaling options the encapsulating
protocols generate less overhead. The encoding overhead is important since the
actual bitrate of the bitstream can only be the channel bitstream minus the
required overhead.
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In the following we will denote the number of frames as f , the number of
temporal decompositions as t and the number of spatial decompositions as s.
Consequently we have a GOP size of 2t and the number of GOPs is G = f/2t,
for simplicity we assume that the framerate is a multiple of the GOP size, and
in total we have s+ 1 spatial decomposition bands. Furthermore we will denote
the number of quality levels by q.

4.1.1. Evaluation of gBSD Overhead

For the number of bytes each descriptive element of the gBSD requires,
we use an approximation obtained from empirical analysis of the used bit-
streams and resulting gBSD descriptions. While most of the markers have a
fixed structure, like element and attribute names, the value of the attributes
change depending on the encoded sequence, see fig. 5 as an example containing
the gBSDUnit element. The average size in bytes a Parameter and gBSDUnit

require are p = 105 and g = 55 bytes respectively. These numbers are calcu-
lated with average variable length information (i.e., length value, start value)
but excluding the marker attribute since the value is essentially user defined.
Additionally, we have an overhead for the DIA declaration which is 393 bytes,
which is the length of the fixed header, see. fig. 5. This means that the start
and length fields as well as the value of parameters are only estimated since
this information can vary widely. However, the use of a typical marker element
is included since the marker will be a near constant in length. We can now
calculate an approximate size of the gBSD. The main header consists of three
changeable fields, bitrate, spatial and temporal scaling level, with size p and
five gBSDUnits of size g which stay constant. The main header is followed by a
list of GOP sizes, with one entry per GOP, each entry in the list is given as a
Parameter with size p. For each GOP we have a single gBSDUnit for the GOP
header and motion vectors. Then for each frame we have a single chunk for
each spatial decomposition level. The chunks here have to be separated into the
number of quality levels we want to deal with. The resulting approximation in
byte is thus size S:

S = 393 + 3p+ 5g︸ ︷︷ ︸
header

+ Gp︸︷︷︸
GOP size list

+G (g + 2t(s+ 1)(p+ qg))︸ ︷︷ ︸
single GOP

For a sequence with 128 frames, t = 7 and s = 2 this would estimate a gBSD file
size of 81kB for two quality levels and 60kB for the downscaled version. However,
this assumes that the gBSD is transferred in plaintext which is unusual. A gBSD
description is text based and can be compressed quite well, see Augeri et al.
[29] for an overview. Furthermore, there are XML aware compression schemes
which are designed for ease of access on network nodes and alleviate the need to
decompress the description of the whole bitstream, see Timmerer et al. [30] for
an overview. For the rest of this paper we will use bzip2 as compressor for gBSD
which will compress by an order of magnitude. For a more detailed overview of
gBSD regarding MC-EZBC and compression see Hofbauer et al. [21].
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Size increase when including gBSD

Filesize in byte for

sequence NALU NALU+SEI increase

bbbunny 12868259 12946658 0.61%
sintel 13424680 13546838 0.91%
football 1139309 1167002 2.43%
harbour 901722 928638 2.98%
crew 676359 702960 3.93%
foreman 449419 474891 5.66%

Table 1: Overhead of bzip2 compressed gBSD SEI inclusion into bitstreams of
different quality levels.

While this is an overhead calculation for the whole bitstream it can be used
as approximation for the AU based description as well. In order to create a well
formed gBSD document the header has to be replicated which increases the
overall size, but simultaneously the relative length information from the start of
the description is shorter, resulting in lower p and g values. As such the given
equation can be either used directly for overhead calculation, or in parts if a
better fitting calculation is desired. As an example we can consider the overhead
calculation for the whole sequence with GOP based gBSD descriptions. This
can be easily done by extracting the single GOP part of the given equation
and adding the cost of the header; the resulting overhead has to be taken into
account for each GOP. The resulting overhead is

SAUGOP
= G ∗ (393 + (g + 2t(s+ 1)(p+ qg)).

