
An Evaluation of TCP-based Rate-Control Algorithms for
Adaptive Internet Streaming of H.264/SVC

Robert Kuschnig, Ingo Kofler, Hermann Hellwagner
Institute of Information Technology (ITEC)

Klagenfurt University, Austria
{firstname.lastname}@uni-klu.ac.at

ABSTRACT
Recent work [18] indicates that multimedia streaming via
TCP provides satisfactory performance when the achievable
TCP throughput is approx. twice the media bit rate. How-
ever, these conditions may not be achievable in the Internet,
e.g., when the delivery path offers insufficient bandwidth
or becomes congested due to competing traffic. Therefore,
adaptive streaming for videos over TCP is required and a
number of rate-control algorithms for video streaming have
been proposed and evaluated in the literature.
In this paper, we evaluate and compare three different rate-
control algorithms for TCP in terms of the (PSNR) quality
of the delivered video and in terms of the timeliness of deliv-
ery. The contribution of the paper is that, to the best of our
knowledge, this is the first evaluation of TCP-based stream-
ing in an Internet-like setting making use of the scalability
features of H.264/SVC video. Two simple bandwidth esti-
mation algorithms and a priority-/deadline-driven approach
are described to adapt the bit rates of, and transmit, the
H.264/SVC GOPs in a rate-distortion optimal manner. The
results indicate that the three algorithms perform robustly
in terms of video quality and timely delivery, both on under-
provisioned links and in case of competing TCP flows. The
priority-/deadline-driven technique is even more stable in
terms of packet delays and jitter; thus, client buffers can be
dimensioned more easily.

Keywords
H.264/SVC, TCP video streaming, adaptive video stream-
ing, rate control, TCP fairness

1. INTRODUCTION
Video streaming over the Internet based on the TCP
transport protocol became widespread in the recent past.
The reason for this is the popularity of video portals like
YouTube or social networks that allow to share and dis-
tribute user generated content [16]. Although, from a tech-
nical point of view, the use of TCP for real-time multimedia

Figure 1: Use case

applications is considered controversial in the literature [10,
5], there are good arguments for TCP. First, it offers a reli-
able end-to-end transport mechanism that makes additional
provisions like forward error correction unnecessary. The
connection-oriented design of the protocol further allows for
easy traversal of firewalls and NAT devices that may ex-
ist in the network [1]. As a consequence, the development
and deployment of TCP-based streaming applications turns
out to be much less complex than approaches based on the
connectionless UDP protocol. Finally, TCP also offers con-
gestion control that, at the same time, tries to maximize
the throughput while preventing the network from collaps-
ing. This assures that only the fair share of the network
bandwidth is consumed by a single connection, which is con-
sidered crucial for the stability of the Internet [4].

As the throughput of the TCP connection depends on both,
the link capacity and the amount of congestion, the through-
put can vary significantly over time. A typical use case is
illustrated in Figure 1, where a home network consisting of
several computers or consumer electronic products is con-
nected to the Internet via a DSL or cable-based access net-
work. In this common deployment scenario, the capacity of
the link and the congestion caused by parallel TCP connec-
tions influence the available bandwidth for a video stream-
ing application. Variations in the available bandwidth will
result in jerky playback and disruption of the video play-
back if the throughput falls below the bit rate requirement
of the video. Adaptive video streaming [1] tries to overcome
this, by adjusting the video bit rate to the available network
bandwidth. In adaptive TCP streaming, TCP’s adaptabil-
ity to fluctuating network conditions is used to steer the rate
control. TCP-based video streaming and especially adaptive
streaming are extensively covered in the literature [17, 11, 8,
6, 18, 15]. An approach which uses adaptive video transcod-
ing based on the TCP transmission rate, is presented in
[15]. Other approaches like the TCP-based priority/priority-
progress streaming [17, 11] send the more important parts

of the video before the low-priority parts, in order to deliver
a rate-distortion optimal video.

Adaptive video streaming requires that the bit rate of the
video can be adjusted on-the-fly on the server. However, bit
rate adaptation based on transcoding or transrating comes
along with high computational cost and scalability issues
[1]. An alternative is the use of a scalable video coding
format that offers simple video adaptation at the cost of a
more sophisticated encoder/decoder design. Although scal-
ability features were included in both standardized and pro-
prietary codecs in the past, their success was rather lim-
ited due to coding inefficiencies and decoding complexity.
The Scalable Video Coding (SVC) extension [21] of the well-
known H.264/AVC standard, however, aims at overcoming
the shortcomings of the past codecs. The performance and
merits of H.264/SVC have been successfully demonstrated
in various use cases [22]. However, to the best of our knowl-
edge, no evaluation w.r.t. adaptive Internet streaming based
on TCP and H.264/SVC has been conducted so far.

Therefore, we provide in this paper an in-depth evalua-
tion of three different adaptive TCP-based video streaming
approaches that utilize scalability features of H.264/SVC
videos. The paper is organized as follows. Section 2
briefly introduces the H.264/SVC video coding standard and
its scalability features. An overview of TCP-based video
streaming, its challenges and existing approaches are pro-
vided in Section 3. The use of H.264/SVC in combination
with the adaptive streaming approaches and a detailed de-
scription of the algorithms under evaluation are given in Sec-
tion 4. Section 5 describes the evaluation setup and method-
ology. The results of our extensive evaluation are presented
and discussed in Section 6. Section 7 concludes the paper.

2. H.264/SVC
The H.264/SVC video coding standard [21] was recently
standardized as an extension to the well-known H.264/AVC
standard. In this context, a video stream is considered
scalable, if the stream can be adapted by the removal of
parts of the encoded bit stream. Since H.264/SVC extends
H.264/AVC, its design is also based on the distinction be-
tween the Video Coding Layer (VCL) and a Network Ab-
straction Layer (NAL). While the VCL deals with the com-
pression of the video data, the NAL is used for organiz-
ing the compressed video for storage and transmission [23].
H.264/AVC introduced the concept of a NAL unit which
consists of a one byte header and the payload data. NAL
units can be classified into VCL NAL units, which contain
coded video slices, and non-VCL NAL units which provide
other decoder-relevant information like picture and sequence
parameter sets. The type of NAL unit is signaled in the one
byte header.

