

____________________G______________________

GENERIC MULTIMEDIA CONTENT ADAPTATION

Christian Timmerer, Michael Ransburg, and Hermann Hellwagner
Department of Information Technology, Klagenfurt University, Austria

Synonym: Coding format independent multimedia content adaptation; coding format agnostic
multimedia content adaptation; XML metadata-based adaptation of multimedia content
independent of the coding format

Definition: Generic multimedia content adaptation is referred to as the customization of
multimedia content to various usage contexts without being aware of the actual coding format
used.

Acknowledgment: This work was/is support in part by the European Commission in the context of the
DANAE (FP6-IST-1 507113), ENTHRONE (FP6-IST-1-507637), and P2P-Next (FP7-ICT-216217) projects. Further
information is available under http://danae.rd.francetelecom.com/, http://www.ist-enthrone.org/, and
http://www.p2p-next.eu/.

Introduction
The ever growing variety of audio/visual coding formats calls for a methodology which
enables the processing of multimedia content without considering the specific coding
format used. In practice, the end user is not interested in the details of the coding format
as she/he is usually interested in the actual content only, e.g., a movie or a picture. On
the other hand, the content and service providers aim at avoiding maintaining multiple
variations of the same content, each conforming to a different coding format, in order to
fulfill the requirements of their customers. A means to close this gap between providers
and consumers in terms of format incompatibilities (among others) is generally referred
to as Universal Multimedia Access (UMA) [1]. Multimedia content adaptation is one
technique that contributes to the vision of UMA, namely to access multimedia content
from anywhere, anytime, and with any device. As devices may have varying decoding
capabilities, transcoding of the content to these capabilities is required. However,
transcoding is to be considered like a patch to the issues indicated above, which requires
specific solutions for a growing number of coding formats. Scalable coding formats
would be a generalized solution to the transcoding/adaptation problem and would
facilitate UMA in a generic way. In practice, however, the variety of competing or
complementary scalable coding format, e.g., [2-9], leads back to the transcoding issue
where a device needs to maintain the corresponding number of processing modules in
order to facilitate the manipulation of bitstreams conforming to these formats.

G 2

This article discusses means to process (i.e., adapt, customize, manipulate, etc.)
multimedia content independently of the actual coding format by utilizing XML-based
metadata describing the high-level structure (i.e., syntax) of a bitstream. That is, the
resulting XML document describes the bitstream how it is organized at different
syntactical and even semantic levels, e.g., in terms of packets, headers, layers, units,
segments, shots, scenes, etc., depending on the actual application requirements. It is
important to note that the XML description does not describe the bitstream on a bit-by-bit
basis, i.e., it does not replace the actual bitstream but provides metadata regarding
bit/byte positions of meaningful segments for the given application. Therefore, the XML
description does not necessarily provide any information of the actual coding format
used as only the positions and – in some cases – meanings are required for processing.
The main application of such an XML description is currently adaptation of multimedia
bitstreams as described in the following sections.

High-level Architecture of Generic Content Adaptation
Figure 1 depicts the high-level architecture of generic multimedia content adaptation
which can be logically divided into two processes, namely the Description Transformation
and the Bitstream Generation.

Figure 1. High-Level Architecture of Generic Multimedia Content Adaptation (adopted from [10]).

The description transformation process receives as an input the XML description of the
source bitstream and a so-called style sheet that transforms the XML document according to
the context information, e.g., the device capabilities. The output of this process is a
transformed description which already reflects the bitstream segments of the target (i.e.,
adapted) bitstream. However, the transformed description still refers to the bit/byte
positions of the source bitstream which needs to be parsed in order to generate the target
bitstream within the second step of the adaptation process, i.e., the bitstream generation.

Encyclopedia of Multimedia 3

Please note that the description transformation and bitstream generation processes
should be combined by applying appropriate implementation techniques in order to
achieve the required performance. However, implementation and optimization
techniques for this kind of approach are out of scope of this article and the interested
reader is referred to [11-14].

