
A PROXY EFFECT ANALYIS AND FAIR ADATPATION ALGORITHM FOR MULTIPLE
COMPETING DYNAMIC ADAPTIVE STREAMING OVER HTTP CLIENTS

Christopher Mueller, Stefan Lederer, and Christian Timmerer

Multimedia Communication (MMC) Research Group
Institute of Information Technology (ITEC)

Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
Email: {firstname.lastname}@itec.aau.at

ABSTRACT

Multimedia streaming technologies based on the Hypertext
Transfer Protocol (HTTP) are very popular and used by
many content providers such as Netflix, Hulu, and Vudu.
Recently, ISO/IEC MPEG has ratified Dynamic Adaptive
Streaming over HTTP (DASH) which extends the
traditional HTTP streaming with an adaptive component
addressing the issue of varying bandwidth conditions that
users are facing in networks based on the Internet Protocol
(IP). Additionally, industry has already deployed several
solutions based on such an approach which simplifies large
scale deployment because the whole streaming logic is
located at the client. However, these features may introduce
drawbacks when multiple clients compete for a network
bottleneck due to the fact that the clients are not aware of
the network infrastructure such as proxies or other clients.
This paper identifies these negative effects and the
evaluation thereof using MPEG-DASH and Microsoft
Smooth Streaming. Furthermore, we propose a novel
adaptation algorithm introducing the concept of fairness
regarding a cluster of clients. In anticipation of the results
we can conclude that we achieve more efficient bottleneck
bandwidth utilization and less quality switches.

Index Terms—Dynamic Adaptive Streaming over
HTTP, DASH, Fair Adaptation, Proxy Cache, Multimedia

1. INTRODUCTION

Multimedia is nowadays ubiquitous in the Internet and many
Web applications are also using the Hypertext Transfer
Protocol (HTTP) for multimedia streaming by adopting
progressive download. However, there are certain
disadvantages when using HTTP for multimedia streaming.
In particular, this protocol has been initially designed for
best effort and not for real-time multimedia transport. A
major problem of HTTP streaming approaches adopting
progressive download is that it is not able to handle varying
bandwidth conditions of IP-based networks. Therefore,
ISO/IEC MPEG has recently ratified an advancement of that
basic HTTP streaming approach which is referred to as

Dynamic Adaptive Streaming over HTTP (DASH) [1]. In
comparison to the traditional HTTP streaming this approach
is able to handle the varying bandwidth conditions while
maintaining its advantages such as NAT/firewall traversal
and flexible deployment. Additionally, major industry
players including Microsoft [2], Apple [3], and Adobe [4]
have deployed their solutions and, interestingly, all are
based on this same principles. That is, the streaming logic is
located at the client and multiple versions of the content,
e.g., different resolution, bitrate, etc. have been segmented
and stored on legacy Web servers. While it is obvious that
this approach scales very well, it may introduce some new
drawbacks as a consequence that the streaming logic is
located at the client, i.e., clients are not aware of each other
and the network infrastructure such as proxy caches.

This paper concentrates on the negative effects
introduced when multiple clients are competing for a
bottleneck and how proxies are influencing this bandwidth
competition. As mentioned above, the clients request
individual portions of the content based on the available
bandwidth which is calculated using throughput estimations.
A consequence of this requesting scheme is that only some
parts of the content are stored on proxy servers, which are
intercepting the connection between the client and the
content server. This uncontrolled distribution of the content
influences the adaptation process that assumes that the
measured throughput is the throughput to the content server.
The impact of this falsified throughput estimation could be
tremendous and leads to a wrong adaptation decision which
may impact the Quality of Experience (QoE) at the client.

In anticipation of the results we can conclude that this
false interpretation of the throughput estimation introduces
unnecessary frequent quality switches and could produce an
unsmooth session which immensely decreases the QoE [5].
Furthermore, the bottleneck will be more stressed than
needed which could influence other applications.