H.264/SVC introduces scalability in three dimensions. Tem-
poral scalability is the property of a bit stream that video
sequences with different frame rates can be extracted. Gen-
erally, temporal scalability can be achieved by restricting
the motion-compensated prediction to hierarchical predic-
tion structures. Hierarchical B-pictures or non-dyadic struc-
tures were already possible with coding tools standardized
in H.264/AVC. The only changes introduced by H.264/SVC
are related to signaling the different temporal layers.

Spatial scalability, which allows the extraction of video se-
quences with different spatial resolutions, is also realized in a
layered fashion. In each spatial layer, motion-compensation
prediction and intra-prediction can be employed. Addition-
ally, SVC introduces inter-layer prediction which means that
a picture at a higher spatial layer can be predicted by upsam-
pling the signal from its corresponding lower layer picture.

For quality scalability, the H.264/SVC standard offers two
approaches. Coarse-grain quality scalable coding (CGS) is
similar to spatial scalability, with the difference that the
pictures at each layer have the same spatial dimensions.
However, this concept comes along with a lower coding effi-
ciency for small relative rate differences between successive
CGS layers. An efficient encoding of video bit streams that
cover a variety of bit rates can be realized by using medium-
grain quality scalable coding (MGS). The MGS concept en-
ables the removal of any NAL unit belonging to a quality
enhancement layer. This can be used to perform a finer-
grained adaptation of the bit rate and with a higher flex-
ibility. While CGS-based quality adaptation can only be
switched at defined points in the bit stream, MGS allows to
switch the quality and bit rate at every picture of the video
stream. Furthermore, it is possible to partition the coeffi-
cients of the transformation and distribute the information
among several NAL units.

In order to signal the layer information in the bit stream,
SVC extends the NAL unit concept of H.264/AVC [19].
Newly introduced, SVC-specific NAL unit types required
a three-byte header extension. In the extended header, the
layer information is signaled by the fields quality id (QID),
dependency id (DID), and temporal id (TID). In addition,
the header contains a priority id (PRID) field which can be
used to define a suggested adaptation path. This adapta-
tion path specifies in which order the NAL units should be
discarded in case of adaptation. The assignment of the pri-
ority id to NAL units is not further specified in the standard
and can be allocated based on the needs of a certain appli-
cation or use case. The Quality Level Assigner tool that is
included in the JSVM [9] reference software, can be used
to assign priority values to NAL units contained in the bit
stream. The assignment is done in a way that the extraction
based on the PRID is optimal w.r.t. rate-distortion.

3. TCP-BASED VIDEO STREAMING
Video streaming based on TCP has become very popu-
lar because of its easy deployment and congestion aware-
ness. For these reasons, a lot of content providers use
TCP for streaming multimedia content over the Internet
[16, 10]. While TCP performs very well in networks with
small round-trip times (RTTs), it becomes more prob-
lematic in networks with high bandwidth-delay products,
like the Internet. TCPs congestion control is based on
the additive-increase/multiplicative-decrease (AIMD) algo-
rithm. The MD step reduces the TCP window (and there-
fore the throughput) in case of packet loss drastically, before
the AI step tries to increase the window once again. This
leads to a notable variation of the throughput in networks
with large RTTs. An extensive analysis on TCP streaming
was conducted in [18]. The results of the analysis indicate
that streaming shows good results when the available band-
width is twice the media bit rate. This kind of overprovi-

sioning is feasible for streaming media at low bit rates, but
high-definition media demands significantly higher through-
put. While a large number of last-mile networks offer down-
link bandwidths greater than 4 Mbps [3], having twice the
bit rate of an HD stream is rather an exception. In addition,
TCP features no implicit error recovery on connection abort
or stalls; this has to be handled on the application layer.
New TCP implementations like TCP Cubic [7] are tackling
these problems by introducing mechanisms for fast recov-
ery on packet losses. In contrast to this, unreliable but
congestion-aware transport protocols, like the Datagram
Congestion Control Protocol (DCCP) [5], were proposed.
While they are able to reduce end-to-end latencies by omit-
ting reliability, they suffer from deployment problems in ex-
isting network infrastructures.
Apart from the systematic problems of TCP, also perfor-
mance considerations have to be made regarding the TCP
implementation. The TCP stack is in general implemented
in the kernel space of the operating system because of perfor-
mance and security issues. Therefore, an interface between
the user space and the kernel space is needed, which is rep-
resented by the TCP socket API and a socket buffer. The
TCP socket buffer has a direct impact on the TCP perfor-
mance, because it limits the maximum throughput by re-
stricting the maximum size of the TCP window [24]. So the
TCP socket buffer size corresponds directly to the maximum
TCP throughput. In general, it is recommended to set the
TCP socket buffer size to twice the value of the bandwidth-
delay product (BDP) [24]. For adaptive real-time streaming
it is not the goal to fully utilize the network link, but to
transmit the video data in real-time. Therefore the TCP
socket buffer is dimensioned regarding the maximum video
bit rate and not the maximum available bandwidth.

In the literature different approaches for adaptive TCP
streaming exist. We selected the approaches for our evalua-
tions, which only observe the TCP channel and use the infor-
mation in an adaptive streaming process. So the streaming
systems do not change the behavior of the TCP transmis-
sion system. In the following three different approaches for
adaptive TCP streaming are introduced; their realisation by
using H.264/SVC will be further explained in Section 4.

