
Accelerating Media Business 
Developments with the MPEG Extensible 

Middleware
Christian TIMMERERa,1, Filippo CHIARIGLIONE b, Marius PREDA c, and Victor 

Rodriguez DONCELd

aKlagenfurt University, Austria / bSmartRM, Italy
c Institut TELECOM, France / dUniversitat Politècnica de Catalunya, Spain

Abstract. This document provides an overview of the MPEG Extensible 
Middleware (MXM), one of ISO/IEC MPEG’s latest achievements, defining an 
architecture and corresponding application programming interfaces (APIs) which 
enable accelerated media business developments. The paper describes the vision 
behind MXM, its architecture, and a high level overview of the API. Additionally,
example MXM applications are given.

Keywords. Middleware, API, MPEG, Media Applications.

Introduction

The development of media business-related applications is currently becoming a very 
challenging task due to short deployment cycles and the huge amount of applications 
flooding the market (e.g., ‘app stores’). This calls for standardized and platform-
independent application programming interfaces (APIs) for well known media-related 
functions (e.g., coding, packaging, storing, delivering) so that they do not have to be re-
implemented each time a new kind of end user device – possible running on a new 
platform – emerges on the market. ISO/IEC MPEG working group has recognized this 
fact and started the development of an MPEG Extensible Middleware (MXM) [1]
which exactly addresses this issue.

The paper is organized as follows. Section 1 describes the MXM vision on how 
media business developments can be accelerated and overviews of the MXM 
architecture and its APIs are presented in Section 2 and 3 respectively. A selection of 
MXM applications [2][3][4] that have been developed during the course of the MXM 
standardization is presented in Section 4. Section 5 concludes the paper.

1. The MXM Vision

With the establishment of the MPEG-21 Multimedia Framework it has been stated that 
“every human is potentially an element of a network involving billions of content 

1 Corresponding Author. Email: christian.timmerer@itec.uni-klu.ac.at. Phone: +43/463/2700 3621.

Towards the Future Internet
G. Tselentis et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-539-6-217

217



providers, value adders, packagers, service providers, resellers, consumers ...” [5]. In 
particular, MPEG-21 enables the transaction of Digital Items among Users. The former 
is defined as a structured digital object with a standard representation, identification 
and metadata whereas the latter may be any kind of creator, end user or intermediary 
that makes use of Digital Items in the MPEG-21 framework or interacts with other 
Users. Thus, MPEG-21 is a framework covering the complete range of MPEG 
technologies defined so far, i.e., from systems (e.g., file formats, delivery formats) to 
audio/video codecs (e.g., MPEG-2, MPEG-4, AVC) and description formats (e.g., 
MPEG-7).

However, a framework is almost nothing without a platform on which it can 
operate and the Digital Media Project (DMP) [6] specifies one such platform. 
Therefore, DMP specifies an interoperable DRM platform (IDP) by adopting most 
MPEG-21 technologies and adding a few that were missing [7]. Furthermore, DMP 
provides an open source software implementation called Chillout® [8] for the functions 
and protocols defined in or referenced by IDP. 

One issue when defining a platform is the portability to other platforms which calls 
for a middleware to be used in a platform-independent way. That is, the next step is 
from platform to middleware which is referred to as MPEG Extensible Middleware
(MXM) [1][9] or MPEG-M, a standard designed to promote the extended use of digital 
media content through increased interoperability and accelerated development of 
components, solutions and applications. For this regard, MXM introduces the notion of 
MXM devices, MXM applications and MXM engines. The MXM standard is organized 
in the following parts:

• Part 1: Architecture and technologies [10] provides the definition of the 
architecture and technologies (by reference) used within MXM. This will 
ensure that MXM devices will be able to run (or play) MXM applications.

• Part 2: MXM API [11] includes normative APIs to so-called MXM engines on 
top of which MXM applications can be developed independent of the actual 
engine implementations to be used.

• Part 3: Conformance and reference software [12] as open source software.
• Part 4: MXM protocols [13] enabling means for interoperable communication 

of MXM devices and, hence, MXM applications.

The advantages of having a normative API to MPEG technologies are the 
following. First, there is no need to have in-depth knowledge of specific MPEG 
technologies in order to use them. The API provides simple methods to call complex 
functionalities inside MXM engines leading to “thin” applications because the 
complexity is hidden in the MXM engines. Second, it offers the possibility of replacing 
the individual “blocks” (i.e., the MXM Engines) with optimized ones with zero cost for 
integration thanks to the normative API. Third, it enables the development of 
innovative applications based on multiple MPEG technologies combined in specific 
ways. Finally, an infinite number of innovative business models based on MPEG 
technologies could be developed at much reduced costs. For example, new applications 
can be developed (and deployed) as soon as reference software for a new video codec 
becomes available following the normative MXM API. As soon as an optimized 
version of this video codec becomes available it can be exchanged with the reference 
software without affecting the application running on top of it.