Technical Solution Approaches
The literature offers several technical solution approaches for generic multimedia content
adaptation which are briefly highlighted in the following:

• (X)Flavor [15]: A Formal Language for Audio-Visual Object Representation
which has been extended with XML features.

• Bitstream Syntax Description Language (BSDL) [16]: An XML Schema-based
language for constructing a Bitstream Syntax Schema (BS Schema) for a given
coding format [17]. It enables the generation of a Bitstream Syntax Description
(BSD) based on a given bitstream and vice versa. The generic counterpart of the
coding format-specific BS Schema is referred to as gBS Schema which is fully
coding format-agnostic. An XML document conforming to the gBS Schema is
referred to as a generic Bitstream Syntax Description (gBSD) [18].

• BFlavor [19]: A method that combines BSDL and XFlavor and basically uses
XFlavor techniques – enhanced with BSDL concepts – to generate Java code
which is used for automatic generation of BSDs.

In the following, the focus will be on gBSD as it does not require conveying any coding
format-specific information, neither in the schema nor in the instance. Please note that
gBSD (and also BSDL) is standardized as part of MPEG-21 Digital Item Adaptation (DIA)
[20] which enables interoperability between different vendors.

generic Bitstream Syntax Description
The main advantage of the gBSD-based approach is that the XML Schema to which a
gBSD shall conform does not convey any information pertaining to a certain coding
format. Thus, the gBSD-based approach enables fully coding format independence and
provides the following functionalities:

• The description may convey arbitrary bitstream segments and also individual
parameters.

• The bitstream segments may be grouped in a hierarchical way allowing for
efficient, hierarchical adaptation.

• A flexible addressing scheme supports various application requirements and
allows for random access into a bitstream.

• The so-called “marker” attribute provides semantically meaningful marking of
syntactical elements.

• The gBSD-based approach enables support for dynamic and distributed
adaptation (discussed in the next section).

Elements of a gBSD

The two main elements of a gBSD are the gBSDUnit and the Parameter elements. Before
going into details of these elements, it is noted that each gBSD can be embedded in any

G 4

other XML document by means of the gBSDType complex type which constitutes the root
data type of a gBSD. Within this data type, several addressing-related attributes may be
defined such as the address mode, address unit, and a Uniform Resource Identifier (URI)
identifying the actual bitstream.

The address mode can be absolute, consecutive, and offset. With the absolute address mode
it is possible to describe the start and length of a gBSD element, which is useful for
bitstream segments that may be dropped during adaptation. The other two modes,
consecutive and offset, facilitate fast access to small, contiguous bitstream segments that
may be updated only, possibly due to the removal of other segments. The address unit
differentiates between bit and byte addressing and the bitstream URI identifies the actual
bitstream that is described by this gBSD.

The scope of the address attributes defined as part of the gBSDType is the whole gBSD
unless superseded by child elements, i.e., the gBSDUnit and the Parameter elements
which are described in the following. Note that the example gBSD fragments used in the
following describe bitstreams conforming to ISO/ITU-T Scalable Video Coding (SVC) [5]
and JPEG2000 [9].

gBSDUnit. This kind of element may be used to describe a specific segment of a
bitstream without including the exact values of the bitstream. It is particularly designed
for bitstream segments that may be removed during adaptation (e.g., discarding
enhancement layer data) or for containing further gBSD elements (i.e., gBSDUnit or
Parameter) which leads to a hierarchical structure. An example gBSDUnit element of an
SVC network abstraction layer (NAL) unit that corresponds to the base layer is shown in
Example 1.

<gBSDUnit start="124" length="89" syntacticalLabel=":SVC:NALU" marker="Q0 S0 T0"/> 

Example 1. gBSDUnit for an SVC NAL unit corresponding to the base layer in terms of quality (Q),
spatial (S) and temporal (T) resolution.

As shown in the example, each gBSDUnit element may contain several attributes:

• start and length: Attributes conveying addressing information depending on
the address mode/unit.

• syntacticalLabel: Attribute for including coding format-specific information
identified via a pre-defined vocabulary of controlled terms. In practice, however,
this attribute is rarely needed and included here only for the sake of
completeness and presentation.

