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ABSTRACT 

 
Multimedia streaming technologies based on the Hypertext 
Transfer Protocol (HTTP) are very popular and used by 
many content providers such as Netflix, Hulu, and Vudu. 
Recently, ISO/IEC MPEG has ratified Dynamic Adaptive 
Streaming over HTTP (DASH) which extends the 
traditional HTTP streaming with an adaptive component 
addressing the issue of varying bandwidth conditions that 
users are facing in networks based on the Internet Protocol 
(IP). Additionally, industry has already deployed several 
solutions based on such an approach which simplifies large 
scale deployment because the whole streaming logic is 
located at the client. However, these features may introduce 
drawbacks when multiple clients compete for a network 
bottleneck due to the fact that the clients are not aware of 
the network infrastructure such as proxies or other clients. 
This paper identifies these negative effects and the 
evaluation thereof using MPEG-DASH and Microsoft 
Smooth Streaming. Furthermore, we propose a novel 
adaptation algorithm introducing the concept of fairness 
regarding a cluster of clients. In anticipation of the results 
we can conclude that we achieve more efficient bottleneck 
bandwidth utilization and less quality switches. 
 

Index Terms—Dynamic Adaptive Streaming over 
HTTP, DASH, Fair Adaptation, Proxy Cache, Multimedia 
 

1. INTRODUCTION 
 
Multimedia is nowadays ubiquitous in the Internet and many 
Web applications are also using the Hypertext Transfer 
Protocol (HTTP) for multimedia streaming by adopting 
progressive download. However, there are certain 
disadvantages when using HTTP for multimedia streaming. 
In particular, this protocol has been initially designed for 
best effort and not for real-time multimedia transport. A 
major problem of HTTP streaming approaches adopting 
progressive download is that it is not able to handle varying 
bandwidth conditions of IP-based networks. Therefore, 
ISO/IEC MPEG has recently ratified an advancement of that 
basic HTTP streaming approach which is referred to as 

Dynamic Adaptive Streaming over HTTP (DASH) [1]. In 
comparison to the traditional HTTP streaming this approach 
is able to handle the varying bandwidth conditions while 
maintaining its advantages such as NAT/firewall traversal 
and flexible deployment. Additionally, major industry 
players including Microsoft [2], Apple [3], and Adobe [4] 
have deployed their solutions and, interestingly, all are 
based on this same principles. That is, the streaming logic is 
located at the client and multiple versions of the content, 
e.g., different resolution, bitrate, etc. have been segmented 
and stored on legacy Web servers. While it is obvious that 
this approach scales very well, it may introduce some new 
drawbacks as a consequence that the streaming logic is 
located at the client, i.e., clients are not aware of each other 
and the network infrastructure such as proxy caches. 

This paper concentrates on the negative effects 
introduced when multiple clients are competing for a 
bottleneck and how proxies are influencing this bandwidth 
competition. As mentioned above, the clients request 
individual portions of the content based on the available 
bandwidth which is calculated using throughput estimations. 
A consequence of this requesting scheme is that only some 
parts of the content are stored on proxy servers, which are 
intercepting the connection between the client and the 
content server. This uncontrolled distribution of the content 
influences the adaptation process that assumes that the 
measured throughput is the throughput to the content server. 
The impact of this falsified throughput estimation could be 
tremendous and leads to a wrong adaptation decision which 
may impact the Quality of Experience (QoE) at the client. 

In anticipation of the results we can conclude that this 
false interpretation of the throughput estimation introduces 
unnecessary frequent quality switches and could produce an 
unsmooth session which immensely decreases the QoE [5]. 
Furthermore, the bottleneck will be more stressed than 
needed which could influence other applications. 

The remainder of this paper is organized as follows. 
Related work is described in Section 2 while Section 3 
highlights potential scenarios where this effect could occur. 
Our adaptation logic which handles such falsified 
throughput estimations is described in Section 4. The 
methodology of our experiments is described in Section 5 



and the evaluation in Section 6. The paper is concluded with 
Section 7. 
 

