
TRANSFORMING MPEG-21 GENERIC BITSTREAM SYNTAX
DESCRIPTIONS WITHIN THE BINARY DOMAIN

Christian Timmerer, Peter Lederer, and Harald Kosch

Department of Information Technology (ITEC), Klagenfurt University, Austria

{christian.timmerer, harald.kosch}@itec.uni-klu.ac.at, peter.lederer@edu.uni-klu.ac.at

Department of Information Technology (ITEC)
Klagenfurt University
Technical Report No. TR/ITEC/05/1.06
June 2005

TRANSFORMING MPEG-21 GENERIC BITSTREAM
SYNTAX DESCRIPTIONS WITHIN THE BINARY DOMAIN

Christian Timmerer, Peter Lederer, and Harald Kosch

Klagenfurt University

Department of Information Technology (ITEC), Klagenfurt, Austria
{christian.timmerer, harald.kosch}@itec.uni-klu.ac.at, peter.lederer@edu.uni-klu.ac.at

ABSTRACT

XML-based metadata is widely adopted across the
different communities and plenty of commercial and open
source tools for processing and transforming are available
on the market. However, all of these tools have the same
requirement: they operate on plain text encoded metadata
which may become a burden especially in constrained and
streaming environments, e.g., when metadata needs to be
processed together with multimedia content which is
available in a highly efficient, binary representation
format. In this paper we present techniques for
transforming such kind of metadata which is encoded
using the well known MPEG-7 Systems Binary Format
for Metadata (BiM) without additional en-/decoding
overheads, i.e., within the binary domain. As such it
enables us to process both the multimedia data as well as
the metadata within its compressed domain, e.g., for
metadata-driven adaptation purposes within intermediary
network nodes which are becoming increasingly popular
in the multimedia community as well as in the XML
community.

1. INTRODUCTION

More and more multimedia-enabled (mobile) devices are
gaining access to advanced multimedia content through a
plethora of access networks such as LAN, WLAN, GPRS,
UMTS, etc. Research issues resulting from this are
generally referred to as Universal Multimedia Access
(UMA) [1], i.e., the content needs to be adapted according
to the various terminal capabilities and network
characteristics. Most recently, characteristics of users and
her/his preferences have been taken into account as well
during adaptation of the multimedia content [2][3].
Furthermore, this multimedia content is usually enriched
with metadata providing support during the adaptation
process [4] among others.
 However, due to the fact that several parties are
involved from the multimedia content production up to
the consumption, interoperability during the delivery of

the multimedia content is required which can be achieved
by using standards provided by Moving Picture Experts
Group (MPEG). The MPEG-21 Multimedia Framework –
MPEG’s most recent achievement – aims to enable
transparent and augmented use of multimedia resources
across a wide range of networks and devices used by
different communities [5]. Therefore, MPEG-21
introduces the concept of Users interacting with Digital
Items. A User is defined as any entity (including
individuals, communities, organizations as well as
software agents) that interacts in the MPEG-21
environment or makes use of Digital Items. A Digital Item
is referred to as a structured digital object with a standard
representation, identification and metadata, i.e., a
container for different kinds of resources and metadata
represented within a standardized XML-based structure.

A vital part of MPEG and important with regard to
UMA is part 7 entitled Digital Item Adaptation (DIA) [6].
DIA provides – among others – normative description
tools enabling the construction of device and coding-
format independent adaptation engines. An integral part of
DIA is the description of the multimedia content’s
bitstream syntax, i.e., how it is organized in terms of
frames, layers or packets, in a generic way. The resulting
XML-based metadata document is referred to as generic
Bitstream Syntax Description (gBSD). This gBSD is
transformed according to the constraints imposed by the
usage environment using standardized and open source
XML transformation tools such as the Extensible
Stylesheet Language Transformation (XSLT) or the
Streaming Transformation for XML (STX). Such
transformation usually includes removing and updating
portions of the bitstream. Subsequently, the transformed
gBSD is processed by a generic adaptation module which
copies only the remaining portions (according to the
transformed gBSD) from the source bitstream to the target
bitstream. As such, only one adaptation module is
required for adapting bitstreams encoded in different
scalable coding formats described by gBSD. The general
architecture for this gBSD-based adaptation approach is
depicted in Figure 1.