Application-layer Bandwidth Estimation: The first approach
measures the available bandwidth based on the time spent
for the transmission of a specific media block [15]. The de-
livery module writes the media data into a blocking TCP
socket and estimates the actual delivery bit rate by sim-
ply counting the bytes for a time slot of one second. After
retrieving an estimation value for the available bandwidth,
the adaptation process uses this information to configure the
media transcoder. This approach to adaptive TCP stream-
ing is very straight forward and does not use operating sys-
tem specific information. As shown in [15] it can adapt to
the available bandwidth, but is very implementation specific
because it relies on the blocking socket API.

TCP Stack-based Bandwidth Estimation: The current con-
gestion window and the estimated RTT of the TCP connec-
tion can be used to estimate the available bandwidth [12].
In [2] for example a simple model for the expected latency
of packets sent with TCP Reno is presented. The model
also estimates the available channel rate and the expected

Figure 2: Priority-order within a video segment

distortion. The TCP parameters are directly used in the
encoding process of the video, which allows the streaming
system to adapt to the available network conditions.

Priority Streaming: In contrast to traditional buffering at
the receiver, which only tries to overcome bandwidth short-
ages, priority streaming [17, 11] tries to improve the qual-
ity of the video over a period of time. A video sequence
is split into fragments, each comprising the same play-out
duration (GOP). The idea is to rearrange the video syntax
elements (e.g., slices, frames, layers) in a video fragment de-
pending on its priority. For example, using a non-scalable
video codec, the I-frames would precede the P-frames and
the B-frames (see Figure 2). The reordered video fragment
is called a video segment. As a result of this reordering, it is
not necessary to retrieve the whole video segment; it can be
truncated at virtually any point. The quality of the video
depends only on how much of the video segments was re-
trieved. The size of the GOP directly influences the quality
variations between the video segments, which favors larger
GOPs. On the other hand, the play-out delay increases with
the size of the GOP. In most cases, the size of the GOP is
restricted by the use case, which dictates maximum play-out
delay. A TCP-based priority streaming system uses a sin-
gle TCP connection for transmission. From the server, each
video segment is streamed to the client. When reaching the
timeout of a video segment, the server stops transmitting
the segment and switches to the next one. From the re-
ceived video segment, the video can be reconstructed and
displayed to the user.

A different but somehow related paradigm to the approaches
under investigation is the stream-switching technique. In
case of stream switching, the content is available at the
server at different bit rates; depending on the actual net-
work conditions the bit rate can be switched. This tech-
nique is already deployed in commercial applications like
the HTTP-based streaming used in Apple products [14] or
the HD Internet streaming solution provided by Move Net-
works [13]. While the products mentioned above rely on
the client to decide when to switch to a higher or lower bit
rate version of the content, it is also possible to implement
server-side stream switching. The most important difference
to the approaches evaluated in this paper is that the stream-
switching solution does not scale very well. First, the con-
tent has to be encoded using different bit rates which causes
an additional effort especially when considering streaming
of live content. This would require to encode the content
in parallel with multiple encoders. Second, all the differ-
ent bit rate versions of the same video have to be stored

Figure 3: Server-side adaptive streaming system

at the server which causes additional storage demand that
increases with the number of bit rates offered. Both the im-
plications on the encoder and storage demand lead to the
fact that stream-switching solutions only offer a handful of
different video bit rates for economical reasons. In contrast,
the approaches based on H.264/SVC allow to have a signifi-
cant higher number of different bit rate versions of the same
content. When using MGS quality scalability in combina-
tion with bit stream extraction based on the priority id, the
bit rate can be adapted in up to 64 discrete steps. This leads
to a much higher dynamic range of available bit rates and
the advantage of having a single bit stream stored at the
server. Additionally, only a single encoder is required in the
case of live content.

In the following section, we will show how these approaches
can be used in conjunction with H.264/SVC and describe
the implementations used for the evaluation.

4. ADAPTIVE STREAMING OF H.264/SVC
For our evaluation of rate-adaptive streaming algorithms,
we adapted the three approaches mentioned above for using
H.264/SVC. We intentionally focused on adaptation mecha-
nisms that can be characterized as server-side (server-based)
algorithms. The rationale behind that is that this allows an
easier deployment of the adaptive streaming solutions. An
architectural figure of such a server-side streaming solution
is given in Figure 3. At the server the video is stored as
scalable H.264/SVC bit stream. A rate-adaptive compo-
nent adapts the bit stream accordingly and transmits the
bit stream to the client. The transmission is performed on
a per-GOP basis. At the client the the GOP is received,
buffered and decoded for the final playback. Additionally,
all three approaches do not rely on explicit feedback from
the client like notifying the current buffer status or similar.
The only kind of feedback that is used at the server is the
implicit feedback via the TCP protocol. For instance, block-
ing send operations on the socket on the server side are used
as indication of the connection status.

Another characteristic that is shared by all three approaches
is that the timely transmission of the video is controlled
at the server side. On the one hand, this means that the
server takes care that not too much of the video content is

Figure 4: GOP timing

streamed out in advance. The transmission of the content
takes place at the same speed as the video is consumed at the
client side. This real-time behavior clearly distinguishes the
approaches from other paradigms (download and play) that
can be found in other streaming solutions in the Internet.
The advantage of the real-time playout is that a single client
with a fast network connection cannot consume more than
its fair share, which is at most the maximum bit rate of the
video, and cannot overload the streaming server. On the
other hand, this server-side mechanism is further necessary
because otherwise the scheduled transmission times of video
segments and the actual transmission times can differ in
case of congestion. In case of persistent congestion, this
difference slightly increases over time and causes the video
segments to arrive too late at the client. Since this behavior
drains the buffer at the client and causes the video playback
to stop at the player, all three approaches employ counter-
measures to prevent this drift. In the following the three
implementations of the approaches are described in detail.