C. Timmerer et al. / Accelerating Media Business Developments with MXM218



2. The MXM Architecture and Technologies

The "MXM architecture and technologies" [10] specifies the MXM architecture and
references the technologies that are part of an MXM implementation. The architecture 
is depicted in Figure 1 and comprises a set of MXM engines for which APIs are 
defined on top of which applications can be developed. The current list of MXM 
engines includes functionalities for content creation/search, adaptation, 
streaming/delivery, domain management, IPMP, rights expression, licensing, metadata, 
event reporting, security, etc. A special role takes the Orchestrator Engine which 
provides access to higher-level functionalities by implementing common scenarios 
utilizing various MXM Engines in a pre-defined way (e.g., adaptation of content 
according to the usage context).

Figure 1. The MXM Architecture.

In order to enable interoperable communication between MXM devices the 
standard defines MXM protocols as shown in Figure 2. An instantiation example of 
various MXM devices communicating with each other is illustrated in Figure 3. Let us 
note that only the payload format, which is XML-based, is specified and it may be 
actually delivered using any suitable transport protocol (e.g., HTML, Web Services).

Figure 2. MXM Protocols.

Figure 3. MXM Protocol Instantiation Example.

3. The MXM Application Programming Interface (API)

The MXM API [11] of each engine have been divided with respect to the targeted 
functionality into creation (e.g., encode a raw audio track, create an MPEG-7 metadata 

C. Timmerer et al. / Accelerating Media Business Developments with MXM 219



description), access (e.g., get data from a Digital Item, decode a video), editing (e.g., 
add an elementary stream to a multiplexed content), and engine-specific APIs (e.g., 
authorize a license as part of the REL Engine).

The next sections introduce two selected APIs – Media Framework Engine and 
Metadata Engine. For the other APIs the interested reader is referred to [1].

3.1. Media Framework Engine API

The Media Framework Engine API defines a set of APIs related to different media 
modalities such as image, audio, video, and graphics. At the time of writing of this 
paper it provides means for creating (i.e., encoding) and accessing (i.e., decoding) of 
audio, graphics 3D, image and video resources.

The API is organized in a hierarchical fashion where higher levels provide more 
generic functions applicable to all types of media (e.g., play, pause, seek) and lower 
levels provide specific functions only applicable to certain media types (e.g., 
setVolume for audio or getDecodedImage for image).

3.2. Metadata Engine API

This API can be divided into two parts, one being generic to potentially all kinds of 
metadata standards (including those developed outside of MPEG) and one being 
specific to MPEG-7 metadata. As for the Media Framework Engine, this API provides 
means for creating and accessing metadata. For example, the former could be used by 
authoring software to create metadata associated to actual content whereas the latter 
could be used for parsing the metadata at the consumption stage.

In particular, the generic metadata creator/parser provides an interface defining the 
methods to create/parse generic metadata structures in possibly any format depending 
on the specific implementation of the metadata engine of choice. Similarly, the MPEG-
7 creator and parser define methods for creating and parsing metadata structures 
compliant to the MPEG-7 standard respectively.

4. Examples of MXM Applications

4.1. Fully Interoperable Streaming of Media Resources in Heterogeneous 
Environments

This section describes an MXM-based architecture for the fully interoperable streaming 
of media resources (i.e., scalable and non-scalable) in heterogeneous usage 
environments (i.e., with different and varying terminal capabilities, network conditions, 
and user preferences) [14].

The architecture for this framework is depicted in Figure 4 and in the following we 
will give a brief walkthrough.

C. Timmerer et al. / Accelerating Media Business Developments with MXM220



Figure 4. MXM-based Architecture for a Fully Interoperable Streaming Framework of Media Resources in 
Heterogeneous Environments.

• Query for available Digital Items (Steps 1-5): The terminal requests its local 
MPEG Query Format (MPQF) engine to issue a query for the available Digital 
Items to its counterpart on the server side (1-2). The MPQF engine at the server 
examines its repository and responds to the client with a list of available Digital 
Items which are presented to the user on the terminal’s display (3-5). In this case 
the MPQF is transmitted via HTTP.