In practice however, the gBSD transformation is
performed on plain text XML descriptions which imposes
some burdens as we will see in the following section. In
this paper, however, we present a novel approach for
transforming gBSDs within the binary domain, thus,
reducing the metadata overhead and improving the overall
performance of the adaptation process.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the background and
motivation. In Section 3 a novel approach for
transforming such gBSDs within the binary domain is
introduced. Sections 4 and 5 give detailed information
how we evaluated our approach with a subsequent
discussion of the results in Section 6. Related work will
be discussed in Section 7. The Paper will be concluded in
Section 8.

2. MOTIVATION AND BACKGROUND

In recent years research regarding multimedia content
adaptation is heading towards adapting the content within
the delivery chain, i.e., at certain selected network nodes,
instead of traditional server-side adaptation [7][8]. This is
required due to the fact that it is not conceivable that one
single adaptation module can be deployed capable of
reacting to all kind of usage environments. It is rather
expected that more and more independent multimedia
adaptation services will emerge. However, in order to
exploit such services, metadata needs to be delivered
alongside with the content.

Multimedia content is usually encoded using highly
efficient encoding techniques and its processing can be
achieved in a similar way. On the other hand, metadata is
mainly XML-based and encoded in plain text and when
transporting together with the content, bandwidth
requirements are increasing which conflict with the
aforementioned achievements regarding efficiency.
Additionally, new trends in multimedia content adaptation
focus on the adaptation in the compressed domain by
exploiting scalable coding formats such as MPEG-4 and

JPEG2000. New emerging standards like MPEG-4
Scalable Video Coding (SVC)1 confirm this trend.

Figure 1 — gBSD-based Adaptation Architecture.

Thus, the metadata overhead needs to be reduced by
means of appropriate encoding schemes. Traditional
compression techniques are inadequate as they ignore the
XML structure and no streaming support is given. Our
choice fall therefore on the MPEG-7 Binary Format for
Metadata (BiM) [9] which allow random access to
selected XML-subtrees and furthermore defines useful
operations on these sub-trees. Consequently, we will parse
and manipulate the binary encoded metadata within the
binary domain.

In this paper we present techniques for filtering and
updating such metadata fragments within the binary
domain by means of MPEG-7 BiM. Therefore, special
configuration settings during the metadata encoding
process are required which are the main focus of this
paper. In the sequel and for the sake of completeness we
give a brief overview of BiM.

MPEG-7 BiM is an XML Schema aware encoding
scheme for XML documents, i.e., it uses information from
the XML Schema to create an efficient alternative
serialization of XML documents within the binary
domain. This schema knowledge enables the removal of
structural redundancy, e.g., element and attribute names,
which achieves high compression ratios with respect to
the document structure. Furthermore, element and
attribute names as well as data are encoded using
dedicated codecs based on the data type (integer, float,
string) which further increases the compression ratio.
However, one of the main features of BiM is that it
provides streaming capabilities for XML-based data
which is one of the main disadvantages of plain text
XML. Therefore, BiM divides the XML tree into access
units (AUs) containing one or more fragment update units
(FUUs). Each FUU includes the FU command, FU
context, and FU payload which are described briefly in
the following:

― The command specifies the decoder action for
the corresponding fragment which can be either
add, delete, replace, or reset, i.e., BiM also
provides partial updates of an XML document.

― The context is used to uniquely determine the
location of the fragment in the XML document.

― The payload contains the actual XML data
according to the context.