The remainder of this paper is organized as follows.
Related work is described in Section 2 while Section 3
highlights potential scenarios where this effect could occur.
Our adaptation logic which handles such falsified
throughput estimations is described in Section 4. The
methodology of our experiments is described in Section 5

and the evaluation in Section 6. The paper is concluded with
Section 7.

2. RELATED WORK

Evensen et al. [7] has proposed a system that could use
multiple heterogeneous access networks. However, this
system is based on throughput estimations that do not take
the network infrastructure or other, competing clients into
account. Liu et al. [8] has used a smoothed HTTP
throughput for their rate adaptation algorithm that does not
consider the negative proxy effects or the locality of the
segments. Kuschnig et al. [9] has evaluated existing
algorithms in terms of quality using PSNR, however no
negative proxy effects have been considered. Houdaille et
al. [10] has shown that shaping of HTTP adaptive streams
could increase the user experience. However, their design
needs a network bandwidth shaper at each home but they do
not consider the proxy effects and the locality of the
segments. Mok et al. [11] has proposed a QoE-aware DASH
system which shows that users prefer a gradual quality
change. Their adaptation logic is based on that finding and
the measured throughput but like the others they do not take
the locality of the segments and the network infrastructure,
e.g., proxies and other clients into account.

3. DASH-BASED PROXY EFFECTS

This section describes problems that could occur during a
DASH session when multiple clients are competing for a
limited bottleneck bandwidth. The scenario depicted in
Figure 1 consists of a content server, a proxy, and two
clients that are competing for the bottleneck bandwidth, i.e.,
8 Mbps between the content server and the proxy. Client 1 is
connected over a 6 Mbps link with the proxy server and
Client 2 is connected over an 8 Mbps link with the proxy.
The content server hosts a DASH session with two quality
levels that will be consequently called base and
enhancement quality in this section. The base quality has a
bitrate of 5 Mbps and the enhancement quality has a bitrate
of 7 Mbps.

Due to the fact that the bandwidth of Client 1 is
restricted to 6 Mbps, it will only select segments of the base

quality during the whole streaming session. Assuming that
this client will start the streaming slightly before Client 2
implies that the base quality will be cached on the proxy.
Client 2 will start the streaming session and request the base
quality at the beginning to minimize the startup delay and to
fill its buffer as fast as possible. At this point the proxy
maintains one connection to the content server, which could
utilize the full available bandwidth of 8 Mbps (i.e., both
clients are using the same quality). Subsequently after Client
2 has stabilized its buffer, it will try to adapt to the maximal
available bandwidth due to the throughput that has been
measured on previous segments. Obviously, the measured
throughput at Client 2 is 8 Mbps because the segments of
the base quality which Client 2 is streaming at this point are
cached at the proxy server, due to the selection scheme of
Client 1. The consequence of this throughput estimation is
that Client 2 will switch to the enhancement quality, because
it assumes that there is enough bandwidth available to
stream this quality level in a smooth way. The problem is
now that the proxy has to maintain two connections to the
content server, i.e., one for the base quality and one for the
enhancement quality.

We are assuming that these two connections will be
shared more or less in a fair way, which means that each
connection could utilize 4 Mbps of the bottleneck
bandwidth. Obviously it is not possible to stream the base
quality smoothly with 4 Mbps, which means that this quality
switch at Client 2 will influence Client 1 and could produce
an unsmooth session at Client 1. Moreover the throughput at
Client 2 will collapse to 4 Mbps so that this client will
switch down to the base quality, which means that the proxy
will close the second connection and maintain only one
connection with 8 Mbps for the base quality. Afterwards the
base quality is cached at the proxy server, due to Client 1
and Client 2 will switch to the enhancement quality again.
This effect will occur over the whole streaming session and
therefore the clients are negatively influencing each other
without any changes in the network conditions. This will
decrease the QoE of both clients due to the frequent quality
switching [12] at Client 2 and potential unsmooth playback
at Client 1 [5].