• marker: Attribute which provides a handle for application-specific information.
In the example above it is used to convey information about the scalability layer
of the described bitstream segment. In particular, the gBSDUnit element in
Example 1 describes a bitstream segment of the SVC base layer.

Although the syntacticalLabel and marker attributes provide means for including
coding format-specific information, it is worth mentioning that both attributes are
optional and, thus, can be omitted. Furthermore, the syntax and semantics of the marker
attribute are neither defined within gBSD nor SVC and, hence, coding format
independence is preserved.

Encyclopedia of Multimedia 5

Example 2 shows a gBSDUnit element describing an SVC access unit (AU) which
contains three gBSDUnit elements each describing an SVC NALU. The example
demonstrates the feasibility of hierarchical gBSDUnit elements as – in case all temporal
layers ≥ 2 should be dropped – it would require to parse and inspect only the gBSDUnit
element enclosing all its child elements.

<gBSDUnit syntacticalLabel=":SVC:AU" marker="Q0 T2"> 
  <gBSDUnit start="2805" length="10" syntacticalLabel=":SVC:NALU" marker="S0"/> 
  <gBSDUnit start="2815" length="110" syntacticalLabel=":SVC:NALU" marker="S1"/> 
  <gBSDUnit start="2925" length="335" syntacticalLabel=":SVC:NALU" marker="S2"/> 
</gBSDUnit>

Example 2. Hierarchical gBSDUnit elements.

Parameter. This kind of element may be used to include an actual numerical value and
its data type of a bitstream segment. Therefore, it can be updated during the adaptation
process. Example 3 shows a Parameter element which indicates the number the color
components of a JPEG2000 image.

<Parameter syntacticalLabel=":J2K:Csiz" length="2"> 
  <Value xsi:type="xsd:unsignedShort">3</Value> 
</Parameter>

Example 3. JPEG2000 parameter providing information about the size (number) of the color
components (Csiz).

In this example three color components are available and, thus, a colored image is
described. If the picture has to be adapted to a grayscale image, the number of color
components has to reduced to one which results in updating the value of the Parameter
element. The data type – signaled through the xsi:type attribute – and the length
attribute provide the details for the correct encoding of this parameter during bitstream
generation.

Description Transformation and Bitstream Generation using gBSD

As mentioned in the introduction, the generic adaptation of multimedia content can be
logically divided into two steps, namely the description transformation and bitstream
generation. The gBSD-based approach – as well as the other approaches – does not define
any restrictions which kind of description transformation shall be applied. In fact, each
method that is able to transform XML documents could be applied and should be
carefully chosen according to the application domain that adopts this approach. A simple
(but expensive – in terms of memory requirements [12][14]) method is the usage of the
well-known Extensible Style Sheet Language for Transformations (XSLT)1 which is used
in the following examples.

The gBSD fragment as shown in Example 4 describes an SVC elementary stream with a
single quality layer (Q0, e.g., PSNR=32 dB), two spatial layers (S0-1, e.g., QCIF and CIF),
and three temporal layer (T0-2, e.g., 7.5 Hz, 15 Hz, and 30 Hz). Interestingly, the gBSD is
designed in a way that the temporal layers are hierarchically summarized featuring

1 http://www.w3.org/TR/xslt

G 6

efficient, hierarchical adaptation in the temporal domain. Note that gBSDUnit elements
belonging to the temporal base layer are not grouped as they are usually not removed.

