
Towards Peer-Assisted
Dynamic Adaptive Streaming over HTTP

Stefan Lederer, Christopher Müller, and Christian Timmerer
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt am Wörthersee, Austria

+43 (0) 463 2700 3600
{firstname.lastname}@itec.aau.at

Abstract— This paper presents our peer-assisted Dynamic
Adaptive Streaming over HTTP (pDASH) proposal as well as an
evaluation based on our DASH simulation environment in
comparison to conventional approaches, i.e., non-peer-assisted
DASH. Our approach maintains the standard conformance to
MPEG-DASH enabling an easy and straightforward way of
enhancing a streaming system with peer assistance to reduce the
bandwidth and infrastructure requirements of the
content/service provider. In anticipation of the results our system
achieves a bandwidth reduction of Content Distribution
Networks (CDN) and as a consequence the corresponding
infrastructure costs of the content/service providers by up to
25% by leveraging the upstream capacity of neighboring peers.
Furthermore, the cost savings have been evaluated using a cost
model that is based on the current Amazon CloudFront pricing
scheme. Furthermore, we have also evaluated the performance
impact that various combinations of quality levels of the content
could have in a peer-assisted streaming system as well as the
client behavior in such an environment.

Keywords- Peer-Assisted Streaming, MPEG-DASH, Dynamic
Adaptive Streaming over HTTP, CDN Bandwidth Reduction,
Peer-to-Peer Streaming.

I. INTRODUCTION
Dynamic Adaptive Streaming over HTTP (DASH) [1]

comprises standardization efforts within ISO/IEC MPEG and
3GPP. In particular, the MPEG-DASH standard has been
ratified recently [2]. Additionally, also the industry has
previously deployed various solutions in this area, i.e.,
Microsoft Smooth Streaming [3], Adobe Dynamic HTTP
Streaming [4] and Apple HTTP Live Streaming [5].

However, all of these systems follow nearly the same
architecture which means that they adopt a chunk-based HTTP
streaming approach. This approach is simple but effective as
the media will be encoded at different bitrates, resolutions, etc.
and will then be chopped into segments that could be
individually accessed by the client via HTTP requests. A
version of the media content with a specific characteristic (e.g.,
bitrate, resolution) is referred to as representation. These
representations which consist of segments, i.e., the chopped
media content, will be transferred on top of the current Internet
infrastructure following a client/server-based paradigm. In
comparison to traditional HTTP streaming (i.e., progressive
download of a single file) this approach dynamically adapts the
stream to the users' bandwidth requirements or capabilities also
during the streaming session. Due to the fact the logic of such
systems is located at the client it also scales very well as

infrastructure wise it is possible to leverage existing HTTP-
based content delivery networks (CDN) and proxy cache
infrastructures. The costs of those are significant lower than
dedicated streaming servers like the Flash Media Server or
other competing products and may be a good reason for
providers to switch to adaptive streaming over HTTP.

In practice, however, the current traffic of those services
comprises approximately 50% of the U.S. peak traffic and the
future traffic of such systems shown in [1] that will be
significantly higher than the current one. Hence, content and
network providers will appreciate improvements that could
reduce the server load and downstream traffic.

Interestingly, none of these commercial HTTP streaming
deployments leverage the upload bandwidth of the clients
consuming their streams. In our approach we will exploit this
fact, i.e., all clients act like a peer in a peer-to-peer (P2P)
system which means that they could download media content
from other clients that actually consume the same stream or
from the server. Thus, the P2P traffic could be seen as
assistance for the conventional client/server-based download
scheme. As the concept of peer-assisted streaming has been
presented in the past (cf. Section II), the actual novelty of this
paper is the integration of peer-assisted streaming into MPEG-
DASH and evaluation thereof without compromising the
standard. This approach fits very well, because in DASH the
content has been already separated into segments to support
adaptive bitstream switching during the session. Additionally,
the media presentation description (MPD) describing all these
segments is used as basis for additional information about
neighboring peers. In doing so the standard conformance of
DASH is maintained as well as all benefits of the system like
the possibility to leverage HTTP-based infrastructures. In the
following we adopt the term pDASH when referred to our
peer-assisted DASH approach.