Application-layer Bandwidth Estimation
The first rate-adaptive approach is based on bandwidth es-
timation that is done at the application layer (APP-BE).
Basically, the server estimates the bandwidth of the TCP
connection by considering the number of bytes sent through
the socket API during a time interval. In our implementa-
tion, the estimation is performed on a per-GOP basis. The
number of bytes of the GOP to transmit is known in ad-
vance by the server. By measuring the time that is required
to send the GOP via the socket API the server calculates the
current throughput of the TCP connection. For calculating
the bandwidth estimate for the next GOP to send, the mea-
sured throughput values of the last five GOPs are averaged.
Based on the estimate, the next GOP is adapted by using
H.264/SVC-based adaptation so that the total bit rate of
the GOP is below the bandwidth estimate. Additionally,
it should be noted that the estimate is further adjusted by
the buffer control algorithm to prevent a drift of the actual
transmission time of each GOP in case of congestion.

More formally, the algorithm can be described as follows.
Let dgop be the playback duration of a GOP in seconds
and tsch

i the scheduled start time for transmitting the i-th
GOP at the server. Without loss of generality, we define
tsch
0 = 0 and assume the scheduled start of any other GOP
i as tsch

i = tsch
0 + dgop ∗ i. In contrast to the scheduled start

time we measure the actual start time of each GOP (tact
i)

−2 0 2 4 6 8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

delta/dgop

fb
ct

l(d
el

ta
, d

go
p)

Figure 5: Buffer control function

at the moment before the first byte of a GOP is sent via the
socket API. After successfully transmitting the GOP, the
actual time is sampled again and the transmission duration
(dtrans

i) of GOP i is determined. The introduced times-
tamps and durations are illustrated in Figure 4. Based on
the known length of the GOP in bytes (lgop

i), the measured
throughput during transmission of GOP i can be simply cal-
culated as thi = lgop

i /dtrans
i . The estimated bandwidth for

the next GOP i+ 1 is then calculated by averaging over the
last five throughput measurements and adjusting the aver-
age by a multiplicative term. This adjustment is required
for the buffer control and prevents that the scheduled start
times tsched

i and the actual start times tact
i begin to diverge.

The multiplicative term is determined by the buffer control
function fbctl(delta, d

gop) that depends on the difference be-
tween both timestamps and the duration of one GOP. The
function is illustrated in Figure 5 and described in more de-
tail in the Appendix A. Finally, the bandwidth estimation
(be) for GOP i+ 1 is calculated as follows.

bei+1 =
1

5

iX
j=i−4

thj · fbctl(t
act
i + dtrans

i − tsch
i+1, d

gop) (1)

The bandwidth estimation for the next GOP is then used
for adapting the GOP in a way that it matches the targeted
bandwidth. For that purpose, the NAL units are optionally
discarded by using the adaptation path defined by the prior-
ity id. As already mentioned above, the approach prevents
from streaming out faster than real-time by imposing the
constraint that the transmission of a GOP may not start
earlier than scheduled, i.e., ∀i : tact

i ≥ tsched
i .

A crucial requirement for this approach is that the size of
the GOP is larger than the TCP socket buffer on the server.
Otherwise, the socket implementation simply copies the data
to transmit into the TCP socket buffer and immediately
returns from the send operation. This implies that in order
to achieve good performance, the TCP socket buffer on the
server should be adjusted according the bit rate of the video
and the envisaged RTT range.

Figure 6: PRID-based NAL unit reordering

TCP Stack-based Bandwidth Estimation
The second approach under investigation is the TCP Stack-
based Bandwidth Estimation (TCP-BE). This algorithm has
very much in common with the application layer mechanism
introduced above. Also in this approach, an estimate of the
bandwidth is obtained and the next GOP to transmit is
adapted based on that estimate. Furthermore, the estimate
is again adjusted by a multiplicative term in order to prevent
drift between the scheduled and actual transmission time of
each GOP. However, the main difference is the way how the
bandwidth estimation is calculated. Instead of measuring
the TCP throughput at the application layer, the informa-
tion about the TCP connection is obtained directly from
the network stack. This is done by using the getsockopt

API call in combination with the option TCP_INFO, which is
supplied by most *nix operating systems. The information
relevant for the bandwidth estimation consists of the cur-
rent congestion window size cWnd, the maximum segment
size MSS and the estimate of the round trip time RTT. The
throughput estimate for the i-th GOP can then be calcu-
lated as [12]:

thi =
cWnd ·MSS

RTT
(2)

The bandwidth estimation (be) for GOP i+ 1 is calculated
based on Equation 1 by taking into consideration the buffer
control function. The rest of the approach is identical to
Application-layer Bandwidth Estimation.

Deadline-driven Adaptive Streaming
In contrast to the previous approaches that rely on explic-
itly estimating the bandwidth, the Deadline-driven Adaptive
Streaming (DEADLINE) algorithm is based on the priority
streaming paradigm as introduced in Section 3. For our eval-
uation, the video is split up into video segments, where one
segment corresponds to exactly one GOP. In a nutshell, this
approach rearranges the NAL units of each GOP according
to their priority before transmitting them. On the server a
certain time interval is scheduled for the transmission of the
rearranged GOP. The server tries to transmit as much data
of the GOP as possible during that time interval. After the
scheduled time interval has passed, i.e., the deadline for the
GOP has been reached, the server starts transmitting the
next GOP.

Typically, each GOP of the H.264/SVC scalable bit stream
consists of H.264/AVC-compliant NAL units that form the
base layer and H.264/SVC-specific NAL units that represent
enhancement layers. Normally, these units are transmitted
in decoding order which means that both kinds of NAL units

are interleaved. Following the priority streaming paradigm,
they become rearranged so that the NAL units are transmit-
ted in order of their priority id. NAL units with identical
values of their priority id are arranged in decoding order.
In this context, a lower numerical value of the priority id
signals a higher priority of the NAL unit according to [20].
The basic principles of this reordering are illustrated in Fig-
ure 6. For the sake of simplicity the figure shows a GOP
consisting of only four pictures (I, P, B, B) in decoding or-
der. Each of the pictures is represented by one NAL unit
carrying the base layer (BL) and two NAL units represent-
ing enhancement layers (EL1, EL2). The numerical values
in the boxes represent the priority id value of each NAL
unit; in our configuration all NAL units of the base layer
have the highest priority. For transmission, the NAL units
are ordered according to their priority. As a result of the
scalable property of H.264/SVC, the quality of the decoded
bit stream at the client monotonically increases with the
amount of NAL units transmitted by the server.