What is problematic about this overhead is the fact that the overhead size
is only dependent on the scaling options but not the quality of the contained
bitstream. This means that for a given gBSD description the overhead relative
to the size of the bitstream increases with decreasing quality. Table 1 shows
an example for this increase in size when including bzip2 compressed SEI mes-
sages, as described in fig. 7, for various bitrates. The sequences used in the
table are of CIF resolution with GOP size 16, 6 spatial levels and with bitrates
1045kbps(football), 822kbps (harbour), 611kbps (crew) and 398kbps (foreman),
and 720p resolution with GOP size 16, 4 spatial levels and bitrates 3072kbps
(bbbunny) and 2048kbps (sintel). The CIF sequences have a runtime of 10.24
sec while bbbunny and sintel have a runtime of 33sec and 52sec respectively.

4.1.2. Evaluation of NALU Overhead

For every piece of payload we have to take into account the marker sequence
leading up to it (3 bytes), the NALU SVC header (4 bytes) as well as the
payload end marker (1 byte). We denote the fixed overhead value as of = 8.
Furthermore we have an overhead of 1 byte since the first NALU marker is a
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4 byte synchronization marker, and we have a reduction in size resulting from
the drop of the GOP size table of the original MC-EZBC bitstream which gives
the overall overhead adjustment oo = 1−G 4, since every size entry in the GOP
table is a long integer 4 bytes in size. Thus, we can give the overhead as

O = oo + of + ofG(2 + q(s+ 1)2t)

A NALU is created for the global header and for every GOP q NALUs are
created per temporal and spatial resolution. This only reflects the fixed over-
head, a further overhead occurs when marker sequences appear in the original
bitstream and have to be escaped. However this can not be given in a deter-
ministic fashion. Assuming uniform distribution of byte values we can calculate
the chance P of a marker appearing at any given byte position as:

P =
1

28︸︷︷︸
0x00

∗ 1

28︸︷︷︸
0x00

∗ 22

28︸︷︷︸
0x{00,01,02,03}

=
1

222
.

In this unlikely case a single byte is inserted into the three byte sequence,
extending it by 4/3, thus on average the size of the bitstream will increase by
a factor F = 1 + 1

3∗220 ≈ 1.00000032. The increase in size due to this factor is
practically negligible. Furthermore, unlike the gBSD overhead this size increase
is multiplicative instead of additive, i.e., dependent on the size of the original
bitstream. Thus, while the overhead of the gBSD description stays the same
for reduced quality versions the overhead due to this factor is reduced together
with the bitstream size.

4.2. Encryption Performance

A direct comparison of bitstream encryption and transport encryption is not
really possible. Bitstream based encryption is done only on the server and client
and introduces a constant delay until streaming can start. Transport encryp-
tion (SRTP) on the other hand encrypts while streaming and thus the load on
the server and client are distributed over the time it takes to stream the video
sequence, but additional load is produced on the MANE where decryption and
encryption also has to take place. With SRTP the delay to start streaming is
basically shifted to frame delays during transport. As such we will, and can,
not provide a direct comparison, rather both methods are looked at differently.
Transport encryption will be looked at during the evaluation of adaptation per-
formance since both are tied together.

For bitstream based encryption it is most important to get a notion of how
long the delay to start streaming is since this has a direct influence on consumer
satisfaction (QoE). In order to evaluate the time requirement for encryption for
different DRM scenarios, a number of selective encryption types are used. As a
baseline we will use the same cipher used for selective encryption and encrypt
the whole bitstream. In order to better gauge the influence of the parsing
overhead generated when using selective encryption, the same video sequence is
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used but with different quality levels. Table 2a gives the encryption performance
for a full quality version of the foreman sequence, the full quality version has
a bitrate of about 9.5Mbps. For comparison we use a reduced quality version
with a bitrate of 398kbps, which is later also used in the analysis of streaming
performance, given in table 2b. For each bitrate version we performed different
types of encryption which correlate to possible DRM applications. For more
information about the encryption process and resulting quality see [25].