Figure 2 illustrates how an XML document is divided
into AUs and streamed over the network. In particular, it
shows how a sub-tree of the whole XML document is
transmitted over the network and added to the description
tree at the receiver side (cf. dotted line).

By definition, each AU can be decoded separately
while ensuring validity against the corresponding XML

1 see http://www.chiariglione.org/mpeg/ for details

<dia:DIA><dia:Description xsi:type="gBSDType"
 addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="content/bsone.cmp">
 <gBSDUnit syntacticalLabel=":M4V:VO" start="0"
 length="4"/>
 <gBSDUnit syntacticalLabel=":M4V:VOL"
 start="4" length="14"/>
 <gBSDUnit start="18" length="520176"
 marker="ICRAParentalRatingViolenceCS-2">
 <gBSDUnit syntacticalLabel=":M4V:I_VOP"
 start="18" length="13522"/>
 <gBSDUnit syntacticalLabel=":M4V:P_VOP"
 start="13540" length="15128"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP"
 start="28668" length="2734"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP"
 start="31402" length="2714"/>
 <!--... and so on, i.e., further VOPs ...-->
 </gBSDUnit>
 <!--... and so on, i.e., further scenes ...-->
</dia:Description></dia:DIA>

Document 1 — Fragment of a gBSD describing an MPEG-4 ASP VES
at VOP and scene level.

Figure 2 — Streaming XML Documents over the Network by using

Access Units.

Schema. The FUUs are processed according to the FU
command, i.e., added to, deleted, or replaced from the
(partially) instantiated XML document. The reset
command resets the BiM decoder and starts again with the
initial description tree. Especially the replace command
enables selective updates of (parts of) a document.

Finally, the FUU specification allows to perform
filter operations within the binary domain, i.e., by means
of simple bit pattern matching instead of time-consuming
string comparisons as we will show in the next section.

3. BINARY TRANSFORMATION OF MPEG-21
METADATA

3.1. Usage scenarios

Our work is motivated by two usage scenarios which may
benefit from the gBSD-based adaptation as introduced in
Section 1:
(A) Adapting streaming audio/video (AV) resources

according to network bandwidth constraints and
user preferences.

(B) Adapting images according to terminal capabilities.
For scenario (A) we have considered MPEG-4

Advanced Simple Profile (ASP) Visual Elementary
Stream (VES) which has been described with a gBSD at
two different levels of detail: at a visual object plane
(VOP) level enabling B-VOP dropping (also known as B-
frame dropping) and at a scene level which allows
personalization of the AV resources by means of, e.g.,
violent scene dropping. The fragment of such a gBSD is
shown in Document 1. Each VOP is described by a
corresponding gBSDUnit element and the VOP type is
indicated within the syntacticalLabel attribute.
Scenes are described by introducing an additional layer of
gBSDUnit elements comprising an arbitrary number of
child gBSDUnit elements belonging to the same scene.
The type of scene is characterized by means of the
marker attribute and its actual value depends on the
application requirements, e.g., describing the level of the
violence for each scene.

For scenario (B) JPEG2000 encoded images have
been used which provide 3 levels of scalability, namely
spatial, quality, and color reduction. The fragment of a
gBSD describing a JPEG2000 image is shown in
Document 2. This fragment describes the relevant parts
within the main header of JPEG 2000 images that need to
be updated in case of color reduction is applied. The
:J2K:Csiz parameter contains the number of color
components and, for example, a value of 1 would result in
a grayscale image and the subsequent gBSDUnit elements
which are marked with C0, C1, and C2 have to be
removed accordingly.

In the next section we describe how the metadata, i.e.,
the gBSD, can be mapped to MPEG-7 BiM access units
(AUs) and fragment update units (FUUs) in enabling
these transformations within the binary domain.

3.2. Mapping metadata to BiM access units

In order to perform a binary transformation the plain text
encoded gBSD has to be mapped to MPEG-7 BiM AUs
and FUUs using a special encoder configuration and has
to be BiM encoded afterwards.