As the decoder at the client side requires the NAL units in
the proper decoding order, this reordering at the server has
to be reversed at the client. For supporting the reorder-
ing, we embedded proprietary reordering information in the
transmitted bit stream. Although this reconstruction at the
client can also be achieved using standard-compliant meth-
ods, we intentionally used a proprietary approach for the
sake of simplicity.

The transmission of the rearranged GOPs is based on the
transmission schedule as already defined for the previous two
approaches. The scheduled start time for the transmission
of the i-th GOP is denoted as tsched

i . Obviously, the dead-
line for the i-th GOP is the start time of the next GOP
tsched
i+1 . During the time period [tsched

i , tsched
i+1), the server

sends the NAL units via the socket API and checks after
each send operation if the deadline has been reached. How-
ever, the send operation itself is never preempted. In case
of an overprovisioned link, the transmission will be finished
before the deadline is reached. The transmission of the next
GOP however will be delayed until the scheduled start time
of the next GOP. If the bandwidth of the link is insufficient
to transmit the whole GOP in the given time interval, the
server will skip the remaining NAL units and proceed with
the next GOP. It should be noted that this approach does
not rely on an explicit H.264/SVC adaptation process, the
actual adaptation is performed implicitly by the deadline-
driven transmission.

Remarks
Each of three approaches relies on H.264/SVC adaptation
based on the priority id mechanism. For our actual research,
we used the Quality Level Assigner tool of the JSVM [9] soft-
ware to obtain the information about the importance of each
NAL unit. This tool determines the priority information for
MGS NAL units in a rate-distortion optimal way. However,
it uses a semantic of the priority id that is different from the
one specified in [20]. A post-processing step for assigning the
proper priority id values based on the output of the Quality
Level Assigner is therefore necessary. As a consequence, our
further evaluation is limited to adaptation in the SNR do-
main, although the approaches themselves are more generic.
This means that they are also applicable for temporal or

Figure 7: Evaluation setup

spatial adaptation by assigning the priority ids appropri-
ately. We considered MGS scalability as most suitable for
the envisaged use case in the context of Internet stream-
ing. MGS scalability allows a smooth playback at the client
(e.g., in contrast to temporal adaptation) and also does not
introduce too severe quality changes that would arise when
switching between different spatial resolutions. Temporal
and spatial scalability could be taken into account as a fall-
back solution in case of harder congestion situations and
network conditions.

5. EVALUATION
We evaluated the behavior and performance of the proposed
algorithms under conditions typical for Internet streaming.
These include under-provisioned network links and conges-
tion due to competing TCP traffic. A further criterion for
assessing applications that are intended to be deployed in
the Internet is their TCP friendliness. This is regarded as
a necessity for the stability of the Internet and implies that
an application/protocol does not consume more than its fair
bandwidth share compared to competing TCP connections.
Since all of the proposed approaches only make use of a
single TCP connection, a TCP friendly behavior can be as-
sumed for all systems.

Evaluation Setup
The evaluation setup consists of six Linux boxes representing
two servers, two routers and two clients as illustrated in Fig-
ure 7. Each of them runs the Ubuntu Linux operating sys-
tem (kernel 2.6.27). All client and server computers are con-
figured to use the TCP Reno implementation. The routers
are using the Netem1 kernel component for performing emu-
lation of network characteristics like delay, jitter and packet
loss. The symmetric end-to-end delay of the Internet and
the provider network is emulated by Router 1. The packet
delay is normally distributed with 10% standard deviation
and is applied to all packets. Router 2 emulates the asym-
metric access network to the clients and limits the up- and
downstream bandwidth (BW), while allowing a maximum
queuing delay of 200 ms. The asymmetry of the network
was emulated by setting the upstream bandwidth to 1/8 of
the downstream bandwidth, which is common for DSL/cable
access networks. The implementation of the three adaptive
TCP streaming approaches is based on Python. For the eval-
uation, the video streaming server component is deployed on
Server 1 while the client component is located at Client 1.
To emulated a congested link, Client 2 issues parallel HTTP
downloads from Server 2, that compete for their network
share. The Apache2 HTTP Server is used for serving the
HTTP downloads.

1
http://www.linuxfoundation.org/en/Net:Netem

2
http://httpd.apache.org

bitrate [kbit/s]

A
ve

ra
ge

 P
S

N
R

 [d
B

]

32

33

34

35

36

750 1000 1250 1500 1750 2000

 GOP soccer (4CIF)

65 frames
129 frames
257 frames

Figure 8: Rate-distortion curves of the test se-
quences

Network Scenarios
We evaluated the adaptive streaming approaches under
three representative network conditions.

The first scenario is an overprovisioned network link, where
the available network bandwidth substantially exceeds the
video bit rate. Because TCP’s congestion avoidance tech-
nique is based on the AIMD principle, throughput varia-
tions may occur in networks with high bandwidth delay
products. This scenario is used to evaluate the ability of
an approach to fully utilize the bandwidth for video trans-
mission and to cope with the throughput variations. At
the other extreme, the behavior of the approaches is fur-
ther analyzed in a scenario of an underprovisioned network
link. This should demonstrate the capability of adapting the
video to a given limited network bandwidth while maximiz-
ing the video quality at the client. In the third scenario,
we introduce cross traffic on the network link with one, two
and three concurrent infinite-source TCP streams. On such
a congested network link, an adaptive streaming system has
to cope with high bandwidth fluctuations, because of the
competition between the concurrent TCP streams. Further,
it should provide a TCP-friendly behavior.