Full selective encryption refers to the encryption of all image data, i.e., ex-
cluding headers. Due to the plaintext headers, scaling is still possible with full
selective encryption. This method is put in direct comparison with full tradi-
tional encryption, i.e., encryption of the whole bitstream including headers and
motion fields. This option generates no parsing overhead but does not allow
scalability in the encrypted domain. The parsing overhead for both bitrate ver-
sions is the same, since the layout of the bitstream is unchanged. This leads
to an actual reduction in encryption time for very high quality bitstreams even
for full selective encryption. For low bitrates however the overhead is quite sig-
nificant, in the 398kbps test case the parsing overhead nearly doubles the time
required for encryption.

Sufficient encryption refers to a significant reduction in visual quality. This is
typically done by encrypting the base layer and leaving the enhancement layers
intact. This leads to a significant reduction in encryption time in relation to full
selective encryption. The time reduction is more pronounced for higher quality
versions of the bitstream because more refinement information is contained in
the bitstream and thus the reduction in the amount of data to be encrypted
is more pronounced. Table 2 shows the two extremes, on one hand we have
a high reduction in quality, and consequently the amount of data which needs
encryption. For this case the parsing overhead renders any selective encryption
slower than full traditional encryption. On the other hand, the high quality
case shows that the parsing overhead becomes negligible in comparison to the
amount of data which need encryption. Thus, the higher the quality the more
time reduction can be gained from selective encryption.

Transparent encryption usually targets enhancement layer information in
order to allow a decoding of a decent base layer quality as preview version. This
version normally, except for low quality versions of a bitstream, encrypts an
amount of data between sufficient and full encryption. Likewise the amount of
time required for encryption is between full selective and sufficient.

Regarding which kind of encryption to use we can distinguish between ap-
plication scenarios. Since we want to keep scalability intact, full traditional
encryption can not be used. When the goal is to produce sufficient encryption,
the best option usually is to encrypt I-frames only. I-frames have to be included
even when encrypting only lowest spatial bands, in order to prevent the intro-
duction of higher quality content in case of a scene change. Thus, the I-frames
only option is in any case faster than the encryption of lowest spatial bands,
since this would necessarily include I-frames. When transparent encryption is
desired, the options are highest spatial or highest temporal bands. Which op-
tion to choose depends strongly on the video sequence, i.e., when encrypting
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What was encrypted Time % of Bitstream

Sufficient Encryption

I-frames only 49ms 21.34%
lowest spatial band 80ms 35.54%
lowest temporal band 84ms 39.85%

Transparent Encryption

highest spatial band 179ms 88.96%
two highest temporal bands 156ms 75.74%

Full Encryption

full selective encryption 201ms 99.50%
full traditional encryption 207ms 100%

(a) Full quality (≈ 9.5Mbps)

What was encrypted Time % of Bitstream

Sufficient Encryption

I-frames only 16ms 63.42%
lowest spatial band 15ms 65.98%
lowest temporal band 14ms 77.70%

Transparent Encryption

highest spatial band 13ms 50.02%
two highest temporal bands 12ms 22.00%

Full Encryption

full selective encryption 18ms 87.60%
full traditional encryption 10ms 100%

(b) Reduced quality (398kbps)

Table 2: The time required for selective encryption and the amount of the
bitstream actually encrypted for the foreman sequence with CIF resolution, 256
frames and GOP size of 16.
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a scene which contains little motion the drop in framerate from encryption of
high temporal bands will hardly be noticeable. Otherwise, encryption of high-
est temporal bands usually contains less information and consequently is faster.
For a more in depth discussion of encryption types and application scenarios
see [25].