The encoder configuration is derived from the
syntactic and semantic information of the gBSD and
based on the required transformation operations. The
semantic information is provided through the marker
attribute whereas the syntactic information can be found
in the syntacticalLabel attribute. Additionally, the
structure of the gBSD, i.e., the position, hierarchy and
layout of the gBSD elements, is exploited during the
transformation process as described in Section 3.3. The
required transformation operations result from the nature
of scalable multimedia formats and can be categorized in
remove and (minor) update operations. Removing of
gBSD elements refers to the removal of corresponding
bitstream segments such as temporal or spatial

<dia:DIA><dia:Description xsi:type="gBSDType"
 addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="content/city.jp2">
 <gBSDUnit syntacticalLabel=":J2K:MainHeader"
 start="0" length="135">
 <gBSDUnit syntacticalLabel=":J2K:SIZ" start="2"
 length="49">
 <gBSDUnit addressMode="Consecutive"
 length="49">
 <!-- other parameters ... -->
 <Parameter name=":J2K:Csiz" length="2">
 <Value xsi:type="xs:unsignedShort">3</Value>
 </Parameter>
 <gBSDUnit syntacticalLabel=":J2K:Comp_siz"
 length=" marker="C0"3" />
 <gBSDUnit syntacticalLabel=":J2K:Comp_siz"
 length=" marker="C1"3" />
 <gBSDUnit syntacticalLabel=":J2K:Comp_siz"
 length="3" marker="C2"/>
 </gBSDUnit>
 </gBSDUnit>
 <!-- further parameters ... -->
 </gBSDUnit>
 <!-- :J2K:Tile with :J2K:Packets + :J2K:EOC -->
</dia:Description></dia:DIA>

Document 2 — Fragment of a gBSD describing an JPEG2000 image.
Figure 3 — Mapping of a gBSD describing the main header of an

JPEG2000 image to a BiM AUs and FUUs. enhancements layers of videos. Updating of gBSD
elements refers to the update of corresponding bitstream
parameters such as updating the number of remaining
enhancement layers. Therefore, updating is mostly
required following a remove operation.

In both cases, remove and update, the concerned
FUU is identified first and the actual operation is applied
subsequently. Note that in some cases the operation is not
only applied on the actual element but also on one or more
following FUUs. In the following we present how gBSDs
for our two scenarios needs to be mapped to AUs and
FUUs in order to enable these operations within the
binary domain.

For scenario (A) the gBSD is encoded as follows:
gBSDUnit elements describing VOPs (I-, P- or B-VOPs)
are represented by two consecutive FUUs. The first FUU
comprises only the syntacticalLabel attribute
whereas the actual content (i.e., element name and
remaining attributes) is encoded in the second FUU.
Furthermore, gBSDUnit elements representing scenes are
divided into three consecutive FUUs. The first FUU
contains only the marker attribute which is required for
identification of the corresponding scene. The remaining
FUUs comprise the start and length attributes
respectively which are possibly updated during the
transformation process. Finally, all these FUUs are packed
to an open number of AUs depending on the application
requirements. The only restriction is that the two groups
of FUUs mentioned above must not be divided to separate
AUs.

Conclusion. In order to remove gBSD elements
within the binary domain the attribute value which is used
for making such a decision needs to be encoded into one

FUU. Subsequent FUUs are removed – if necessary – if
they have the same context path or a subset thereof.

For scenario (B) the configuration of the BiM
encoding is more complex due to interdependent remove
and update operations. For instance, color reduction
removes gBSDUnit elements which are no longer
required (i.e., packets marked with a predefined pattern)
and updates certain Parameter elements (e.g., the
:J2K:Csiz parameter from Document 2). In general, the
gBSD is divided into three AUs. The first one contains
information about the main header of the image, the
second one describes the tile, and the last one represents
the end of codestream (EOC) flag.