Content
The test sequences used for evaluation were created with
the H.264/SVC codec provided by the Joint Scalable Video
Model (JSVM) [9] 9.15 software. The video soccer in 4CIF
resolution was encoded with different GOP sizes. The first
65, 129 and 257 frames of the video soccer form a test
sequence, each comprising 2.16, 4.30 and 8.57 seconds of
video at 30 fps, respectively. Each sequence features an
H.264/AVC backward compatible base layer and one MGS
quality enhancement layer. Within the MGS quality en-
hancement layer, the transform coefficients are uniformly
partitioned into four NAL units. The Quality Level As-
signer tool (JSVM) was used to assign 64 different priority
ids to the NAL units based on rate-distortion values. In
Figure 8 the rate-distortion values of the test sequences are
shown, ranging from the lowest bit rate (highest priority) to
the full bit rate (lowest priority). It can be observed that
the sequences with smaller GOP sizes have a slightly worse

rate-distortion performance, because the prediction struc-
tures are restricted to the GOP length.

Methodology
Although each test sequence comprises a different number of
frames, it can be observed in Figure 8 that the average PSNR
values of the sequences are similar. The soccer65 sequence
is streamed 400 times in a loop, which results in approx.
900 seconds play-out duration. Because each test sequence
represents a video segment with a different duration, we are
streaming the soccer129 and soccer257 sequences 200 and
100 times in a loop, respectively. This results in a similar
play-out duration, which enables a fair comparison of the
evaluation results for the different GOP sizes. In addition
to the different network scenarios, also the RTT is varied,
ranging from 50 ms to 200 ms. Each experiment is repeated
three times to reduce the influence of the runtime environ-
ment on the results. In all evaluation runs, no frames or
GOPs are lost, because the streaming systems are based on
the reliable transmission of TCP.

The TCP socket buffer size was determined by taking the
considerations of Section 3 into account. The streaming sys-
tems should be able to utilize overprovisioning to enhance
their streaming performance, so we allow 50 % higher TCP
throughputs. So the TCP socket buffer size lsock is a result
of the maximum bit rate of the video brmax (≈ 2048 kbps)
and the maximum round trip time RTTmax (200 ms), re-
sulting in lsock = 1.5 · 2 · brmax ·RTTmax = 153600 bytes.

The metrics for comparing the adaptive streaming systems
are the reconstructed video quality in terms of PSNR and
the deviation between the scheduled and the actual arrival
time of a GOP on the client, deltaC = tact

i − tsched
i . For

the DEADLINE approach the deltaC has to be interpreted
with care, because the approach has to wait for a GOP to be
completely received before the decoding of the GOP on the
client can be started. The reason for this is the reordering
of the GOP and can be interpreted as additional buffering.
In contrast to this, the APP-BE and TCP-BE approach can
start the decoding of the GOP immediately after receiving
the first frame of the GOP.
In our evaluation, we focus on the dependability of the adap-
tation algorithms in terms of timeliness of delivery. Thus, in
the startup phase we transmit a single GOP in full quality
to get a good starting point for the bandwidth estimation.

6. RESULTS
In our evaluation on adaptive Internet streaming, we con-
duct measurements for RTTs ranging from 50 to 200 ms.
Because the streaming performance of TCP at low RTTs is
very good, we decided to show the evaluation results for an
RTT of 200 ms. In our opinion, this would represent the
worst case scenario for our use case. In the following, a dis-
cussion of the evaluation results for each network scenario is
presented.

The performance of the streaming systems in an overprovi-
sioned network is shown in Figure 9. All approaches per-
form well and can stabilize the video quality by utilizing
the additional bandwidth. This is supported by the anal-
ysis in [18], which states that good streaming performance
can be expected when available bandwidth is about twice

APP−BE TCP−BE DEADLINE

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

APP−BE TCP−BE DEADLINE

ar
riv

al
 ti

m
e

de
vi

at
io

n
(d

el
ta

C
)

[s
ec

]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

Figure 9: Overprovisioned network: BW = 4096 kbps. PSNR and arrival time deviation on the client (deltaC)
for the different algorithms and GOP sizes at 200 ms RTT.

APP−BE TCP−BE DEADLINE

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

APP−BE TCP−BE DEADLINE

ar
riv

al
 ti

m
e

de
vi

at
io

n
(d

el
ta

C
)

[s
ec

]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

Figure 10: Underprovisioned network: BW = 1536 kbps. PSNR and arrival time deviation on the client
(deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

APP−BE TCP−BE DEADLINE

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

APP−BE TCP−BE DEADLINE

ar
riv

al
 ti

m
e

de
vi

at
io

n
(d

el
ta

C
)

[s
ec

]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

Figure 11: Congested network: BW = 4096 kbps and one concurrent TCP stream. PSNR and arrival time
deviation on the client (deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

APP−BE TCP−BE DEADLINE

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

APP−BE TCP−BE DEADLINE

ar
riv

al
 ti

m
e

de
vi

at
io

n
(d

el
ta

C
)

[s
ec

]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

Figure 12: Congested network: BW = 4096 kbps and two concurrent TCP streams. PSNR and arrival time
deviation on the client (deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

APP−BE TCP−BE DEADLINE

P
S

N
R

 [d
B

]

31

32

33

34

35

36

37

38
 GOP size

65 frames
129 frames
257 frames

APP−BE TCP−BE DEADLINE

ar
riv

al
 ti

m
e

de
vi

at
io

n
(d

el
ta

C
)

[s
ec

]

0

2

4

6

8

10

12
 GOP size

65 frames
129 frames
257 frames

Figure 13: Congested network: BW = 4096 kbps and three concurrent TCP streams. PSNR and arrival time
deviation on the client (deltaC) for the different algorithms and GOP sizes at 200 ms RTT.

the media bit rate. The small differences in the average
PSNR for the different GOP sizes are mainly caused by the
better rate-distortion performance of larger GOPs (see Fig-
ure 8). The variation of the emulated packet delay leads
to TCP throughput variations, which result in the adapta-
tion of some GOPs even in the case of overprovisioning. For
the evaluation on the timeliness of delivery of the GOPs,
we calculate the arrival time deviation of the GOPs on the
client (deltaC) for the different algorithms and GOP sizes at
200 ms RTT. If the available bandwidth exceeds the bit rate
of the adapted video, the delivery of a single GOP may take
less time than the GOP playout duration. This can be ob-
served in Figure 9, where GOPs arrive a little earlier than
expected. The arrival time deviation is near zero, which
means that all GOPs arrive in time and only little buffering
will be needed at the client. The standard deviation of the
PSNR and arrival time deviation is shown as error bars in
the plots.