4.3. Adaptation Performance

As discussed in previous sections there are certain options for scaling and
encryption. However, depending on the method chosen, the computational load
for adaptation is increased. If SRTP is utilized for encryption, the stream has
to be de- and encrypted on the MANE. Likewise, gBSD description allows a
more fine grained scalability but introduces an overhead in data sent as well
as computational load on the MANE. While effects other than computational
requirements have already been discussed, the question of computational load
is still open. In this section we will compare gBSD and direct NALU scaling
over RTP as well as SRTP to gauge the effects on server, client and MANE.

4.3.1. Evaluation Setup

As test setup we use a loop to measure timing information accurately, i.e.,
both server and client are on the same machine. The server is connected to the
client via a MANE running on a second machine. Both machines have the same

hardware, a DELL Optiplex 960 with Intel R© Core
TM

2 Quad Q9650 (3GHz,
1333MHz, 2x6MB L2 Cache) CPU with 4GB of DDR2 RAM. The machines are
connected via Gigabit LAN using an Intel PRO/1000 GT Network Adapter and
run the same software with Ubuntu Linux 10.04 as OS. A schematic drawing of
the setup is given in fig. 8.

Figure 8: Schematic of test setup

As test sequences the well known crew, football, foreman and harbour se-
quences are used in CIF resolution with a running length of 10.24sec. The CIF
sequences use a GOP size of 16 with a total of 256 frames and an fps of 25.
Furthermore, two test sequences are chosen from an application point of view,
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the trailers for the Sintel2 and Big Buck Bunny3 (abbreviated to bbbunny in
tables and figures) movies in 720p resolution with a length of 52sec and 33sec
respectively. The two trailers are encoded with a GOP size of 16. For the test
each sequence was set to two quality levels. The quality levels and number of
possible scaling points for temporal and spatial resolution for all sequences are
given in table 3.

Sequence resolution T S Q1 Q0

bbbunny 720p 4 4 3072 2048
sintel 720p 4 4 2048 1045
football CIF 4 6 1045 822
harbour CIF 4 6 822 611
crew CIF 4 6 611 398
foreman CIF 4 6 398 256

Table 3: Overview of the video sequences in the testset. The quality levels Q0
and Q1 are given in kbps, the scaling options for temporal (T) and spatial (S)
resolution are equal to the number of wavelet decompositions in the respective
domain.

Scaling Test
Passed levels

CIF Resolution 720p Resolution

Temporal Spatial Quality Temporal Spatial Quality

None 4 6 2 4 4 2
Temporal 3 6 2 3 4 2
Spatial 4 4 2 4 3 2
Quality 4 6 1 4 4 1

Table 4: Overview of scaling tests, showing which temporal, spatial and quality
levels are passed through, bold numbers indicate scaling.

For evaluation, four tests were performed per video sequence, unscaled trans-
port, quality scaling, temporal (framerate) scaling and spatial (resolution) scal-
ing. For each test, 20 streams were simultaneously sent from server to client
with adaptation on the MANE. Table 4 gives an overview of which levels are
passed during which test. A temporal level of 4 represents the original 16 frames
per GOP while a temporal level of 3 indicates a GOP size of 8, and consequently
half the original framerate. For each sequence there are two quality levels, the
quality levels differ for each sequence and are given in table 3 as Q0 and Q1
respectively. For spatial scaling of CIF sequences, 6 refinement levels reproduce

2http://www.sintel.org
3http://www.bigbuckbunny.org
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the original CIF resolution while passing only the first 4 levels results in a re-
duction of resolution to SQCIF 88×72. For 720p sequences, 4 refinement levels
reproduce the original sequence at 720p (1280×720) while passing only 3 levels
results in a reduction of resolution to 640× 360.