• Select Digital Item (Steps 6-13):

The user is now able to select the desired Digital Item she/he wants to 
consume. Therefore, the corresponding identifier is provided to the Request 
Content / Digital Item Adaptation (DIA) client which also assembles the user 
preferences, terminal capabilities, and network conditions into a Usage 
Environment Description (UED) and Universal Constraint Description (UCD). 
This information is included within the MXM Request Content protocol which 
is transmitted via HTTP to the server (6-7). The server responds with an 
personalized RTSP URL (8b) which is then used by the Media Streaming 
Client in the subsequent stage to initialize the actual streaming session (13).

At the server, the DIA information (i.e., UED and UCD) together with the 
Digital Item Identifier (DII) is passed to the Adaptation Decision-Taking
Engine (ADTE) which is used to configure the Adaptation Engine based on 
metadata (i.e., AdaptationQoS) associated with the DII (8a-10). The 
Adaptation Engine adapts the media resource according to the parameters 
provided by the ADTE and forwards the adapted media resource bitstream to 
the Media Streaming Server (11-12).

• Streaming of adapted the media resource (Steps 14-16): The Media Streaming 
Client requests the adapted media resource bitstream from the Media Streaming 
Server via RTSP and the server provides it via RTP (14-15). Finally, the bitstream 
is presented to the user at the terminal’s display (16). Optionally it is possible to 
update the UED information during streaming (e.g., change in available network 
bandwidth) and the corresponding bitstream is adapted during the streaming 
session. That is, everything starting from step 6 is repeated in a loop except that a 

C. Timmerer et al. / Accelerating Media Business Developments with MXM 221



new RTSP URL is issued (steps 8b, 13, and 14). The updated version of the 
adapted media resource bitstreams becomes visible as soon as the client receives 
this information as the adaptation is performed in a timely manner.

For further details the interested reader is referred to [14].

4.2. Including MPEG-4 3D Graphics in Third-Party Application

Including audio, image, and video resources (e.g., MP3, AAC, JPEG, MP4) in third-
party applications is nowadays a beginner job. The complexity of such codecs is hidden 
behind a very simple communication interface once the content is decoded, i.e., matrix 
of pixels for images and wave samples for audio. Transposing the same principle in the 
computer graphics world is a challenge due to the variety of representation forms and 
also the complexity and heterogeneity of data to be transferred, i.e., vertex 
position, normals and tangents, color and texture as well as their variation in time. 

The application introduced in this section shows how using the MXM 
3DGraphicsEngine and its set of APIs to simplify the complex integration work. 
Specifically, with only some lines of code, Ogre3D – a very well known 3D graphics 
rendering engine – is transformed into an MPEG-4 3D graphics player.

Ogre3D is a simple and easy to use oriented object interface designed to minimize 
the effort required to render 3D scenes, and to be independent of 3D implementation,
i.e., Direct3D/OpenGL. It provides advanced features for object definition and 
rendering (mesh, appearance and animation) as well as scene management.

Built on top of VRML97, MPEG-4 contained, already in its first specifications 
from ten years ago [15], tools for the compression and streaming of 3D graphics assets, 
enabling to describe compactly the geometry and appearance of generic, but static 
objects, and also the animation of human-like characters. Since then, MPEG has kept 
working on improving its 3D graphics compression toolset and published two editions 
of MPEG-4 Part 16, AFX (Animation Framework eXtension) [16], which addresses the 
requirements above within a unified and generic framework and provides many more 
tools to compress more efficiently generic, textured, animated 3D objects. While the 
3D content is a complex data structure involving the coexistence of heterogeneous data 
types (geometry, that can be specified as surface or volume, appearance that exposes 
material properties and texture and finally animation that can be obtained from a 
variety of rigid motion or deformation models), it is relatively easy to specify a 
formalism for representing such data. For this reason, there are currently several tons of 
formats for describing 3D content. MPEG-4 AFX is not yet another format for 
representing 3D data since its key contribution is related to compression more that to 
the representation itself. Recent standardization activity formalized in MPEG-4 Part 25 
shows how the MPEG-4 tools for compressing 3D assets can be applied to other 
formalisms such as COLLADA and X3D. However, in order to make the compression 
layer transparent to the application developer, the MXM API transport the information 
between the media framework engine and the developed application in a flat format, 
very similar to the ones used by Direct3D or OpenGL. Thus after loading an MPEG-4
3D object the engine exposes to the application the corresponding vertex, normal, 
texture coordinates buffer and the associated index buffers in a data structure ready for 
rendering. Figure 5 shows several MPEG-4 3D objects loaded in the Ogre engine by 
using the MXM engine for data decoding.

C. Timmerer et al. / Accelerating Media Business Developments with MXM222



Figure 5. MPEG-4 3D objects loaded in the Ogre engine.