The AU which represents the main header can be
divided into two major parts. The first part includes one
single FUU comprising the gBSDUnit element describing
the complete main header. The second part consists of an
arbitrary number of FUUs representing different attributes
and parameters of the main header which probably have to
be updated or deleted during the transformation process.

The second AU, i.e., the tile, can be divided into
three consecutive logical blocks. The first block consists
of a FUU which includes all the information about the tile
header and three additional FUUs which encode the
attributes syntacticalLabel, start, and length of
the tile. The second logical block contains only one single
FUU representing the :J2K:Psot parameter of the tile
header which indicates the length of the tile. This
parameter always has to be updated during the
transformation process. The last block contains a list of
packets and each packet is mapped to four consecutive
FUUs. These FUUs encode the marker and length

attributes of a Packet, the actual content, and the value of
the :J2K:Nsop parameter. This :J2K:Nsop parameter
represents an ascending sequence number of the packets
within a tile which needs to be updated if packets are
removed.

Figure 4 — Structure of binary context path encoding. The mapping of a gBSD describing an JPEG2000
image (Document 2) to BiM AUs and FUUs is excerpted
in Figure 3. Each box in the figure represents one single
FUU and the upper sub-box contains the FUCommand.
The syntactical name of the gBSD is provided in the
middle of the box, and the bottom sub-box identifies the
corresponding gBSD element type, i.e., gBSDUnit or
Parameter elements or marker attribute.

Conclusion. In order to update gBSD element or
attribute values within the binary domain the actual value
needs to be encoded into one single FUU which is simply
replaced by a pre-encoded bit pattern during the
transformation process. The FUU is identified using the
context path only.

3.3. Transformation within the binary domain

Our approach is based on three principles. First, the gBSD
is encoded, i.e., fragmented, using MPEG-7 BiM as
described in Section 3.2. Second, a binary filter module
accomplishes fast and easy access to the AUs and FUUs
respectively. Depending on the result of the filtering
process a fragment can be either added to or deleted from
the BiM bitstream without decoding its payload. And
third, FUUs representing Parameter elements or
attributes can be updated directly within the binary
domain without decoding them. In order to achieve such
an update, the binary filter module is used to identify the
corresponding fragments by means of the context path.
Subsequently, the payload of the fragment can be simply
replaced by a new binary pattern which is created using
the BiM payload encoding algorithm.

The binary filter module takes advantage of the
structure of the binary context path of an encoded FUU
which generally consists of a list of node names followed
by a list of corresponding position codes as depicted in
Figure 4. Thus, this kind of bitstream organization
facilitates two different filtering modes: test the structure
of a fragment and find the unique position of a fragment
within the whole document, i.e., the gBSD. In the former
case only part one of the path, i.e., the list of node names,
is compared with a certain binary filter expression. This is
used for identifying elements being possibly removed
from the gBSD based on the content of the payload which
contains only the value of one single attribute. For
example, a filter expression could check if a fragment
contains one of the gBSDUnit elements which – in the
plain text gBSD – could be identified by the XPath
expression //dia:DIA/dia:Description/
gBSDUnit. This feature is used in the transformation

method of B-VOP dropping where all gBSDUnit
elements describing B-VOPs are removed from the binary
encoded gBSD. In the latter case (i.e., find the unique
position of a fragment within the whole document) both
parts of the binary context path are compared with a filter
expression to determine the unique position of a fragment
within the document. As such, a single gBSD element
could be easily identified, e.g., to find certain Parameter
elements which have to be updated as heavily used for
scenario (B).

Additionally, the context path has one more
convenient feature. The path of a parent node is a subset
of the path to all child nodes of this parent. Thus, it could
be easily used to apply the same transformations (e.g., add
or remove) to all child nodes. This property is used, e.g.,
in combination with the transformation method of “scene
dropping” to identify all frames which belong to a certain
scene and immediately delete them from the bitstream.