2. RELATED WORK 
 
Evensen et al. [7] has proposed a system that could use 
multiple heterogeneous access networks. However, this 
system is based on throughput estimations that do not take 
the network infrastructure or other, competing clients into 
account. Liu et al. [8] has used a smoothed HTTP 
throughput for their rate adaptation algorithm that does not 
consider the negative proxy effects or the locality of the 
segments. Kuschnig et al. [9] has evaluated existing 
algorithms in terms of quality using PSNR, however no 
negative proxy effects have been considered. Houdaille et 
al. [10] has shown that shaping of HTTP adaptive streams 
could increase the user experience. However, their design 
needs a network bandwidth shaper at each home but they do 
not consider the proxy effects and the locality of the 
segments. Mok et al. [11] has proposed a QoE-aware DASH 
system which shows that users prefer a gradual quality 
change. Their adaptation logic is based on that finding and 
the measured throughput but like the others they do not take 
the locality of the segments and the network infrastructure, 
e.g., proxies and other clients into account. 
 

3. DASH-BASED PROXY EFFECTS 
 
This section describes problems that could occur during a 
DASH session when multiple clients are competing for a 
limited bottleneck bandwidth. The scenario depicted in 
Figure 1 consists of a content server, a proxy, and two 
clients that are competing for the bottleneck bandwidth, i.e., 
8 Mbps between the content server and the proxy. Client 1 is 
connected over a 6 Mbps link with the proxy server and 
Client 2 is connected over an 8 Mbps link with the proxy. 
The content server hosts a DASH session with two quality 
levels that will be consequently called base and 
enhancement quality in this section. The base quality has a 
bitrate of 5 Mbps and the enhancement quality has a bitrate 
of 7 Mbps. 

Due to the fact that the bandwidth of Client 1 is 
restricted to 6 Mbps, it will only select segments of the base 

quality during the whole streaming session. Assuming that 
this client will start the streaming slightly before Client 2 
implies that the base quality will be cached on the proxy. 
Client 2 will start the streaming session and request the base 
quality at the beginning to minimize the startup delay and to 
fill its buffer as fast as possible. At this point the proxy 
maintains one connection to the content server, which could 
utilize the full available bandwidth of 8 Mbps (i.e., both 
clients are using the same quality). Subsequently after Client 
2 has stabilized its buffer, it will try to adapt to the maximal 
available bandwidth due to the throughput that has been 
measured on previous segments. Obviously, the measured 
throughput at Client 2 is 8 Mbps because the segments of 
the base quality which Client 2 is streaming at this point are 
cached at the proxy server, due to the selection scheme of 
Client 1. The consequence of this throughput estimation is 
that Client 2 will switch to the enhancement quality, because 
it assumes that there is enough bandwidth available to 
stream this quality level in a smooth way. The problem is 
now that the proxy has to maintain two connections to the 
content server, i.e., one for the base quality and one for the 
enhancement quality. 

We are assuming that these two connections will be 
shared more or less in a fair way, which means that each 
connection could utilize 4 Mbps of the bottleneck 
bandwidth. Obviously it is not possible to stream the base 
quality smoothly with 4 Mbps, which means that this quality 
switch at Client 2 will influence Client 1 and could produce 
an unsmooth session at Client 1. Moreover the throughput at 
Client 2 will collapse to 4 Mbps so that this client will 
switch down to the base quality, which means that the proxy 
will close the second connection and maintain only one 
connection with 8 Mbps for the base quality. Afterwards the 
base quality is cached at the proxy server, due to Client 1 
and Client 2 will switch to the enhancement quality again. 
This effect will occur over the whole streaming session and 
therefore the clients are negatively influencing each other 
without any changes in the network conditions. This will 
decrease the QoE of both clients due to the frequent quality 
switching [12] at Client 2 and potential unsmooth playback 
at Client 1 [5]. 
 