The adaptability of the streaming systems to a static bot-
tleneck link with 1536 kbps bandwidth (underprovisioned
network) is shown in Figure 10. The PSNR values in Fig-
ure 10 are approx. 35 dB, which corresponds to a bit rate of
≈ 1400 kbps (see Figure 8). This indicates that all streaming
approaches can adjust their streamout rate to the available
bandwidth. Also the larger GOP sizes help to stabilize the
PSNR values, as can be seen from the lower standard devia-
tion values. In bandwidth limited networks, the correctness
of the bandwidth estimation is crucial. The figure shows
that larger GOP sizes tend to increase deltaC for APP-BE
and TCP-BE. This is mainly because for larger GOP sizes
a wrong bandwidth estimate results in a larger deviation
of the delivery duration, which directly influences deltaC.
Although higher, the deltaC values for APP-BE and TCP-
BE are in an acceptable range because of the buffer control
at the server. The DEADLINE approach does not involve
bandwidth estimation, so timely delivery can be achieved.

The evaluation results for congested network links are shown
in Figures 11, 12 and 13. The average PSNR decreases the

more congestion on the network link occurs. Also the qual-
ity changes between the GOPs increase (standard deviation)
with the congestion level. The PSNR values for Figures 11,
12 and 13 are approx. 36, 34.5 and 33.5 dB, respectively.
The PSNR values correspond to bit rates of 1800, 1250,
1000 kbps, respectively (see Figure 8). So for all conges-
tion scenarios the approaches only use their fair share of
the available link bandwidth. While all of the approaches
are able to adapt to available/fair bandwidth, it can be ob-
served that the DEADLINE approach can use larger GOPs
to stabilize the overall quality of the video. The findings
are similar to the results in the underprovisioned network
scenario. DEADLINE can achieve a stable performance for
all GOP sizes, while APP-BE and TCP-BE suffer from high
variations at large GOP sizes.

The evaluation results indicate that the optimal GOP
size for APP-BE and TCP-BE in our evaluation setup
is 65 frames, because of the high arrival time deviation
(deltaC) for large GOPs in case of congestion. In contrast to
these approaches, DEADLINE is able to enhance its perfor-
mance with larger GOP sizes, so a GOP size of 257 frames
is considered to be optimal. Figures 14, 15 and 16 show the
average PSNR of the adaptive streaming systems with re-
spect to the RTT. In case of no congestion it can be observed
that the quality is near constant. In the congested network
scenarios, higher RTTs lead to lower PSNR values, which is
mainly because of tough competition on the network link.

7. CONCLUSION
We evaluated and compared three approaches to adaptive
TCP streaming (rate control) of H.264/SVC video in an
Internet-like setting. To the best of our knowledge, this is
the first study making use of H.264/SVC MGS scalability in
such settings. We found that adaptive TCP streaming, de-
spite the simplicity of the rate-control algorithms deployed,
can effectively cope with bandwidth limitations and con-
gestion, even under high RTTs. By utilizing H.264/SVC
MGS-based scalability, the bit rate and quality of the de-
livered video data can be a adapted in a fine-grained man-

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

RTT [ms]

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 14: Average PSNR for APP-BE with GOP
size 65 with respect to the RTT.

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

RTT [ms]

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 15: Average PSNR for TCP-BE with GOP
size 65 with respect to the RTT.

50 100 150 200

31

32

33

34

35

36

37

RTT [ms]

P
S

N
R

 [d
B

]

RTT [ms]

1536 kbps
4096 kbps
4096 kbps − 1 TCP
4096 kbps − 2 TCP
4096 kbps − 3 TCP

Figure 16: Average PSNR for DEADLINE with
GOP size 257 with respect to the RTT.

ner. In order to stabilize TCP throughput over a period
of time and decrease video quality fluctuations and packet
jitter, our adaptive streaming approach utilizes rather large
GOPs. We found, however, that the approaches using band-
width estimation suffer from large GOP sizes, since inac-
curate bandwidth estimates for GOP delivery may impact
quality and increase jitter; client buffer dimensioning thus
may become difficult. In contrast, the priority-/deadline-
driven streaming approach that reorders and transfers – up
to a pre-determined deadline – GOP picture data accord-
ing to their importance, can cope with large GOP sizes and
stabilize the quality in a rate-distortion optimal manner.
Packet delay jitter is more predictable and client buffer sizes
can be determined more easily. However, the client buffer
must provide room for hosting and re-ordering a full GOP
before playout can start. Thus, also startup delay increases
by an additional GOP time. Another finding of our study
was that bandwidth estimation on the application level can
work quite well, comparably to making use of detailed in-
formation from the TCP stack. In case an operating system
does not provide access to such information, the streaming
server may resort to the application-level method.

8. ACKNOWLEDGMENT
This work was supported in part by the Austrian Science
Fund (FWF) under project “Adaptive Streaming of Secure
Scalable Wavelet-based Video (P19159)” and by the EC in
the context of the P2P-Next project (FP7-ICT-216217).

9. REFERENCES
[1] J. G. Apostolopoulos, W.-T. Tan, and S. J. Wee.

Video streaming: Concepts, algorithms, and systems.
Technical report, HP Laboratories, 2002.

[2] A. Argyriou. Real-time and Rate-distortion Optimized
Video Streaming with TCP. Elsevier Journal on
Signal Processing: Image Communication,
22(4):374–388, 2007.