3.4. Binary Transformation Framework (BTF)

For evaluation purposes we have implemented the
functionality described in the previous section within a
Binary Transformation Framework (BTF) which basically
consists of the following parts:

― BTF encoder: this module maps the textual
gBSD to a binary stream. It includes a MPEG-7
BiM encoding module which is steered by a
special configuration file. This file contains the
“rules” how to fragment the XML document and
how to create the corresponding AUs and FUUs.

― BTF transformer: this transformation module is
the main part of our framework. Using a number
of special application- and/or user-defined
parameters, it performs a binary gBSD
transformation directly on the bitstream created
by the BTF encoder. These parameters include
some structural information about the bitstream
as well as the transformation method (e.g. scene
dropping for video gBSDs) and some user
specific choices (e.g. which scene to remove).

― BTF decoder (optional): this module decodes
the bitstream which contains the fragmented
gBSD using an MPEG-7 BiM decoding module
and re-creates one single XML file from all the
decoded fragments.

Figure 5 illustrates the high-level architecture of this
framework. Our framework implements two different
transformation methods for video descriptions and three

different transformation methods for image descriptions
as described in Section 3.

4. EXPERIMENTAL SETUP

In order to measure the performance of the binary
transformation of MPEG-21 metadata using our BTF, we
have conducted a number of experiments which apply
different transformations on MPEG-21 gBSD files.

4.1. Datasets

As input data we have used two types of gBSDs
describing MPEG-4 Visual Elementary Streams (VESs)
compliant to the Advanced Simple Profile (i.e.,
FOREMAN, AKIYO) and describing JPEG2000 images
(i.e., CITY, SHANGHAI). All test sequences have been
taken from the MPEG-21 test data set.

The gBSDs describing the MPEG-4 VESs have been
transformed enabling bit rate reduction of the actual
media bitstream by means of B-VOP dropping.
Personalization of the content is achieved through scene
dropping. For gBSDs describing JPEG2000 images three
different transformation modes have been applied: color,
quality, and spatial reduction.

4.2. Testing modes

We have performed our test in three different modes:
(TM-1) Transformation of plain text encoded gBSDs

using regular XSLT style sheets and a legacy
XSLT processor.

(TM-2) gBSDs are BiM encoded but the transformation
is still performed on plain text encoded gBSDs
as described in (TM-1). As such, the BiM
encoded gBSD has to be decoded before being
transformed and re-encoded afterwards.

(TM-3) Transformation of BiM encoded gBSDs within
the binary stream as described in Section 3.

(TM-1) refers to the use case where only XSLT

capabilities are available at the transformation device.
However, this implies that the gBSD is transmitted in
plain text over the network in the case this device is
located somewhere in the network which increases
bandwidth requirements of the overall multimedia
delivery session. The second mode, i.e., (TM-2), assumes
that BiM en-/decoding capabilities are available which
drastically reduces the bandwidth requirements but
increases processing efforts due to the de-/encoding
overhead before and after the actual XML transformation
by means of legacy XSLT processors. Finally, in (TM-3)
the transformation device is equipped with the binary
transformation framework as proposed in this paper.

Figure 5 — High-level architecture for binary transformation of

MPEG-21 metadata.
4.3. Test environment

Our test environment consists of a small JAVA
application which is able to

― load, process, and store XML files using the
JDOM2 API,

― apply XML transformations using JAVA XSLT
processing methods of the JDOM API,

― start and use methods (en-/decode) of the MPEG-
7 BiM reference software, and

― start and use methods (transform) of the BTF.

All experiments have been performed a 2.5GHz

desktop computer equipped with 512MB RAM. The test
machine is using the Microsoft Windows XP operating
system.