The remainder of this paper is organized as follows. Section
II describes related work and the details of pDASH are
presented in Section III. The simulation environment is
described in Section IV followed by the results of our
experiments in Section V. Finally, Section VI provides
conclusions and points out some future work.

II. RELATED WORK
The online music streaming service Spotify is a well proven

example for a peer-assisted streaming system with practical
importance. As shown in [8] and [9] only 8% of the played
music is streamed from Spotify servers, the rest is coming from

This work was supported in part by the EC in the context of the ALICANTE
(FP7-ICT-248652) and SocialSensor (FP7-ICT-287975) projects.

local buffers and other peers, a fact which has a significant
impact on the companys' infrastructure costs. This cost
reduction is also one main reason why it is possibly for Spotify
to offer their service at relatively low fees. In comparison to
other providers with the additional use of advertisements in
their streams, they are even able to offer a free service to their
customers. Similar to our pDASH system, Spotify does not
maintain a P2P overlay network for, e.g., search, because in
their opinion, this would introduce too much overhead.
Considering the high churn rate of this audio streaming use
case, the real-time requirements and the low upload resources
of the clients, it may be a good compromise for keeping this
system as simple as possible by the usage of a centralized
approach with supporting P2P traffic rather than a
decentralized P2P overlay [10].

Another commercial peer-assisted streaming framework is
Adobe Cirrus [11] which is implemented in Adobe Flash
Player since version 10.1. However, it is disabled by default
and needs an explicit user action to enable it. Although Cirrus
is mostly applied in combination with Adobe HTTP Dynamic
Streaming it is based on Adobes’ Real Time Media Flow
Protocol (RTMFP) which uses UDP as transport layer and
therefore introduces the know UDP specific problems like
unreliable transfer and NAT traversal issues. In contrast to
Spotify it uses a distributed hash table for searching the needed
segments.

Furthermore, also in research there is much literature about
peer-assisted video streaming but here we want to especially
emphasize the work of [6] and [7] which are investigating the
performance and boundaries for live and on demand streaming
use cases. However, these papers focus on a more general
investigation of peer-assisted streaming whereas our approach
focuses on the integration of peer-assisted streaming into
DASH and the evaluation thereof.

III. PDASH: PEER-ASSISTED DASH
DASH content comprises fragmented segments described

in a corresponding media presentation description (MPD) to
enable adaptive HTTP streaming. However, this is also the
case in several peer-to-peer based file sharing and video
streaming approaches. The challenge within P2P-based video
streaming is that the majority of users have an asymmetric
Internet connection with a significant lower upload than
download bandwidth, e.g., 8-16 Mbit/s download vs. 1-2
Mbit/s upload bandwidth. That is, while consuming a HD
video stream one is not able to share the same amount of data
received to other peers and, thus, it is not possible to guarantee
a smooth playback at best quality for all peers.

As a good compromise between conventional client-server
and distributed P2P systems, peer-assisted streaming seems to
be a promising candidate. In those systems the client-server
download is supported by downloading files or parts thereof
from other peers which already have downloaded the content in
the past. First commercial streaming services like the audio
streaming service Spotify already use this architecture
successfully, maintaining significant reductions in
infrastructure and bandwidth needs as well as still providing
the same quality of service (QoS) [8].

<MPD>
 <BaseURL>
 http://www.cdn.com/tracker.php?file=
 </BaseURL>

 <Period>
 <AdaptationSet bitstreamSwitching="true">

 <Representation bandwidth="2000000"....>
 <BaseURL>http://client1-IP/example</BaseURL>
 <BaseURL>http://client2-IP/example</BaseURL>
 <SegmentList duration="4">
 <SegmentURL media="segment1.mp4">
 </SegmentList>
 </Representation>

 <Representation bandwidth="4000000"....
 <BaseURL>http://client1-IP/example</BaseURL>
 <!-- further base urls and Segments -->
 </Representation>

 </AdaptationSet>
 </Period>

 <Period>
 <AdaptationSet bitstreamSwitching="true">
 <Representation bandwidth="2000000"....
 <BaseURL>http://client2-IP/example</BaseURL>
 <SegmentList duration="4">
 <SegmentURL media="segment2.mp4">
 </SegmentList>
 </Representation>
 <!-- further representations -->
 </AdaptationSet>
 </Period>
 <!-- further periods -->
</MPD>