4. FAIR ADAPTATION

Our fair adaptation scheme (FAS) aims to address the
problem identified in Section 3. Our first and probably
simplest approach to decrease the frequent switching and as
a consequence the negative effects, that could be caused due
to that switching, is an adaptation logic with an exponential
backoff. This approach decreases the number of switch up
points if a switch down occurs. But this technique does not
consider whether a bandwidth fluctuation is self-caused or
network caused. As described in Section 3, self-caused
bandwidth fluctuations, i.e., frequent quality switching, get
introduced because the adaptation logic does not consider
the uncontrolled distribution of segments over the proxy

Figure 1. DASH Proxy Scenario

if backoff > 0
backoff := backoff - γ

endif
quality_level := find (measured_bandwidth)
if quality_level > quality_last_segment
if backoff <= 0
if probe(quality_level)
count := 0

else
backoff := (int) α * e(β * count)

count := count + δ
quality_level := quality_last_segment

endelse
else
quality_level := quality_last_segment

endelse
endif
return quality_level

Algorithm 1. Exponential Backoff with Probe.

caches. Obviously, these negative effects only occur when a
client switches to a higher quality level due to a wrong
interpretation of the throughput estimation. Therefore, we
have used a probe method, which will be further described
at the end of this section, with the previously mentioned
exponential backoff [13]. Every time when the adaptation
logic identifies a valuable switch up point, that is also
permitted by the exponential backoff, we do a kind of
double-check. The probe method will then identify the
effective available bandwidth for the next segment.

Algorithm 1 depicts our adaptation logic that returns the
quality level for the next segment. The backoff could be
adjusted to the network characteristics with the parameters α
and β. In our experiments we set them to 1 for simplicity
reasons. Additionally, it is possible to accelerate or
decelerate the backoff process with the parameters γ and δ.
Furthermore, this algorithm uses the previously mentioned
probe method to identify the effective available bandwidth
for the next segment. This means that every adaptation
decision which leads to a switch up will be verified.

In the following we will briefly describe the different
techniques which can be used for the probing method to
identify the effective available bandwidth:
1. The server could provide a non-cacheable object. This

object guarantees that the bandwidth to the server will be
measured due to the fact that it will not be stored on any
proxy. Hence, it can be estimated if enough bandwidth is
available for a given quality.

2. The client could simply download the first few bytes or a
random byte range of the next segment to estimate the
effective available bandwidth. This method works very
well even for multiple clients since most proxies do not
cache byte range requests.

3. The proxy server could actively modify the MPD and
remove the qualities that could not be served due to
bandwidth limitations.

4. The proxy server could offer a service that provides
information about the effective available bandwidth.

We have decided to use method 2 for our system as it does
not require any changes on the network side. This is very
important because one of the major advantages of DASH is
that it could be deployed over the top of existing
infrastructures and does not take care of the underlying
network elements, i.e., proxies, caches and CDNs.

5. METHODOLGY

This section describes the methodology and metrics that
have been used to evaluate the proxy effects. We have used
Big Buck Bunny [14] for all experiments and the content
has been encoded with x264 [15] with a GOP size of 48
frames which is necessary to provide a uniform length of 2
seconds for each segment. The length is restricted by
Microsoft Smooth Streaming (MSS) which only supports
segments with that length.

We used the metrics from [16] for our experiments
which are continuously captured. The first metric is the
average bitrate that could be seen as the overall
performance of the system at a particular test setup. The
number of quality switches describes the variance of the
session, where high values indicate very frequent switching
which can lead to a decreased Quality of Experience (QoE)
[12]. In addition to this the buffer level describes the current
fill state of the buffer. We have measured it based on the
download timestamp of the segments at the proxy and the
presentation timestamp of each segment. Finally the number
of unsmooth seconds metric describes the smoothness of the
session and will immensely influence the QoE [5]. It could
be derived from the buffer level metric and describes the
time when the buffer is empty. Therefore, a high value of
unsmooth seconds indicates a more jerky session.