4.3. Sharing Content in a Smart Way

MXM can be used in a variety of environments and can serve for multiple purposes. 
This section describes how MXM is employed by SmartRM (http://www.smartrm.com),
an innovative system for sharing content while retaining control of it.

SmartRM is a viral service based on social networks enabling everyone to share 
confidential content with friends or colleagues in a protected way. The SmartRM 
software allows its users to convert confidential files (e.g., PDF documents, videos or 
audio tracks) into encrypted MPEG-21 files that can be shared with others: only the 
contacts that have been enabled can read, view, listen, print, etc. the protected content, 
at the conditions that have been specified. The SmartRM service makes it possible to 
know when and how many times a protected file has been accessed by someone, as 
well as grant or remove permissions dynamically.

The SmartRM system architecture is based on a client-server model. The client is a 
Mozilla Firefox plug-in based on MXM [17]. Most of the Web browsers available 
today, in fact, are capable of initializing, creating, destroying, and positioning plug-ins 
inside the browser window when certain events occur, often through standard APIs 
such as NPAPI [18]. Figure 6 shows an example of a high-level architecture of the 
SmartRM client software.

C. Timmerer et al. / Accelerating Media Business Developments with MXM 223



Figure 6. High-level architecture of the SmartRM MXM-based Firefox plug-in.

The SmartRM functionalities can be accessed either by code running on an HTML 
page (e.g., Javascript) or by other Firefox plug-ins, extensions or components through 
an API described in IDL. By relying on MXM, the SmartRM Firefox plug-in delegates 
media access and presentation, as well as security-related functionalities to C++ MXM 
engines that encapsulate the complexity of those functionalities inside easily-
manageable modules that can be replaced at ease because access to them is made 
through the standard MXM APIs. 

At the same time, most of the communication between the SmartRM client and the 
SmartRM server is done by exchanging ISO/IEC 23006-4 (MXM Protocols) messages 
over SOAP and XMPP. Both the client and the server are then relieved from the 
complexity of generating, dispatching and interpreting such messages, as this 
operations can be done by MXM engines.

4.4. Tracking the Intellectual Property Value Chain

This section describes an MXM-based scenario where intellectual property attribution 
and trace of the value chain is put in a first place of importance. MXM is about 
handling multimedia, and the content represented by the Digital Items most of the 
times representing something that is protected by intellectual property laws. Going 
beyond the elementary task of representing who is the copyright owner of this 
“something”, MXM also provides engines, devices and protocols to trace the complete 
intellectual property value chain, being possible to find out who was the original author, 
the adaptors who made derivative works, the performers, the producers or the 
distributors or broadcasters who took part in the chain. Moreover, within the MXM 
framework it is possible to categorize precisely the kinds of objects subject to the 
intellectual property protection, as well as the different actions taken on the Digital 
Items which are relevant in regard to the intellectual property.

All of this is accomplished by means of the role verification device, a server 
application able to receive notice of the important events for the intellectual property 
and answer queries. This server hosts the Media Value Chain Ontology (MVCO) [19],
implementing an API on top of it (the MXM MVCO Engine), and maintains a set of 

C. Timmerer et al. / Accelerating Media Business Developments with MXM224



ontology class instances corresponding to all the relevant users, intellectual property 
entities and actions taken, being able to respond to the queries as the result of the 
execution of an ontology reasoner.

Figure 7. MXM-based architecture for tracking the intellectual property value chain.

To describe the interoperation of the devices in the presented scenario (see Figure 
7), an example is given. In this scenario, the user called Alice creates a content. She 
does not merely create a resource, i.e., a Digital Item, she is a creator in the sense that 
she makes a new artistic work. Then, by means of the Content Creation Device,
uploads her content to the Content Identification Device (an abstract reference called 
work and a first manifestation of the work). The Role Verification Device is also 
informed of this novelty, and will keep record of it. 

Thus, when another user, called Bob, wants to make an adaptation of that work, he 
will need to identify the nature and creator of the work, and manage to get a license 
authorizing him to register an adaptation. The license Alice has to issue for this regard, 
given by the License Provider Device, can be verified to satisfy the intellectual 
property requirements as a check against the role verification device. Perhaps then a 
third user called Chang may upload a performance of Bob’s adaptation, and a 
distributor called Diana may offer the resulting record for purchase. Thanks to the role 
verification device these – and other – actions on the material can be performed 
assuming the originator has granted the right to do so and it provides means for 
tracking the whole process. For example, the end user Erik may be interested in 
knowing the original composer of the work or wants to know which role does Bob play 
in this. Additionally, the License Provider Device may verify the conformance of the 
licenses issued in the process to the intellectual property model, certifying, for example,
that the performance Chang made took place with the necessary consent of Alice, etc.