[3] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement (IMC ’07),
pages 43–56, 2007.

[4] S. Floyd and K. Fall. Promoting the Use of End-to-end
Congestion Control in the Internet. IEEE/ACM
Transactions on Networking, 7(4):458–472, 1999.

[5] S. Floyd, M. Handley, and E. Kohler. Problem
Statement for the Datagram Congestion Control
Protocol (DCCP). RFC 4336 (Informational), 2006.

[6] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting
Low Latency TCP-Based Media Streams. Technical
report, Oregon Graduate Institute School of Science
and Engineering, 2002.

[7] S. Ha, I. Rhee, and L. Xu. CUBIC: A New
TCP-friendly High-speed TCP Variant. SIGOPS
Operating Systems Review, 42(5):64–74, 2008.

[8] P.-H. Hsiao, H. T. Kung, and K.-S. Tan. Video over
TCP with Receiver-based Delay Control. In
Proceedings of the 11th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’01), pages 199–208,
2001.

[9] Joint Video Team (JVT) of ISO/IEC MPEG and

ITU-T VCEG. Joint Scalable Video Model. Doc.
JVT-X202, 2007.

[10] C. Krasic, K. Li, and J. Walpole. The Case for
Streaming Multimedia with TCP. In Proceedings of
the 8th International Workshop on Interactive
Distributed Multimedia Systems (IDMS ’01), pages
213–218, 2001.

[11] C. Krasic, J. Walpole, and W.-C. Feng.
Quality-adaptive Media Streaming by Priority Drop.
In Proceedings of the 13th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’03), pages 112–121,
2003.

[12] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm. ACM SIGCOMM - Computer
Communication Review, 27(3):67–82, 1997.

[13] Move Networks. Move Adaptive Stream - Product
Sheet. http://www.movenetworks.com. Last accessed
on 2009-09-22.

[14] R. Pantos. HTTP Live Streaming. Internet Draft
draft-pantos-http-live-streaming-01, 2009.

[15] M. Prangl, I. Kofler, and H. Hellwagner. Towards QoS
Improvements of TCP-Based Media Delivery. In
Proceedings of the Fourth International Conference on
Networking and Services (ICNS ’08), pages 188–193,
2008.

[16] M. Saxena, U. Sharan, and S. Fahmy. Analyzing
Video Services in Web 2.0: A Global Perspective. In
Proceedings of the 18th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’08), pages 39–44, 2008.

[17] W. Feng, M. Liu, B. Krishnaswam, A. Prabhudev. A
Priority-Based Technique for the Best-Effort Delivery
of Stored Video. In Proceedings of the SPIE/IST
Multimedia Computing and Networking 1999
(MMCN’99), 1999.

[18] B. Wang, J. Kurose, P. Shenoy, and D. Towsley.
Multimedia Streaming via TCP: An Analytic
Performance Study. ACM Transactions on Multimedia
Computing, Communications and Applications,
4(2):16:1–16:22, 2008.

[19] Y. Wang, M. Hannuksela, S. Pateux, A. Eleftheriadis,
and S. Wenger. System and Transport Interface of
SVC. IEEE Transactions on Circuits and Systems for
Video Technology, 17(9):1149–1163, 2007.

[20] S. Wenger, Y.-K. Wang, T. Schierl, and
A. Eleftheriadis. RTP Payload Format for SVC Video.
Internet Draft draft-ietf-avt-rtp-svc-19, 2009.

[21] T. Wiegand, G. Sullivan, H. Schwarz, and M. Wien,
editors. ISO/IEC 14496-10:2005/Amd3: Scalable
Video Coding. International Standardization
Organization, 2007.

[22] M. Wien, H. Schwarz, and T. Oelbaum. Performance
Analysis of SVC. IEEE Transactions on Circuits and
Systems for Video Technology, 17(9):1194–1203, 2007.

[23] W. Ye-Kui, M. M. Hannuksela, S. Pateux,
A. Eleftheriadis, and S. Wenger. System and
Transport Interface of SVC. IEEE Transactions on
Circuits and Systems for Video Technology,
17(9):1149–1163, 2007.

[24] E. Yildirim, D. Yin, and T. Kosar. Balancing TCP

Buffer vs Parallel Streams in Application Level
Throughput Optimization. In Proceedings of the
Second International Workshop on Data-aware
Distributed Computing (DADC ’09), pages 21–30,
2009.

APPENDIX
A. BUFFER CONTROL FUNCTION
The buffer control function is used for controlling the buffer
by adjusting the estimated bandwidth. The rationale behind
this is that without adjustment the scheduled start time and
the actual start time of the transmission of each GOP tend
to diverge. This is a consequence of the fact that the esti-
mation of the available bandwidth is not perfect and over-
or underestimates the actual value. On the other hand, if a
TCP connection does not try to increase the throughput over
time and does not participate in the competition of possible
concurrent TCP connections, it will suffer from starvation.

The function that is given in Equations 3 and 4 is designed
by considering the following situations. If the difference be-
tween scheduled and actual start time (delta) is less than
5 percent of the GOP duration in seconds, the bandwidth
estimation is increased by 50 percent. This allows the al-
gorithms to be more aggressive and competitive in case of
low delta values. However, when delta exceeds five times
the GOP duration, the actual transmission of the GOP lags
significantly behind the scheduled transmission. In that case
the actual rate for video transmission is chosen to be 1/5 of
the estimated bandwidth. No adjustment takes place if delta
is exactly 0.5 times of the GOP duration, i.e., the function
value is 1. Based on these three operating points, a curve
with the general form f(x) = a

x+b
+ c is fitted to match the

operating points described above. The parameters of the
resulting function ψ(x) are given in Equation 4.

fbctl(delta, d
gop) :=

8<: 1.5 if delta/dgop < 0.05
1/5 if delta/dgop >= 5

ψ(delta
dgop) otherwise

(3)

ψ(x) :=
1.46

x+ 0.893
+ 0.0476 (4)