6. EXPERIMENTS

The architecture of our evaluation network is depicted in
Figure 2 and consists of five elements namely, HTTP
Server, Proxy, Shaper, Client 1, and Client 2. The proxy and
the shaper are both based on Ubuntu 10.04 and are used for
all experiments with the same configuration. The shaper
controls the bandwidth of the clients with the Linux traffic
control system (tc). Furthermore, the hierarchical token
bucket (htb) has been used which is a classfull queuing
discipline (qdisc). The available bandwidth for both clients
remains static over the whole evaluation, i.e., 1100 Kbps for
client 1 and 2200 Kbps for client 2. The proxy is based on
the Squid [17] caching proxy in transparent mode.
Furthermore, it also limits the bandwidth to the shaper with
tc and htb, i.e., the bottleneck bandwidth. All evaluations
have been performed with the same content, i.e., Big Buck
Bunny at 700 Kbps and 1300 Kbps.

Please note that for this experiment the available
bandwidth will not change during the whole streaming
session. However, dynamic bandwidth conditions may
influence the negative effects even more, e.g., the client

makes an unfavorable adaptation decision when the network
bandwidth drops. These evaluations under dynamic
bandwidth conditions will be part of our further research.

6.1. Microsoft Smooth Streaming

For the evaluation of the Microsoft Smooth Streaming
(MSS), the content server was based on Microsoft Windows
Server 2008. The client was based on Windows 7 and has
used Silverlight 5 and Microsoft Internet Explorer for the
playback.

Figure 3 shows the behavior of MSS for both clients.
Figure 3 (a) shows the adaptation process, Figure 3 (b)
shows the behavior of the proxy server and the cache hits
for each request, and Figure 3 (c) shows the buffer fill
status, which corresponds to the buffer level metric.
Interestingly, MSS behaves exactly like assumed, i.e., Client
2 is constantly switching between the 700 Kbps and 1300
Kbps quality, due to the false interpretation of the available
throughput, which leads to a high number of quality
switches metric and thus a decreased QoE [12].
Furthermore, Figure 3 (b) shows that this switching is
related to the proxy. Every time when Client 2 requests the
700 Kbps quality it gets it directly from the proxy server
which is indicated as a proxy hit in Figure 3 (b).
Subsequently, Client 2 will measure an available bandwidth
of 2200 Kbps for that segment as a consequence that this

segment is cached at the proxy server. Afterwards, Client 2
will switch to the 1300 Kbps quality due to the fact that it
assumes that a bandwidth of 2200 Kbps is effectively
available which implies that Client 2 would be able to
stream the 1300 Kbps quality level smoothly. At this point
the proxy has to maintain two connections to the content
server, i.e., one for the 700 Kbps quality and one for the
1300 Kbps quality. We are assuming that both connections
share the bottleneck in a fair way, which means that each
connection would be able to utilize 1100 Kbps. This
assumption implies that it is obviously not possible to
stream the 1300 Kbps quality with an effective bandwidth of
1100 Kbps. Therefore, Client 2 will switch down to the 700
Kbps quality as a consequence of the measured throughput
of approximately 1100 Kbps. Now the proxy can close the
second connection and the full bottleneck bandwidth could
be utilized for the 700 Kbps quality. Afterwards Client 2
will get the segments of the 700 Kbps quality from the
proxy and the measured bandwidth will be 2200 Kbps so
that the previously mentioned behavior occurs periodically
during the whole session. Due to Figure 3 (a) and (b) where
Client 2 switches subsequently after selecting the 700 Kbps
quality and generating a proxy hit to the 1300 Kbps quality,
our assumption could be seen as validated.