Listing 1: Simplified peer-assisted DASH MPD.
In our approach of pDASH we want to show an easy and

straightforward way of using DASH as basis for a peer-assisted
streaming system for high quality Video on Demand (VoD)
services. Hence, an important requirement is to allow only
DASH-compliant communication mechanisms between the
client and the server as well as among the other clients, i.e.,
peers. Therefore, the MPD was modified to include the
required information about peers having already downloaded
some other parts of the currently consumed content. This can
be achieved by using one period per segment and adding
additional BaseURLs to the corresponding representations.
Please note that the resulting MPD (comprising one-segment
periods with multiple BaseURLs per representation) is fully
compatible with the standard [2]. A simplified example of such
a fully DASH-compatible MPD enabling peer-assisted
streaming is shown in Listing 1. The client has the choice of
downloading a segment directly from the CDN, with the URL
set in the BaseURL on MPD level, or it could also choose the
option to download the segments or parts thereof from another
client by using the BaseURLs that have been provided on
representation level.

A. Peer-Assisted DASH Client
The functionality on the client to enable pDASH is as

follows. Due to the fact that we use the MPD as reference to
indicate the location of segments that have already been
downloaded by other peers, we do not have to maintain any
overlay network or distributed hash table [10] for searching
segments. The consequence of this simple but effective design

is that we only need three modifications described in the
following.

First, every DASH client that participates as a peer needs a
local HTTP Web server which handles the HTTP requests from
other peers. Considering the limited upload capacity of Internet
connections it makes sense to split up those requests for a
segment in several smaller requests for different parts of the
segment and send those requests to different peers. In doing so
the traffic is distributed more evenly over several peers as well
as the possibility of getting at least some parts of the segment
from other peers is increased. In our evaluation we have split
up the file into eight parts that will be consistently called
chunks in this paper. We choose eight chunks because typically
the ratio between down- and upload bandwidth of home
Internet connections is eight to one. On the other hand, clients
have to limit the number of incoming connections in order to
guarantee a minimum upload bandwidth to individual
requesting peers (e.g., four incoming connections have proven
as a good empirical heuristic, however this needs further
evaluations in future work to find the optimum). If the amount
of concurrent incoming connections reaches the maximum, all
other incoming requests will be discarded until one of the
currently active transfers is finished.

The second modification concerns the download logic as
well as the stream switching algorithm to handle the
simultaneous download of chunks from different peers. In
doing so we decided to use a rather simple adaption logic to
reduce the system complexity and side effects to the peer
connections. After session initiation, and also in case of low
buffer, the client chooses the representation with a bitrate of
50% of the clients' available bandwidth to reach a minimum
buffer level, i.e., a stable buffer state. Subsequently, the
representations are selected based on the maximum available
bandwidth. This adaption process is described as follows:

𝑚𝑎𝑥𝑏𝑤(𝑠𝑖) = �𝑏𝑤
(𝑠𝑖−1) ∗ 0.5 𝑖𝑓 0.0 ≤ 𝑏𝑙𝑖 < 0.3

𝑏𝑤(𝑠𝑖−1) 𝑖𝑓 0.3 ≤ 𝑏𝑙𝑖

𝑖 ∈ [1,𝑁] … 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥
𝑏𝑙𝑖 … 𝐵𝑢𝑓𝑓𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖
𝑏𝑤(𝑠𝑖) …𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑𝑡ℎ 𝑤ℎ𝑖𝑐ℎ
 𝑤𝑎𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖
𝑚𝑎𝑥𝑏𝑤(𝑠𝑖) …𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖

Additionally, the ability of the client to download chunks
from other peers is restricted by the current buffer level and not
enabled by default. The download from other peers is possible
if the buffer fill level is higher than 50% and will be disabled if
it drops below 30%. This is necessary to prevent potential stalls
in playback and guarantee a smooth playback. The logic will
be described in the following.