4. FAIR ADAPTATION 
 
Our fair adaptation scheme (FAS) aims to address the 
problem identified in Section 3. Our first and probably 
simplest approach to decrease the frequent switching and as 
a consequence the negative effects, that could be caused due 
to that switching, is an adaptation logic with an exponential 
backoff. This approach decreases the number of switch up 
points if a switch down occurs. But this technique does not 
consider whether a bandwidth fluctuation is self-caused or 
network caused. As described in Section 3, self-caused 
bandwidth fluctuations, i.e., frequent quality switching, get 
introduced because the adaptation logic does not consider 
the uncontrolled distribution of segments over the proxy 

 

Figure 1. DASH Proxy Scenario 



if backoff > 0 
backoff := backoff - γ 

endif 
quality_level := find (measured_bandwidth) 
if quality_level > quality_last_segment 
if backoff <= 0 
if probe(quality_level) 
count := 0 

else 
backoff := (int) α * e(β * count) 

count := count + δ 
quality_level := quality_last_segment 

endelse 
else 
quality_level := quality_last_segment 

endelse 
endif 
return quality_level 

Algorithm 1. Exponential Backoff with Probe. 

caches. Obviously, these negative effects only occur when a 
client switches to a higher quality level due to a wrong 
interpretation of the throughput estimation. Therefore, we 
have used a probe method, which will be further described 
at the end of this section, with the previously mentioned 
exponential backoff [13]. Every time when the adaptation 
logic identifies a valuable switch up point, that is also 
permitted by the exponential backoff, we do a kind of 
double-check. The probe method will then identify the 
effective available bandwidth for the next segment.  

Algorithm 1 depicts our adaptation logic that returns the 
quality level for the next segment. The backoff could be 
adjusted to the network characteristics with the parameters α 
and β. In our experiments we set them to 1 for simplicity 
reasons. Additionally, it is possible to accelerate or 
decelerate the backoff process with the parameters γ and δ. 
Furthermore, this algorithm uses the previously mentioned 
probe method to identify the effective available bandwidth 
for the next segment. This means that every adaptation 
decision which leads to a switch up will be verified. 

In the following we will briefly describe the different 
techniques which can be used for the probing method to 
identify the effective available bandwidth: 
1. The server could provide a non-cacheable object. This 

object guarantees that the bandwidth to the server will be 
measured due to the fact that it will not be stored on any 
proxy. Hence, it can be estimated if enough bandwidth is 
available for a given quality. 

2. The client could simply download the first few bytes or a 
random byte range of the next segment to estimate the 
effective available bandwidth. This method works very 
well even for multiple clients since most proxies do not 
cache byte range requests. 

3. The proxy server could actively modify the MPD and 
remove the qualities that could not be served due to 
bandwidth limitations. 

4. The proxy server could offer a service that provides 
information about the effective available bandwidth. 

We have decided to use method 2 for our system as it does 
not require any changes on the network side. This is very 
important because one of the major advantages of DASH is 
that it could be deployed over the top of existing 
infrastructures and does not take care of the underlying 
network elements, i.e., proxies, caches and CDNs.  
 

5. METHODOLGY 
 
This section describes the methodology and metrics that 
have been used to evaluate the proxy effects. We have used 
Big Buck Bunny [14] for all experiments and the content 
has been encoded with x264 [15] with a GOP size of 48 
frames which is necessary to provide a uniform length of 2 
seconds for each segment. The length is restricted by 
Microsoft Smooth Streaming (MSS) which only supports 
segments with that length. 

We used the metrics from [16] for our experiments 
which are continuously captured. The first metric is the 
average bitrate that could be seen as the overall 
performance of the system at a particular test setup. The 
number of quality switches describes the variance of the 
session, where high values indicate very frequent switching 
which can lead to a decreased Quality of Experience (QoE) 
[12]. In addition to this the buffer level describes the current 
fill state of the buffer. We have measured it based on the 
download timestamp of the segments at the proxy and the 
presentation timestamp of each segment. Finally the number 
of unsmooth seconds metric describes the smoothness of the 
session and will immensely influence the QoE [5]. It could 
be derived from the buffer level metric and describes the 
time when the buffer is empty. Therefore, a high value of 
unsmooth seconds indicates a more jerky session. 
 