6.2. MPEG-DASH

This section describes the evaluation of our assumption on
negative proxy effects with the MPEG-DASH client from
[6] which is based on the well know VideoLan VLC media
player. The content server for this experiment is based on
Ubuntu 10.04 and the Apache Webserver. We have used the
same content for this experiment, which we have already
used for the MSS experiment, i.e., 700 Kbps and 1300 Kbps
quality. However, due to the more efficient implementation
(e.g., using persistent connections and pipelining) which is
not used by MSS, we had to modify the network conditions
from Figure 2, otherwise both clients were able to stream

Figure 2. Experimental Setup

Figure 3. Microsoft Smooth Streaming

the 700 Kbps and 1300 Kbps qualities smoothly in parallel.
Therefore, we have decreased the bottleneck bandwidth to
1700 Kbps and the connection between Client 1 and the
proxy to 1000 Kbps, as well as the connection between the
Client 2 and the proxy has been decreased to 1700 Kbps.
The results of this evaluation are organized like the MSS
experimental results and presented in Figure 4. Interestingly,
the quality switching effect occurs much more frequently at
Client 2 compared to MSS (cf. Figure 4 (a)). This is due to
the more aggressive adaption process of their
implementation. Additionally, Client 2 produces an
unsmooth playback like shown at second 20 of Figure 4 (c).
Overall, the system behaves nearly equal to MSS and also
validates our assumption that the uncontrolled distribution
of the media content could negatively influence streaming
clients that do not take these effects into account.

6.3. Fair Adaptation

On top of the MPEG-DASH VLC plugin from [6] we have
implemented our own fair adaptation logic thanks to its

extensible design. The experimental setup, i.e., server and
clients as well as the available bandwidths are the same like
in the MPEG-DASH experiment of Section 6.2.

Figure 5 is organized like the MSS and MPEG-DASH
figures and depicts the evaluation of our fair adaptation
logic. The main improvement of this logic is the probe
method that has been described in Section 4.1. We have
used the probe method in combination with an exponential
backoff. In particular, every time when the adaptation logic
identifies a switch up point due to throughput estimations
and the probe method has shown that this was a false
interpretation of the effective available throughput, we
increase the distance to the next potential switch up point
exponentially. This is needed due to the fact that the probing
needs streaming bandwidth which will be wasted if every
segment gets probed.

The probe points are depicted with green vertical lines
in Figure 5 (a) which also shows that the fair adaptation
logic eliminates this frequent switching effect at Client 2
which results in a significantly lower number of quality
switches metric for this experiment. Furthermore, it

Figure 5. Fair Adaptation

Figure 4. MPEG-DASH

enhances the cache reuse performance shown in Figure 5 (b)
and it decreases the used bottleneck bandwidth which is
especially important for other applications that are using this
bottleneck beside the two streaming applications. Moreover,
the unsmoothness of Client 2 from the MPEG-DASH
experiment has been avoided, i.e., the buffer in Figure 5 (c)
does not reach zero and both clients are maintaining a more
stable buffer. This is especially important when it comes to
the dynamic case which is part of our further research.
Currently, the bottleneck bandwidth stays the same over the
whole experiment but dynamic bandwidth fluctuations could
further increase the negative effects due to the fact that a
false segment selection could occur at a point in time when
the bottleneck bandwidth decreases which could lead to an
unsmooth playback.

7. CONCLUSION

In this paper we have described negative effects that could
occur when multiple DASH clients are competing for a
bottleneck. Furthermore, we have evaluated our assumptions
on these negative effects that are related to proxies with
Microsoft Smooth Streaming and the MPEG-DASH
implementation from [6]. Both evaluations have shown that
our assumed negative effects, i.e., frequent quality switching
and potentially jerky playback with a high number of
unsmooth seconds are related to the proxy server and the
false interpretation of the available throughput. Moreover,
we have specified and evaluated our own adaptation logic
which eliminates these negative effects and decreases the
utilized bottleneck bandwidth with an enhanced cache reuse
at the proxy server. Our future research comprises the
evaluation of the other major industry solutions as well as
the evaluation of these systems and our own fair adaptation
logic under dynamic bandwidth conditions with more than
two clients and competing non-DASH traffic. We assume
that the negative effects will be increased in such a scenario.