<?xml version="1.0" encoding="UTF‐8"?> 
<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01‐DIA‐NS" xmlns="urn:mpeg:mpeg21:2003:01‐DIA‐
gBSD‐NS" xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"> 
  <dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute"> 
    <gBSDUnit start="0" length="124"/> 
    <gBSDUnit start="124" length="89" marker="Q0 S0 T0"/> 
    <gBSDUnit start="213" length="311" marker="Q0 S1 T0"/> 
    <gBSDUnit start="524" length="38" marker="Q0 S0 T0"/> 
    <gBSDUnit start="562" length="51" marker="Q0 S1 T0"/> 
    <gBSDUnit marker="Q0 T1"> 
      <gBSDUnit start="613" length="24" marker="S0"/> 
      <gBSDUnit start="637" length="110" marker="S1"/> 
    </gBSDUnit> 
    <gBSDUnit marker="Q0 T2"> 
      <gBSDUnit start="747" length="10" marker="S0"/> 
      <gBSDUnit start="757" length="110" marker="S1"/> 
      <gBSDUnit start="867" length="10" marker="S0"/> 
      <gBSDUnit start="877" length="110" marker="S1"/> 
    </gBSDUnit> 
    <gBSDUnit start="987" length="93" marker="Q0 S0 T0"/> 
    <gBSDUnit start="1080" length="318" marker="Q0 S1 T0"/> 
    <!‐‐ ... and so on ... ‐‐> 
  </dia:Description> 
</dia:DIA> 

Example 4. gBSD fragment describing an SVC elementary stream.

An XSLT style sheets which removes all gBSDUnit elements that belong to the temporal
layer 2 is shown in Example 5. As shown in the XSLT style sheet, only the gBSDUnit
element containing a marker with value ’T2’ needs to be investigated without processing
its child elements.

<?xml version="1.0" encoding="UTF‐8"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns="urn:mpeg:mpeg21:2003:01‐DIA‐gBSD‐NS" xmlns:gbsd="urn:mpeg:mpeg21:2003:01‐DIA‐gBSD‐
NS"> 
  <xsl:output method="xml" version="1.0" encoding="UTF‐8" indent="yes"/> 
  <xsl:template match="@*|node()"> 
    <xsl:copy> 
      <xsl:apply‐templates select="@*|node()"/> 
    </xsl:copy> 
  </xsl:template> 
  <xsl:template match="gbsd:gBSDUnit[contains(@marker, 'T2')]"> 
    <xsl:comment>removed !!!</xsl:comment> 
  </xsl:template> 
</xsl:stylesheet> 

Example 5. XSLT style sheet for removing gBSDUnit elements belonging to temporal layer 2.

The resulting gBSD fragment when applying the XSLT style sheet of Example 5 is shown
in Example 6. The gBSDUnit elements belonging to the second temporal layer have been
removed (i.e., replaced by the XML comment "removed !!!" for demonstration purposes).
<?xml version="1.0" encoding="UTF‐8"?> 
<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01‐DIA‐NS" xmlns="urn:mpeg:mpeg21:2003:01‐DIA‐
gBSD‐NS" xmlns:bs1="urn:mpeg:mpeg21:2003:01‐DIA‐BSDL1‐NS" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"> 
  <dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute"> 

Encyclopedia of Multimedia 7

    <gBSDUnit start="0" length="124"/> 
    <gBSDUnit start="124" length="89" marker="Q0 S0 T0"/> 
    <gBSDUnit start="213" length="311" marker="Q0 S1 T0"/> 
    <gBSDUnit start="524" length="38" marker="Q0 S0 T0"/> 
    <gBSDUnit start="562" length="51" marker="Q0 S1 T0"/> 
    <gBSDUnit marker="Q0 T1"> 
      <gBSDUnit start="613" length="24" marker="S0"/> 
      <gBSDUnit start="637" length="110" marker="S1"/> 
    </gBSDUnit> 
    <!—removed !!!‐‐> 
    <gBSDUnit start="987" length="93" marker="Q0 S0 T0"/> 
    <gBSDUnit start="1080" length="318" marker="Q0 S1 T0"/> 
    <!‐‐ ... and so on ... ‐‐> 
  </dia:Description> 
</dia:DIA> 
Example 6. Transformed gBSD fragment of Example 4 after applying the style sheet of Example 5.