𝑝𝑒𝑒𝑟𝐴𝑠𝑠𝑖𝑠𝑡 = �𝑡𝑟𝑢𝑒 𝑖𝑓 𝑏𝑙𝑖 > 0.5
𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑏𝑙𝑖 < 0.3

The peer-assisted download algorithm works by always
handling two segments in parallel, one is defined as peer-
segment and the other one is defined as server-segment. At the
beginning, the algorithm tries to download the peer-segment
from other peers described in the MPD. For this purpose, it is
split up into a given number of chunks, eight in the evaluations'

case as described previously. Each of those chunks is requested
randomly from one of the other peers using HTTP byte range
requests [12]. Note that the requests to other peers are made in
a rather optimistic way, i.e., they will be accepted only if the
other peer has not yet reached its limit for incoming
connections. Otherwise, the other peer discards it and the
download logic will mark the associated chunks of this request
as unsuccessful. Furthermore, the accepted requests for chunks
have a time limit of maximum one segment length to be
finished, otherwise they will be aborted and marked as
unsuccessful also. If requests are successful, the associated
chunks do not need to be downloaded from the server anymore,
and, thus, they will be marked as downloaded. After reaching
the time limit, all missing chunk requests are combined in the
server-segment and requested from the Web server by the
usage of a combined HTTP byte range request, which
guarantees a smooth playback.

Finally, the third aspect for the peer-assisted DASH client
is the size of the local cache (buffer) that influences directly the
amount of different segments which the peer is able to serve.
Obviously the buffer size is highly related to the P2P traffic,
i.e., a bigger buffer will increase the P2P traffic and therefore it
will reduce the server load and infrastructure costs. In our
proposal the cache compromises all downloaded segments of
the current video stream. Even bigger caches are maintained by
commercial systems like Spotify, which uses up to 10 Gbytes
[8] at each client. In the case of our video streaming use case
this would be at least enough for one or two HD movies. The
cache becomes especially interesting when one considers VoD
systems based on set-top boxes. Those boxes are used for
selected on-demand content but they are often just an
additional media source and, therefore, they are idle if the user
watches conventional broadcast television services. Due to
those idle times, such devices are perfect for serving their
cached content to other peers and, as a consequence,
supporting the peer-assisted streaming system with additional
upload capacity.

B. HTTP Web Server and Segment-tracker
For pDASH we implemented a central segment tracker in

addition to the HTTP Web server used for providing the
segments. In our implementation we used simple PHP scripts
which can also run on such HTTP Web servers. The aim of the
tracker is to monitor the segment requests of each client
together with its Internet Protocol (IP) address and a
timestamp, which can be stored in a file or a database (MySQL
in our implementation). The integration of such a segment-
tracker in DASH is rather simple because it can be placed in
the BaseURL on MPD level shown in Listing 1 by the URL
http://www.cdn.com/tracker.php?file=. In doing so each segment
request to the Web server is processed via this tracker which
logs the request and responds with the requested segment.

In addition to the tracker, the MPD generator – also
implemented using PHP – uses the segment requests monitored
by the segment tracker for upcoming MPD requests and
integrates all clients having segments, which are part of the
requested content, to the generated MPD. In doing so the
resulting MPD is enhanced by additional BaseURLs on the
representation level, which represent other peers having those

segments in their cache as shown in Listing 1. For the
integration of a peer in the MPD it is important to maintain a
certain time window describing the maximum time allowed to
be passed since the segment was downloaded. This helps the
MPD generator to incorporate peers only that are still online as
well as to keep the MPD size low. For example, it does not
make sense to include a peer into the MPD which has
downloaded a segment several days ago. Another important
aspect to consider is the size of the generated MPD which can
get relatively big when integrating many BaseURLs of peers
having relevant segments. Therefore, we make use of ZIP
compression of the response message and reduces the MPDs to
5% and less of their original size. Note that this is supported by
all major HTTP servers and also compliant to MPEG-DASH.

When considering VoD platforms serving a huge number
of concurrent users it becomes apparent that it does not make
sense to integrate all possible clients within the MPD.
Therefore, we suggest making use of clusters of clients with
approximately the same bandwidth characteristics where only
the clients within those groups are considered in the MPD
generation. Based on the segment request log produced by the
segment tracker this clustering can be done, e.g. by building
clusters of clients downloading the same representation of a
movie. This reduces the maximum size of the MPD and limits
the known peers of a client to a manageable amount allowing
for the use of persistent connections as defined in HTTP 1.1
[12] or bandwidth statistics for already known peers in further
steps of improving the system.