5. Conclusions

In this paper we have introduced the MPEG Extensible Middleware enabling 
accelerated media business developments by defining a normative APIs to the vast 
amount of MPEG technologies currently available (i.e., systems, audio, video, 3D 
graphics, metadata, etc.). Thanks to these normative APIs, applications can be 
developed on top of these APIs even though the underlying technologies (e.g., 
advanced audio/video codec or delivery format) are still, for example, subject to 
standardization and where only proof-of-concept reference software is available. At a 
later stage this software can be replaced by optimized one at no cost thanks to the 
standardized API. Furthermore, the middleware effectively hides the complexity below 

C. Timmerer et al. / Accelerating Media Business Developments with MXM 225



the API and, thus, almost eliminates the burden for newcomers to enter the highly 
competitive media business. That is, complex media applications become very tiny and 
easy to develop without digging into thousands of pages of various MPEG standards.

Acknowledgments

Although only a few names appear on this paper, this work would not have been possible without the 
contribution and encouragement of many people, particularly Leonardo Chiariglione (CEDEO.net), Michael 
Eberhard (Klagenfurt University), Ivica Arsov (Institut TELECOM), Angelo Difino (CEDEO.net), and 
Wonsuk Lee (ETRI).

References

[1] MPEG Extensible Middleware, http://mxm.wg11.sc29.org/, (last access: January 2010).
[2] M. Eberhard, C. Timmerer, H. Hellwagner, “Fully Interoperable Streaming of Media Resources in 

Heterogeneous Environments”, 1st Int’l MXM Developer’s Day, London, UK, June 2009. Available at 
http://mxm.wg11.sc29.org/ (last access: January 2010).

[3] I. Arsov, M. Preda, “Including MPEG-4 3D graphics in your application”, 1st Int’l MXM Developer’s 
Day, London, UK, June 2009. Available at http://mxm.wg11.sc29.org/ (last access: January 2010).

[4] A. Difino, F. Chiariglione, “An MXM-based application for sharing protected content”, 1st Int’l MXM 
Developer’s Day, London, UK, June 2009. Available at http://mxm.wg11.sc29.org/ (last access: 
January 2010).

[5] I. Burnett, F. Pereira, R. Van de Walle, R. Koenen (eds.), The MPEG-21 Book, Wiley, 2006.
[6] Digital Media Project, http://www.dmpf.org/, (last access: January 2010).
[7] Digital Media Project, Interoperable DRM Platform v3.2, October 2008. 

http://www.dmpf.org/project/ga20/idp-32.html.
[8] Chillout, http://chillout2.dmpf.org/wordpress/, (last access: January 2010).
[9] L. Chiariglione, “The MXM Vision”, 1st Int’l MXM Developer’s Day, London, UK, June 2009.
[10] ISO/IEC 23006-1, Information Technology – MPEG extensible middleware (MXM) – Part 1: MXM 

architecture and technologies, Final Committee Draft, London, UK, June 2009.
[11] ISO/IEC 23006-2, Information Technology – MPEG extensible middleware (MXM) – Part 2: MXM API,

Final Committee Draft, London, UK, June 2009.
[12] ISO/IEC 23006-3, Information Technology – MPEG extensible middleware (MXM) – Part 3: MXM 

conformance and reference software, Final Committee Draft, London, UK, June 2009.
[13] ISO/IEC 23006-4, Information Technology – MPEG extensible middleware (MXM) – Part 4: MXM 

protocols, Final Committee Draft, London, UK, June 2009.
[14] M. Eberhard, C. Timmerer, E. Quacchio, and H. Hellwagner, “An Interoperable Streaming Framework 

for Scalable Video Coding Based on MPEG-21”, IEEE Wireless Communication, vol. 16, no. 5, pp. 58-
63, October 2009.

[15] ISO/IEC 14496-2, Information technology – Coding of audio-visual objects – Part 2: Visual,
September 2009.

[16] ISO/IEC 14496-16, Information technology – Coding of audio-visual objects – Part 16: Animation 
Framework eXtension (AFX), December 2009.

[17] A. Difino, “Use of MXM in a web browser environment”, ISO/IEC JTC1/SC29/WG11/M16836, Xian, 
China, Oct 2009.

[18] Netscape Plugin Application Programming Interface (NPAPI), http://en.wikipedia.org/wiki/NPAPI (last 
access: January 2010).

[19] V. Rodriguez-Doncel, J. Delgado, “A Media Value Chain Ontology for MPEG-21”, IEEE MultiMedia,
vol. 16, no. 4, pp. 44-51, October 2009.

C. Timmerer et al. / Accelerating Media Business Developments with MXM226