The bitstream generation process – also referred to as gBSDtoBin – takes the transformed
gBSD (cf. Example 6) as input and generates the target bitstream from its source. Note
that the URI of the source bitstream is not included in the gBSD and, thus, it is up to the
application invoking gBSDtoBin to provide the source bitstream. Alternatively, the source
bitstream's URI could be provided with the bitstreamURI attribute within the
dia:Description element. The gBSDtoBin process hierarchically parses the transformed
gBSD in depth-first order and constructs the target bitstream. Therefore, gBSDtoBin
copies the bitstream segments from the source to the target based on the start/length
information provided by the remaining gBSDUnit elements of the transformed gBSD. In
this way, the target bitstream is successively generated by means of its source and the
transformed gBSD.

Adding Support for Dynamic and Distributed Adaptation
The gBSD-based adaptation approach, as introduced above, was originally developed
with static, server-centric application scenarios in mind. That is, the adaptation of the
bitstream is performed at the server; the necessary details for dynamic and distributed
adaptation are not considered. Dynamic adaptation is referred to as the adaptation of
bitstreams according to dynamically changing usage environments and distributed
adaptation refers to multiple adaptations steps successively performed on different
processing modules/nodes. The processing and delivery of media in a streamed (i.e.,
dynamic) fashion has many advantages, e.g., low start up delay, and is therefore
commonly used to consume large media files over networks. Server-centric adaptation is
only ideal if the problem which adaptation tries to address occurs on the server or in its
close vicinity. It is generally better to perform adaptation close to the location of the
problem, since the potentially high delay when adapting on the server to a problem
which occurs at the end device can decrease the quality of experience for the end user.
Therefore, the gBSD-based adaptation approach has been extended to apply to dynamic
and distributed adaptation of streaming media, while staying backwards compatible
with the original mechanisms [21]. In particular, the extension is enabled by the
introduction of:

• XML Streaming Instructions (XSI), which adds the concept of ”samples” to
metadata; and

• Media Streaming Instructions (MSI) to allow for synchronized processing of both
media and metadata.

G 8

The two types of streaming instructions are briefly reviewed in the following.

The XML Streaming Instructions (XSI) provide the information required for streaming an
XML document by the composition and timing of so called Process Units (PUs), i.e.,
metadata samples. The XSIs allow firstly to identify Process Units (PUs) in an XML
document and secondly to assign time information to them. More formally, a PU is
defined as a well-formed fragment of XML metadata (i.e., a gBSD fragment) that can be
consumed as such and to which time information can be attached. It is specified by the
anchor element and by a PU mode indicating how other – connected – elements are
aggregated to this anchor to compose the PU. The various supported composition modes
are illustrated in Figure 2, in which each node represents an XML element and the white
node represents the anchor element. Depending on the mode, the anchor element is not
necessarily the root of the PU; anchor elements are ordered according to the navigation
path of the XML document. PUs may overlap, i.e., some elements (including anchor
elements) may belong to several PUs. Additionally, the content provider may require
that a given PU be encoded as a random access point, i.e., that the encoded PU does not
require any other encoded PUs to be decoded.

Figure 2. PU modes with the anchor element illustrated as a white node.

The Media Streaming Instructions (MSI) specify two sets of properties for annotating an
XML document. The first set indicates the media Access Units (AUs) and their location in
the described media bitstream, the random access points, and the subdivision into AU
parts. The second set provides the AU time stamps.

Example 7 shows a fragment of a gBSD which includes both XML and Media Streaming
Instructions as XML attributes. Note that an alternative representation is possible, which
assigns the Streaming Instructions from a separate XML document, i.e., a so called
Properties Style Sheet (PSS) [13]. Within the Description element the streaming
instructions are specified that are valid for the complete gBSD, i.e., which are inherited
by all descendant elements. These top level attributes includes the time scale for both the
media and the metadata stream and the way in which media AUs and PUs shall be
composed, which is specified through the auMode and puMode attributes. On AU level, for
each AU, the anchorElement is defined which, together with the PU mode (cf. Figure 2),
steers the composition of the PU. Additionally, timing information for both the PU and
the media AU is provided.
<?xml version="1.0" encoding="UTF‐8"?> 
<dia:Description xmlns:xmlsi="urn:mpeg:mpeg21:2003:01‐DIA‐XSI‐NS" 
  xmlns:msi="urn:mpeg:mpeg21:2003:01‐DIA‐MSI‐NS" msi:timeScale="1000" msi:auMode="tree" 
  xmlsi:timeScale="1000" xmlsi:puMode="ancestorsDescendants"> 
   <!‐‐ ... further elements ... ‐‐> 
   <gBSDUnit syntacticalLabel=":SVC:AU" msi:dts="80" msi:cts="1360" msi:au="true" 
     xmlsi:anchorElement="true" xmlsi:absTime="80"> 