5. RESULTS

The results of our experiments are shown in Table 1 and
Figure 6 respectively. Table 1 provides the runtime
measurements of the different transformations and test
modes. The first two columns contain information about
the test data and transformation method used, i.e., CITY
and SHANGHAI describe JPEG2000 images whereas
FOREMAN and AKIYO describe MPEG-4 VESs. The
next three columns present the actual results of the
experiments in milliseconds as an average value of five
consecutive measurements. The third column represents
the results for (TM-1), the fourth column the results for
(TM-2), and the last column contains the results for (TM-
3). Figure 6 provides average runtime measurements of
the three test modes among the test data, i.e., the average
for each test data has been calculated using the values
from Table 1.

2 www.jdom.org

Table 1 — Runtime results of the different transformations and test
modes.

Test data Transform.
Method

(TM-1)
[ms]

(TM-2)
[ms]

(TM-3)
[ms]

color 1692.60 3555.27 402.00
quality 1630.60 3493.27 360.00 CITY
spatial 1898.80 3761.47 526.00
color 2930.00 6989.83 2508.00

quality 2347.80 6407.63 2306.00 SHANGHAI
spatial 3363.00 7422.83 3280.00
B-VOP 1542.60 2826.40 918.00 FOREMAN
scene 1151.20 2665.20 334.00

B-VOP 1540.20 2918.20 912.00 AKIYO
scene 1023.60 2433.60 328.00

1,740.67

2,880.27

1,346.90 1,281.90

3,603.33

6,940.10

2,745.80 2,675.90

429.33

2,698.00

626.00 620.00

0

1000

2000

3000

4000

5000

6000

7000

8000

CITY SHANGHAI FOREMAN AKIYO

Data sets

Av
er

ag
e

ru
nt

im
e

in
 m

s

(TM-1)
(TM-2)
(TM-3)

Figure 6 — Runtime comparison of the different transformations and

test modes.

Looking at these run times, we observe an average
performance gain between (TM-3) and (TM-2) of about
75%. Note that between (TM-3) and (TM-1) the
performance gain is still about 46% on average. In
particular, the XML transformation within the binary
domain is up to 4 times faster than using plain text XML
transformation tools and up to 9 times faster compared to
(TM-2), i.e., BiM decoding, applying XSLT, and BiM
encoding.

In the next section we will provide a detailed
discussion of our results.

6. DISCUSSION

Our experiments have shown that the transformation of
MPEG-21 (XML-based) metadata within the binary
domain, as introduced in this paper, provides performance
gains up to a factor of 4. These results can be explained
due to the fact that our approach is based on binary bit
pattern matching whereas traditional XML transformation
tools use string comparisons which are quite cost-
intensive.
 The simple combination of XML transformation and
BiM coding is very slow due to the en-/decoding
overhead. However, following this approach the network
load is reduced compared to transmission of plain text
encoded XML documents. Furthermore, BiM enhances
XML with streaming capabilities which can be exploited
by corresponding transformation tools like STX.
 The performance differences regarding the actual
processing time between traditional XML transformation
methods and our binary transformation approach becomes
smaller, the more complex the structure of the metadata
documents are. Thus, more AUs and FUUs are requires in
order to transform the document within the binary domain
which increases the complexity and explains this
convergence. However, the experiments have emphasized
that traditional XML transformations never reached the
performance of the binary transformation.

Another advantage of our transformation method can
be found in the much smaller resource requirements
regarding the memory of the processing machine. This
results from the fact, that before applying any
transformation, a legacy XSLT processor has to load the
complete XML document into its memory which can
cause serious resource problems when processing large
files. Using our transformation method it is only necessary
to read small parts of the (streamed) input document at the
time.

Furthermore, the advantages of binary compression
and the ability of streaming data can only be used in
combination with such a binary representation of the
metadata.