4.3.2. In-Network Performance Evaluation

For the performance evaluation we use the testset as described above with
both RTP and SRTP. The difference in memory, CPU and frame delay when
using NALU and gBSD for adaptation will be investigated. The gBSD is used
to describe an underlying NALU bitstream. The NALU bitstream can easily
be used to scale spatial and temporal resolution as provided by the MC-EZBC
bitstream. Furthermore, during encapsulation of MC-EZBC into a NALU bit-
stream the number and range of quality scaling points can be freely chosen.
However, it is not possible to scale according to higher semantics, e.g., marking
certain frames or GOPs as less important. To enable such scaling options, gBSD
can be used but this incurs an overhead in the bitstream and, through XML
parsing and processing, in computational load. To facilitate a fair comparison,
the scaling options for the NALU bitstream as given in table 4 are also used for
gBSD testing.

What we expect to see is that the use of gBSD results in a distinct impact
on memory and CPU usage on the MANE due to decompression and processing
of the XML description. Likewise the use of SRTP is assumed to incur a higher
CPU usage on client, server and MANE due to encryption and decryption. Re-
garding delay in delivery time, both gBSD and SRTP are expected to negatively
impact frame delay due to processing cost.

Figure 9 shows the average memory and CPU consumption for the 20 parallel
streams on the server, MANE and client for transport via RTP. For each stream
30000 frames were sent. In the figure, NALU refers to scaling based on NALU
and SEI refers to scaling with a gBSD description, which is compressed and
embedded in the bitstream as SEI messages.

Likewise figure 10 shows the CPU and memory consumption for the same
test when using SRTP. This produces an overhead on server, MANE and client
due to the encryption and decryption of the bitstream in order to process it.
The ordinate for the MANE is different from server and client in order to see
the difference for client and server memory and CPU consumption. However, to
facilitate comparison between RTP and SRTP the ordinate scales are the same
for each case. What is evident from these figures is that encryption for SRTP
incurs a significant overhead, especially on the MANE which needs to decrypt
as well as encrypt, leading to an almost fourfold increase in CPU consumption.
Furthermore, the use of gBSD for scaling results in increased memory consump-
tion on the MANE. This increased memory consumption is more pronounced
when the relative size of the gBSD compared the NALU is higher, compare ta-
ble 1. Additionally the decompression and processing of the SEI gBSD messages
increases CPU consumption on the MANE.

In addition to the CPU and memory consumption for scaling, the processing
on the MANE incurs a frame delay. Figure 11 plots the cumulative distribution
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Figure 9: Average of CPU and memory consumption in percent over 20 simul-
taneous RTP streams and four scaling tests for Server, Client and MANE.
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Transport via SRTP
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Figure 10: Average of CPU and memory consumption in percent over 20 si-
multaneous SRTP streams and four scaling tests for Server, Client and MANE.
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CDF of Frame Delay

bbbunny sintel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

football harbour

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

crew foreman

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  1000  10000  100000

d
e

la
y
 C

D
F

delay[microseconds]

RTP-NALU
RTP-SEI

SRTP-NALU
SRTP-SEI

Figure 11: Comparison of cumulative frame delay (CDF) for NALU and SEI
adaptation using (S)RTP as transport.
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function (CDF) for the frame delay over the actual delay, given in microseconds
on a logarithmic scale. This test is done for unscaled contents only since this is
the worst case. Any scaling of contents results in less information the MANE
has to send and thus smaller outgoing buffers and consequently lower delay.
The delay is given based on transport protocol, SRTP and RTP, as well as
encapsulation type, NALU and gBSD with SEI. What can be seen is that SRTP
causes more delay than RTP since the required decryption and encryption steps
have to be performed prior to adaptation checking and sending. Likewise SEI
messages incur a higher delay than pure NALU based adaptation. This is due to
the fact that the gBSD has to be decompressed and inspected before passing the
adapted bitstream along to the client. Furthermore, the higher the bitrate the
higher the frame delay, this stems from additional computational demand and
fuller outgoing buffers. However, even for higher bitrate sequences the overall
relation of SRTP, RTP, NALU and SEI holds.

sequence
RTP SRTP

NALU SEI NALU SEI

new
bbunny 13490 18521 28478 40524
sintel 2685 9934 6704 13688
football 925 10072 1165 10471
harbour 962 10428 1410 11136
crew 490 9682 756 10102
foreman 529 9501 938 10327

Table 5: Frame delay in µs for CDF= 0.99.