Encyclopedia of Multimedia 9

       <gBSDUnit start="124" length="89" syntacticalLabel=":SVC:NALU" marker="Q0 S0 T0"/> 
       <gBSDUnit start="213" length="311" syntacticalLabel=":SVC:NALU" marker="Q0 S1 T0"/> 
   </gBSDUnit> 
   <!‐‐ ... further elements ... ‐‐> 
</dia:Description> 

Example 7. gBSD fragment with Streaming Instructions as attributes.

Figure 3 represents the extension of the previously introduced high-level architecture for
generic multimedia content adaptation. Thus, it depicts how the streaming instructions
can be integrated with the gBSD-based adaptation approach in order to enable dynamic
and distributed adaptation.

Figure 3. gBSD-based Dynamic and Distributed Adaptation.

The gBSD is provided together with the XSIs, logically separated in the figure, to the
XML fragmenter. The XML fragmenter then determines the next PU from the gBSD and
assigns a time stamp to it. This PU is then transformed by the process unit transformation
process in the same way as a complete gBSD would be transformed. The transformed PU
is forwarded to the bitstream AU generation process, which has the appropriate media AU
and its time stamp available, thanks to the media fragmenter which extracted it based on
the MSIs. The bitstream AU generation process adapts the media AU in order to
correspond to the transformed PU and updates the start and length attributes of the
PU to reflect the adapted media AU. Since each AU is adapted individually and just
before it is streamed out, this allows to react to dynamically changing usage environment
updates, such as the available network bandwidth. The updated PUs which are still
represented in the text domain, are then encoded into AUs using a proper encoding
mechanism, e.g., MPEG’s Binary Format for Metadata (BiM) [22]. After encoding the PUs
into binary AUs, the media and gBSD AUs are packetized for transport. In this step, the
timing information provided by MSIs and XSIs is mapped onto transport layer protocols
(e.g., the Real-Time Transport Protocol), by including it into the packet header. Both the
media and gBSD AUs are then streamed into the network, where an adaptation proxy
could perform additional adaptation steps, or to an end device where the dynamically
adapted media is consumed. In the latter case, the transport of the metadata may be
omitted.

G 10

Concluding Remarks
Due to the increasing amount of – complementary and competing – (scalable) coding
formats, content and service providers demand for efficient and flexible
processing/adaptation mechanisms in order to satisfies their customer's needs. The
generic multimedia content adaptation framework as described in this article provides a
technical solution for this problem which has been validated with existing coding
formats and which is also future-proof for coding formats yet to be developed.

See: Universal Multimedia Access, MPEG-21 Digital Item Adaptation, MPEG-21
Multimedia Framework

References
1. A. Vetro, C. Christopoulos and T. Ebrahimi, Eds., Special Issue on Universal Multimedia

Access, IEEE Signal Processing Magazine, vol. 20, no. 2, March 2003.
2. ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and

associated audio for digital storage media at up to about 1,5 Mbit/s — Part 2: Video, January
2005.

3. H.M. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-grained scalable
video coding method for multimedia streaming over IP”, IEEE Transactions on
Multimedia, vol. 3, no. 1, pp. 53-68, March 2001.

4. T. Wiegand, G.J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.

5. H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 17, no. 9, pp. 1103-1120, September 2007.

6. S.-T. Hsiang and J. W. Woods, “Embedded video coding using motion compensated
3-D subband/wavelet filter bank”, Signal Processing: Image Communication, vol. 16, no.
8, pp. 705–724, 2001.