IV. SIMULATION ENVIRONMENT
For the evaluation of our system we decided to build a

simulation based on OMNeT++ 4.2 [13] in order to test our
pDASH with an arbitrary number of clients having different
characteristics. In particular, we used the OMNeT++-based
INET framework [14] as basis for our implementation which
provides the full TCP/IP stack and network components needed
for a realistic simulation. Based on this we implemented a
DASH client as well as a HTTP Web server with segment
tracker functionality using parts of the HTTPTools framework
[15] and parts of our DASH VLC plugin presented in [16].

Our test network shown in Figure 1 consists of the central
HTTP Web server including the segment tracker functionality,
a network representing the Internet and 35 clients. The server is
connected to the network via a 1 Gbit/s connection while the
clients are connected with different down and upload
bandwidths. For our simulation we assumed 50% are using a
DSL connection with 8 Mbit/s download and 1 Mbit/s upload
bandwidth, 30% are using a faster connection with 16 Mbit/s
download/2 Mbit/s upload bandwidth, and 20% use a
symmetric connection with 16 Mbit/s. The simulation starts
after a 15 second delay which is used to prevent the simulation
from any startup configuration influences with the first client
starting to request the MPD from the server. The clients are
starting their request as follows:

• 8/1 Mbit/s clients: Starting at second 15 followed by the
next one at second 20, adding another client every 10
seconds until the last one at second 290.

• 16/2 Mbit/s clients: Starting at second 22, adding another
client every 20 seconds until the last one at second 202.

• 16/16 Mbit/s clients: Starting at second 17, adding other
clients every 30 seconds until the last one at second 137.

Based on this client arrival scheme we evaluated the first 5
minutes of the simulation which shows best the characteristics
of the peer-assisted streaming.

For our simulation we used the Red Bull Playstreets
sequence form our DASH dataset in [17] and reduced the
amount of representations to nine as shown in Table 1.
However, only representations greater than 1 Mbit/s will be
important for the simulation because the lower ones are not
used any more after the initial bandwidth measurement, which
is done with the first segment of the lowest bitrate
representation. We used the version with a segment length of
four seconds, which has several reasons. Our OMNeT++-based
implementation uses non-persistent connections which need
longer segments lengths as shown in our previous evaluation
[17]. In contrast to this longer segment lengths led to bigger
peer request for chunks. Such bigger requests led to longer
utilization periods of the peers' upload bandwidth and this may
influence the download throughput of those peers. Hence, we
decided to use the four second segment length version as a
good compromise.

Figure 1: Simulation network with 35 clients.

Table 1: Representations of the simulation content.

Bitrate Resolution
101 kbit/s. 320x240
201 kbit/s. 480x360
395 kbit/s. 480x360
700 kbit/s. 854x480
1172 kbit/s. 853x480
1992 kbit/s. 1280x720
2995 kbit/s. 1920x1080
3992 kbit/s. 1920x1080
4979 kbit/s. 1920x1080
5936 kbit/s. 1920x1080

V. EVALUATION RESULTS
We performed two types of simulations which differ by the

quality limits in terms of bitrate of the used representations. We
analyzed the utilized server bandwidth with and without
activated peer assistance to show the bandwidth reduction on
the server side as shown in Figure 2 for simulation one and
Figure 3 for simulation two, which will be described in the
following. Additionally, we analyzed the client behavior by
investigating the amount of data transferred from other peers
during the simulation, which is shown for a representative
client of simulation two depicted in Figure 4. These
simulations as well as the used representations and their results
will be described in detail in the following.

In our first simulation we used all representations shown in
Table 1. Due to this, the clients with 16 Mbit/s downlink are
able to use representations with higher bitrates than those
clients using the 8 Mbit/s downlink. Therefore, the 16 Mbit/s
clients download different segments than the 8 Mbit/s ones
and, thus, are not useful for each other. As shown in Figure 2
the usage of peer assistance reduces the server bandwidth by
about 15% at the end of this simulation scenario. As one can
see, the peer-assisted streaming starts to reduce the server
bandwidth effectively after approximately 70 seconds. This is
the case because earlier in the simulation there are not enough
clients with the demanded segments available to leverage their
upload capacity. The benefit of peer-assisted DASH increases
over the time up to a bandwidth saving of 11 Mbit/s at the end
of the simulation.