8. ACKNOWLEDGMENTS

This work was supported in part by the EC in the context of
the ALICANTE (FP7-ICT-248652), SocialSensor (FP7-
ICT-287975) projects and partly performed in the Lakeside
Labs research cluster at AAU.

8. REFERENCES

[1] T. Stockhammer, “Dynamic Adaptive Streaming over

HTTP – Standards and Design Principles”, ACM
Multimedia Systems, San Jose, CA, USA, Feb. 2011.

[2] A. Zambelli, “IIS Smooth Streaming Technical
Overview,” Technical Report, Microsoft Corporation,
March 2009.

[3] R. Pantos et al., “HTTP Live Streaming,” Draft Pantos
HTTP Live Streaming 07, Internet Engineering Task
Force, Sep. 30, 2011.

[4] Adobe HTTP Dynamic Streaming,
http://www.adobe.com/products/httpdynamicstreaming/
(last access: Apr., 2012).

[5] T. Hossfeld et al., “Quantification of YouTube QoE via
Crowdsourcing”, In Proceedings of IEEE International
Symposium on Multimedia (ISM) 2011, pp.494-499,
2011.

[6] C. Müller, C. Timmerer, “A VLC Media Player Plugin
enabling Dynamic Adaptive Streaming over HTTP,” In
Proceedings of the ACM Multimedia 2011, Scottsdale,
Arizona, Nov. 2011.

[7] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F.
Hasen, P. Engelstad, “Improving the Performance of
Quality-Adaptive Video Streaming over Multiple
Heterogeneous Access Networks”, ACM Multimedia
Systems 2011, San Jose, CA, USA, Feb. 2011.

[8] C. Liu, I. Bouazizi, M. Gabbouj, “Rate Adaptation for
Adaptive HTTP Streaming”, ACM Multimedia Systems
2011, San Jose, CA, USA, Feb. 2011.

[9] R. Kuschnig, I. Kofler, H. Hellwagner, “An Evaluation
of TCP-based Rate-control Algorithms for Adaptive
Internet Streaming of H.264/SVC”, ACM SIGMM
Conference on Multimedia Systems (MMSys 2010),
ACM, New York, NY, USA, 2010.

[10] R. Houdaille, S. Gouache, “Shaping HTTP adaptive
streams for a better user experience”, ACM Multimedia
Systems 2012, Chapel Hill, North Carolina, USA, Feb.
2012.

[11] R. K. P. Mok, X. Luo, E. W. W. Chan, R. K. C. Chang,
“QDASH: A QoE-aware DASH system”, ACM
Multimedia Systems 2012, Chapel Hill, North Carolina,
USA, Feb. 2012.

[12] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, P. Halvorsen,
“Spatial Flicker Effect in Video Scaling”, Proceedings
of the third international Workshop on Quality of
Multimedia Experience (QOMEX’11), Mechelen,
Belgium, Sept. 2011, pp. 55-60.

[13] B. J. Kwak, N. O. Song, L. E. Miller, “Performance
Analysis of Exponential Backoff”, IEEE Transactions
on Networks, vol. 13, no. 2, Apr. 2005.

[14] Big Buck Bunny Movie, http://www.bigbuckbunny.org
(last access: Apr. 2012).

[15] x264, http://www.videolan.org/developers/x264.html,
(last access: Apr. 2012).

[16] C. Müller, S. Lederer, C. Timmerer, “An Evaluation of
Dynamic Adaptive Streaming over HTTP in Vehicular
Environments,” In Proceedings of the 4th Workshop on
Mobile Video (MoVid12), Feb. 2012.

[17] Squid, http://www.squid-cache.org/, (last access: Apr.
2012)