7. S. Park, Y. Kim, S. Kim, and Y. Seo, “Multi-Layer Bit-Sliced Bit-Rate Scalable Audio
Coding”, 103rd AES Convention, preprint 4520, New York, September 1997.

8. M. Jelínek, T. Vaillancourt, A. Erdem Ertan, J. Stachurski, A. Rämö, L. Laaksonen, J.
Gibbs, and S. Bruhn, “ITU-T G.EV-VBR Baseline Codec”, Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las
Vegas, USA, March 30 – April 4, 2008.

9. C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image Coding
System: An Overview”, IEEE Transactions on Consumer Electronics, vol. 46, no. 4, pp.
1103-1127, November 2000.

10. C. Timmerer and H. Hellwagner, “Interoperable Adaptive Multimedia
Communication”, IEEE Multimedia Magazine, vol. 12, no. 1, pp. 74-79, January-March
2005.

11. C. Timmerer, G. Panis, and E. Delfosse, “Piece-wise Multimedia Content Adaptation
in Streaming and Constrained Environments”, Proceedings of the 6th International
Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2005),
Montreux, Switzerland, April 2005.

12. C. Timmerer, T. Frank, and H. Hellwagner, “Efficient processing of MPEG-21
metadata in the binary domain”, Proceedings of SPIE International Symposium ITCom

Encyclopedia of Multimedia 11

2005 on Multimedia Systems and Applications VIII, Boston, Massachusetts, USA,
October 2005.

13. M. Ransburg, C. Timmerer, H. Hellwagner, and S. Devillers, “Processing and
Delivery of Multimedia Metadata for Multimedia Content Streaming”, Proceedings of
the Workshop Multimedia Semantics - The Role of Metadata, RWTH Aachen, March 2007.

14. M. Ransburg, H. Gressl, and H. Hellwagner, “Efficient Transformation of MPEG-21
Metadata for Codec-agnostic Adaptation in Real-time Streaming Scenarios”,
Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS 2008), Klagenfurt, Austria, May 2008.

15. D. Hong and A. Eleftheriadis, “XFlavor: Bridging Bits and Objects in Media
Representation”, Proceedings IEEE International Conference on Multimedia and Expo
(ICME), Lausanne, Switzerland, pp. 773- 776, August 2002.

16. M. Amielh and S. Devillers, “Bitstream Syntax Description Language: Application of
XML-Schema to Multimedia Content”, 11th International World Wide Web Conference
(WWW 2002), Honolulu, May, 2002.

17. G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer, S. Devillers and
M. Amielh, “Bitstream Syntax Description: A Tool for Multimedia Resource
Adaptation within MPEG-21”, Signal Processing: Image Communication, vol. 18, no. 8,
pp. 721-747, September 2003.

18. C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A. Hutter, “Coding
format independent multimedia content adaptation using XML”, Proceedings of SPIE
International Symposium ITCom 2003 on Internet Multimedia Management Systems IV,
Orlando, Florida, USA, pp. 92-103, September 2003.

19. W. De Neve, D. Van Deursen, D. De Schrijver, S. Lerouge, K. De Wolf, and R. Van de
Walle, “BFlavor: A harmonized approach to media resource adaptation, inspired by
MPEG-21 BSDL and XFlavor”, Signal Processing: Image Communication, vol. 21, no. 10,
pp. 862-889, November 2006.

20. ISO/IEC 21000-7:2007, Information technology — Multimedia framework (MPEG-21) —
Part 7: Digital Item Adaptation, 2007.

21. M. Ransburg, C. Timmerer, and H. Hellwagner, “Dynamic and Distributed
Multimedia Content Adaptation based on the MPEG-21 Multimedia Framework”, in:
Mathias Lux et al., Eds., Multimedia Semantics: The Role of Metadata, Springer, March
2008.

22. ISO/IEC 23001-1:2006, Information technology – MPEG system technologies – Part 1:
Binary MPEG Format for XML, 2006.