As already mentioned the reduction of bandwidth and
especially peak bandwidth which is needed in times of high
system usage as well as the amount of transferred data in
general influences the infrastructure costs of a VoD service. To
provide an example for such savings we evaluated them based
on the saved total traffic of our simulation use cases on a per
year basis using the pricing model of Amazon CloudFront [18].
Of course, this is only one part of the costs of such a system
and does not cover the costs for guaranteed bandwidth
capabilities or storage, maintenance, etc., but those are mainly
service dependent and their costs are rather more on an
individual basis than on a public pricing scheme. Although, we
think that the evaluated model provides a good example how

the benefits from our peer-assisted streaming system can
significantly influence relevant business areas.

Based on the pricing scheme of Amazon CloudFront the
bandwidth savings achieved with pDASH would correspond to
a cost reduction of 15%. For our simulation scenario producing
costs of US$ 4.14 per hour this would lead to cost reductions of
US$ 0.62 per hour. This looks a little bit less but if we take this
example further under the assumption of a weekly average of
35 hours streaming at our final bandwidth of about 78 Mbit/s
this would reduce the total costs per year by US$ 1,135 based
on total costs of US$ 7,530. This has already a high impact on
the cost side. However, other reductions for reduced peek
bandwidth capabilities on the CDN side etc. are not even
included.

Several VoD providers do not offer high bitrates for their
content, especially those who do not charge their users like,
e.g., Hulu [19]. This is the reason why we made simulations
where we limit the maximum bitrate of our content. So we
recuded the maximum bitrate of the content in our second
simulation to 1400 kbit/s, which is a downloadtable bitrate
even for the peers with the slowest Internet connection in our
evaluation network. At the end of the simulation, this results in
a server-side bandwidth recuction of about 25 % compared to
the same scenario without peer assistance, which is an
improvement to the previous simulation. This significant
increase in the percentage of the bandwidth recution results
from to the lower content bitrate which is easier to transfer
between the peers because of the lower bandwidth
requirements for it. Furthermore all clients are limited to the
same maximum bitrate representation, which means that all
clients have segments of the same maximum representation in
their cache, which results in a better distribution of the
segments among the peers.

Based our simulations we also investigated a representative
client with 8 Mbit/s download bandwidth showing the
download traffic of the server and peer-to-peer traffic. The
client is taken from our second simulation with a representation
bitrate limit of maximum 1400 kbit/s. The client shown in
Figure 4 starts at second 214 of the simulation and shows the
expected behaviour which is downloading as much as it get
from other peers. This peer traffic changes a lot over time

Figure 2: Simulation with 6 Mbit/s representations limit.

Figure 3: Simulation with 1400 Kbit/s representation limit.

depending on the selection of the neighbor peers which is at the
moment based on a random choice out of the number of peers
offering the desired segment. As a fallback the client can
always rely on the high bandwidth of the origin server to
maintian a smooth playback. At the beginning the client starts
to fill its buffer by downloading lower representation from the
Web server. After a few seconds the buffer level is high
enough to start to download also from other peers (cf. around
second 20 in Figure 4). Large parts of the segments are
downloaded from other peers during the rest of the session.
After second 65 the P2P traffic contributes for some segments
even more than 50% to the total download traffic of the client
and, thus, reduces the amout of data transferred from the sever
noticeably.

VI. CONCLUSION AND FUTURE WORK
In this paper we have presented an integrating of peer-

assisted streaming into the recently ratified MPEG-DASH
standard without compromising its merits such as the
exploitation of existing infrastructures. Our simulation results
demonstrated that we are able to reduce the server bandwidth
up to 25% thanks to the peer assistance. Additionally, we have
shown that these bandwidth reductions could be directly
converted to infrastructure costs which gives peer assistance in
video streaming a significant business impact.