6. EXPERIMENTS 
 

The architecture of our evaluation network is depicted in 
Figure 2 and consists of five elements namely, HTTP 
Server, Proxy, Shaper, Client 1, and Client 2. The proxy and 
the shaper are both based on Ubuntu 10.04 and are used for 
all experiments with the same configuration. The shaper 
controls the bandwidth of the clients with the Linux traffic 
control system (tc). Furthermore, the hierarchical token 
bucket (htb) has been used which is a classfull queuing 
discipline (qdisc). The available bandwidth for both clients 
remains static over the whole evaluation, i.e., 1100 Kbps for 
client 1 and 2200 Kbps for client 2. The proxy is based on 
the Squid [17] caching proxy in transparent mode. 
Furthermore, it also limits the bandwidth to the shaper with 
tc and htb, i.e., the bottleneck bandwidth. All evaluations 
have been performed with the same content, i.e., Big Buck 
Bunny at 700 Kbps and 1300 Kbps. 

Please note that for this experiment the available 
bandwidth will not change during the whole streaming 
session. However, dynamic bandwidth conditions may 
influence the negative effects even more, e.g., the client 



makes an unfavorable adaptation decision when the network 
bandwidth drops. These evaluations under dynamic 
bandwidth conditions will be part of our further research. 
 
6.1. Microsoft Smooth Streaming 
 
For the evaluation of the Microsoft Smooth Streaming 
(MSS), the content server was based on Microsoft Windows 
Server 2008. The client was based on Windows 7 and has 
used Silverlight 5 and Microsoft Internet Explorer for the 
playback. 

Figure 3 shows the behavior of MSS for both clients. 
Figure 3 (a) shows the adaptation process, Figure 3 (b) 
shows the behavior of the proxy server and the cache hits 
for each request, and Figure 3 (c) shows the buffer fill 
status, which corresponds to the buffer level metric. 
Interestingly, MSS behaves exactly like assumed, i.e., Client 
2 is constantly switching between the 700 Kbps and 1300 
Kbps quality, due to the false interpretation of the available 
throughput, which leads to a high number of quality 
switches metric and thus a decreased QoE [12]. 
Furthermore, Figure 3 (b) shows that this switching is 
related to the proxy. Every time when Client 2 requests the 
700 Kbps quality it gets it directly from the proxy server 
which is indicated as a proxy hit in Figure 3 (b). 
Subsequently, Client 2 will measure an available bandwidth 
of 2200 Kbps for that segment as a consequence that this 

segment is cached at the proxy server. Afterwards, Client 2 
will switch to the 1300 Kbps quality due to the fact that it 
assumes that a bandwidth of 2200 Kbps is effectively 
available which implies that Client 2 would be able to 
stream the 1300 Kbps quality level smoothly. At this point 
the proxy has to maintain two connections to the content 
server, i.e., one for the 700 Kbps quality and one for the 
1300 Kbps quality. We are assuming that both connections 
share the bottleneck in a fair way, which means that each 
connection would be able to utilize 1100 Kbps. This 
assumption implies that it is obviously not possible to 
stream the 1300 Kbps quality with an effective bandwidth of 
1100 Kbps. Therefore, Client 2 will switch down to the 700 
Kbps quality as a consequence of the measured throughput 
of approximately 1100 Kbps. Now the proxy can close the 
second connection and the full bottleneck bandwidth could 
be utilized for the 700 Kbps quality. Afterwards Client 2 
will get the segments of the 700 Kbps quality from the 
proxy and the measured bandwidth will be 2200 Kbps so 
that the previously mentioned behavior occurs periodically 
during the whole session. Due to Figure 3 (a) and (b) where 
Client 2 switches subsequently after selecting the 700 Kbps 
quality and generating a proxy hit to the 1300 Kbps quality, 
our assumption could be seen as validated. 