The CDF plot shows that the overall behavior is as expected, both SEI
and SRTP incur a delay in delivery time. To better assess the actual impact
rather than the general notion, we will take a closer look at the time delay for
CDF= 0.99. Table 5 gives the average time, over 30000 frames, to deliver 99%
of the image sequence to the end user, i.e., only 1% of the image sequence will
take longer to deliver to the client. What can be seen is that the impact of
SEI over NALU is tremendous: for RTP SEI is slower than NALU, but the
slowdown becomes less sever the higher the overall processing cost. For SRTP
the behavior is similar but overall less pronounces since the encryption and
decryption overhead slows down both scaling methods. For NALU the switch
from RTP to SRTP incurs a significant slowdown while for SEI the impact of
SRTP over RTP is less pronounced. This is due to the decryption and encryption
being faster by an order of magnitude than the decoding and parsing of SEI.
Table 6 gives the factors of slowdown for all cases.

Overall, the expected impact in delivery time due to SRTP and SEI messages
over RTP and NALU can clearly be seen.
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NALU → SEI

sequence RTP SRTP

bbbunny 1.37 1.42
sintel 3.70 2.04
football 10.89 8.99
harbour 10.84 7.90
crew 19.76 13.36
foreman 17.96 11.01

(a) Slowdown for RTP and SRTP
when switching scaling method
from NALU to SEI

RTP → SRTP

sequence NALU SEI

bbbunny 2.11 2.19
sintel 2.50 1.38
football 1.26 1.04
harbour 1.47 1.07
crew 1.54 1.04
foreman 1.77 1.09

(b) Slowdown for NALU and SEI
when switching from bitstream en-
cryption to SRTP

Table 6: Frame delay slowdown factor for the different scaling and encryption
options.

5. Conclusion

We have introduced a mapping of a wavelet based video coding format, the
MC-EZBC format, to an H.264/SVC compatible bitstream in order to utilize
existing transport and scaling protocols and technologies, i.e., RTP. Further-
more, we compared the bitstream based encryption to transport encryption, i.e
SRTP, and evaluated different scaling technologies, i.e., NALU based adaptation
versus MPEG-21 Part 7 ’Digital Item Adaptation’ with gBSD. In addition we
have also provided an overhead estimation which is introduced by the mapping
of MC-EZBC to a NALU based bitstream as well as the overhead introduced
by the inclusion of gBSD in the bitstream.

When it comes to scaling, it is clear that a NALU based approach is better
since it generates less overhead in terms of bitstream size. Furthermore, when
compared to gBSD, the memory and CPU consumption on network scaling
nodes is lower by a significant amount and consequently NALU based adaptation
has a lower frame delay. Consequently, even though the NALU based approach
is less flexible than gBSD based adaptation, NALU based adaptation should be
the baseline and only in those cases where scalability beyond NALU capabilities
is desired a gBSD based description should be used.

Regarding encryption, the available options are transport encryption via
SRTP and bitstream based encryption on either NALU or MC-EZBC level. It
is clear that encryption of the NALU bitstream provides no benefit over encryp-
tion of MC-EZBC bitstream prior to the mapping process. When comparing
MC-EZBC based encryption to transport encryption, it was shown that the
computational load on scaling network elements is much higher for transport
encryption and an additional frame delay is introduced. Furthermore, the en-
cryption and decryption of the streamed video content required on every MANE
poses a security risk. However, transport encryption has less overall delay to
start streaming than bitstream encryption. Any form of DRM, e.g., transparent
encryption multicast with sufficient encryption, required a bitstream based en-
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cryption since SRTP can not handle those cases. Confidential encryption is not
possible since header attacks to leak information about the streamed content
are always possible, whether they operate on the plain text information used to
scale the bitstream in-network or on the packetization headers of the streaming
protocol.
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