Future work may include more sophisticated peer selection
algorithms to achieve a better load distribution between the
available upload capacities of the different peers, e.g. as in
[20]. Furthermore, a theoretical analysis of the system
performance as well as its boundaries will be part of future
work in this area. Finally, the regular update of the MPD
during streaming may lead to a better utilization of other peers.
Furthermore, the download logic could be extended to handle
more chunks in parallel than the two which are used in our
implementation. This may give the peer requests more time for
transmitting the subsegments and therefore reduce the
overhead caused by aborted transmission due to delayed
transfer.

REFERENCES

[1] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP –
Design Principles and Standards”, In Proceedings of the second
annual ACM conference on Multimedia systems (MMSys11),
ACM, New York, NY, USA, 2011

[2] ISO/IEC DIS 23009-1.2, “Information technology — Dynamic
adaptive streaming over HTTP (DASH) — Part 1: Media
presentation description and segment formats”

[3] Microsoft Smooth Streaming,
http://www.iis.net/download/smoothstreaming (last access: Dec.
2011).

[4] Adobe HTTP Dynamic Streaming,
http://help.adobe.com/en_US/HTTPStreaming/1.0/Using/index.html
, (last access: Dec. 2011)

[5] R. Pantos, W. May, “HTTP Live Streaming, IETF draft” (Jun. 2010)
http://tools.ietf.org/html/draft-pantos-http-live-streaming-04 (last
access: Dec. 2011).

[6] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, M. Chiang,
“Performance bounds for peer-assisted live streaming”, In the
Proceedings of the 2008 ACM SIGMETRICSN, New York, USA,
2008

[7] S. Lin, J. Wu, K. Xu, Z. Ma, “The Minimum Server Bandwidth in
Peer-Assisted VoD Systems”, In the Proceedings of 19th
International Conference on Computer Communications and
Networks (ICCCN), Zürich, CH, 2010

[8] G. Kreitz, F. Niemelä, “Spotify – Large Scale, Low Latency, P2P
Music-on-Demand Streaming”, IEEE International Conference on
Peer-to-Peer Computing (P2P) 2010 , Delft, Netherlands

[9] M. Goldmann, F. Niemelä “Measurements on the Spotify Peer-
Assisted Music-on-Demand Streaming System”, IEEE International
Conference on Peer-to-Peer Computing (P2P) 2011 , Kyoto, Japan.

[10] L. Keong Eng, J. Crowcroft, M. Pias, R. Sharma, S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes”, in IEEE
Communications Surveys & Tutorials, Vol.7, No.2, pp. 72- 93,
Second Quarter 2005.

[11] Adobe Cirrus, http://labs.adobe.com/technologies/cirrus/ (last
access: Dec. 2011)

[12] Fielding, R. et al, RFC 2068 - Hypertext Transfer Protocol --
HTTP/1.1, http://www.w3.org/Protocols/rfc2616/rfc2616.html (last
access: Dec. 2011).

[13] OMNeT++, http://www.omnetpp.org/, (last access: Dec. 2011)
[14] INET Framework, http://inet.omnetpp.org, (last access: Dec. 2011)
[15] K. Jonsson, “HttpTools: A Toolkit for Simulation of Web Hosts in

OMNeT++”, In proceedings of the 2nd OMNeT++ workshop,
Rome, Italy, 2009.

[16] C. Müller, C. Timmerer, “A VLC Media Player Plugin enabling
Dynamic Adaptive Streaming over HTTP”, In Proceedings of the
ACM Multimedia 2011, Scottsdale, Arizona, November 28, 2011.

[17] S. Lederer, C. Müller, C. Timmerer, “Dynamic Adaptive Streaming
over HTTP Dataset”, in Proceedings of ACM Multimedia Systems
Conference 2012, Chapel Hill, North Carolina, February 22-24,
2012.

[18] Amazon CloudFront Pricing,
http://aws.amazon.com/de/cloudfront/pricing/, (last access: Dec.
2011)

[19] Hulu, Technical FAQ, http://www.hulu.com/support/technical_faq,
(last access: Dec. 2011).

[20] M. Zhang, Y. Xiong, Q. Zhang, L. Sun, S. Yang, “Optimizing the
Throughput of Data-Driven Peer-to-Peer Streaming” , IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 20,
no. 1, pp. 97-110, Jan. 2009.

Figure 4: Download traffic composition of a client.