 
6.2. MPEG-DASH 
 

This section describes the evaluation of our assumption on 
negative proxy effects with the MPEG-DASH client from 
[6] which is based on the well know VideoLan VLC media 
player. The content server for this experiment is based on 
Ubuntu 10.04 and the Apache Webserver. We have used the 
same content for this experiment, which we have already 
used for the MSS experiment, i.e., 700 Kbps and 1300 Kbps 
quality. However, due to the more efficient implementation 
(e.g., using persistent connections and pipelining) which is 
not used by MSS, we had to modify the network conditions 
from Figure 2, otherwise both clients were able to stream 

 
Figure 2. Experimental Setup 

 
Figure 3. Microsoft Smooth Streaming



the 700 Kbps and 1300 Kbps qualities smoothly in parallel. 
Therefore, we have decreased the bottleneck bandwidth to 
1700 Kbps and the connection between Client 1 and the 
proxy to 1000 Kbps, as well as the connection between the 
Client 2 and the proxy has been decreased to 1700 Kbps. 
The results of this evaluation are organized like the MSS 
experimental results and presented in Figure 4. Interestingly, 
the quality switching effect occurs much more frequently at 
Client 2 compared to MSS (cf. Figure 4 (a)). This is due to 
the more aggressive adaption process of their 
implementation. Additionally, Client 2 produces an 
unsmooth playback like shown at second 20 of Figure 4 (c). 
Overall, the system behaves nearly equal to MSS and also 
validates our assumption that the uncontrolled distribution 
of the media content could negatively influence streaming 
clients that do not take these effects into account. 
 
6.3. Fair Adaptation 
 
On top of the MPEG-DASH VLC plugin from [6] we have 
implemented our own fair adaptation logic thanks to its 

extensible design. The experimental setup, i.e., server and 
clients as well as the available bandwidths are the same like 
in the MPEG-DASH experiment of Section 6.2. 

Figure 5 is organized like the MSS and MPEG-DASH 
figures and depicts the evaluation of our fair adaptation 
logic. The main improvement of this logic is the probe 
method that has been described in Section 4.1. We have 
used the probe method in combination with an exponential 
backoff. In particular, every time when the adaptation logic 
identifies a switch up point due to throughput estimations 
and the probe method has shown that this was a false 
interpretation of the effective available throughput, we 
increase the distance to the next potential switch up point 
exponentially. This is needed due to the fact that the probing 
needs streaming bandwidth which will be wasted if every 
segment gets probed. 

The probe points are depicted with green vertical lines 
in Figure 5 (a) which also shows that the fair adaptation 
logic eliminates this frequent switching effect at Client 2 
which results in a significantly lower number of quality 
switches metric for this experiment. Furthermore, it 

 
Figure 5. Fair Adaptation

 
Figure 4. MPEG-DASH 



enhances the cache reuse performance shown in Figure 5 (b) 
and it decreases the used bottleneck bandwidth which is 
especially important for other applications that are using this 
bottleneck beside the two streaming applications. Moreover, 
the unsmoothness of Client 2 from the MPEG-DASH 
experiment has been avoided, i.e., the buffer in Figure 5 (c) 
does not reach zero and both clients are maintaining a more 
stable buffer. This is especially important when it comes to 
the dynamic case which is part of our further research. 
Currently, the bottleneck bandwidth stays the same over the 
whole experiment but dynamic bandwidth fluctuations could 
further increase the negative effects due to the fact that a 
false segment selection could occur at a point in time when 
the bottleneck bandwidth decreases which could lead to an 
unsmooth playback. 
 

7. CONCLUSION 
 

In this paper we have described negative effects that could 
occur when multiple DASH clients are competing for a 
bottleneck. Furthermore, we have evaluated our assumptions 
on these negative effects that are related to proxies with 
Microsoft Smooth Streaming and the MPEG-DASH 
implementation from [6]. Both evaluations have shown that 
our assumed negative effects, i.e., frequent quality switching 
and potentially jerky playback with a high number of 
unsmooth seconds are related to the proxy server and the 
false interpretation of the available throughput. Moreover, 
we have specified and evaluated our own adaptation logic 
which eliminates these negative effects and decreases the 
utilized bottleneck bandwidth with an enhanced cache reuse 
at the proxy server. Our future research comprises the 
evaluation of the other major industry solutions as well as 
the evaluation of these systems and our own fair adaptation 
logic under dynamic bandwidth conditions with more than 
two clients and competing non-DASH traffic. We assume 
that the negative effects will be increased in such a scenario. 
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