7. RELATED WORK

Traditional XML transformation tools have their focus on
transforming only plain text encoded XML descriptions.
XSLT [10] is its most popular representative which has
the status of a W3C recommendation and many
implementations and tools are available. One major
drawback of XSLT is that the complete XML description
must be in memory before being processed which is a
burden in streaming scenarios. STX [11] which is based
on SAX (Simple API for XML) events seems to be a
promising candidate to overcome this burden but still
operates on plain text XML. Tools like FXT (Functional
XML Transformation) [12], XDuce [13], and HaXml [14]
are not that established but operate on plain text as well.

Further related work can be found in [15] which
provide an evaluation of several binary XML encoding
optimizations, i.e., alternative serialization format,
tokenization, and skip-to pointers. Note that BiM provides
all these features. However, the evaluation in [15]
concentrated on parsing performance only and has shown
that such optimization facilitate a performance gain up to
a factor of 6 (for parsing only) – depending on the
document structure and the required information –

compared to the fasted XML parser they were aware of
(i.e., xpat [16]).Finally, several articles such as [9] claim
that BiM provides facilities for transforming XML data
within the binary domain. In practice, however, at the
time of writing this paper we were not aware of any paper
dealing with this issue in detail. Therefore, we came to the
conclusion that currently no work which is directly related
to our work exists.

8. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for
transforming XML-based MPEG-21 metadata (gBSDs)
within the binary domain. Furthermore, we evaluated our
approach and compared it with traditional XML
transformation techniques. While the results are very
promising some (research) issues are still unsolved which
lead to couple of future work items. The next steps
include extending this approach to content-related timed
XML-based metadata in general as well as improving the
efficiency, e.g., by using optimized BiM software instead
of the reference software, and decreasing the possibly
large number of FUUs for very fine grained gBSDs by
using an efficient payload parsers. Finally, we will work
on the actual syntax and semantics of the application
parameters which currently only available in an ad-hoc
mode. Based on a subset of the XSLT specification and
pre-defined style sheet templates for the identified most
common operations we will work on a model and
implementation which map these style sheet templates to
appropriate BiM operations.

9. ACKNOWLEDGMENTS

This work was funded in part by the FWF (Fonds zur
Förderung der wissenschaftlichen Forschung - Austrian
Science Fund) under the project number P14789.

10. REFERENCES

[1] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting
Multimedia Internet Content for Universal Access”, IEEE
Trans. on Multimedia, vol. 1, no. 1, Jan.-Mar. 1999, pp.
104-114.

[2] F. Pereira and I. Burnett, “Universal Multimedia
Experiences for Tomorrow,” IEEE Signal Processing
Magazine, vol. 20, no. 2, Mar., 2003, pp. 63-73.

[3] M. Davis, S. King, N. Good and R. Sarvas, “From context
to content: leveraging context to infer media metadata”,

Proceedings of 12th annual ACM international conference
on Multimedia, New York, NY, USA, Oct. 2004, pp. 183-
195.

[4] A. Vetro, C. Christopoulos, and T. Ebrahami, eds., IEEE
Signal Processing Magazine, special issue on Universal
Multimedia Access, vol. 20, no. 2, March 2003..

[5] I. Burnett et al., “MPEG-21: Goals and Achievements,”
IEEE MultiMedia Magazine, vol. 10, no. 6, Oct.-Dec.
2003, pp. 60-70.

[6] A. Vetro and C. Timmerer, “Digital Item Adaptation:
Overview of Standardization and Research Activities”, to
appear in IEEE Trans. on Multimedia, vol. 7, no. 3, Jun.
2005.

[7] L. Böszörményi, H. Hellwagner, H. Kosch, M. Libsie, and
S. Podlipnig, “Metadata Driven Adaptation in the
ADMITS Project”, EURASIP Signal Processing: Image
Communication Journal, vol. 18, no. 8, Sep. 2003, pp. 749-
766.

[8] K. El-Khatib, G. v. Bochmann, and A. El Saddik, “A QoS-
Based Framework for Distributed Content Adaptation”,
Proceedings of the IEEE International Conference on
Quality of Service in Heterogeneous Wired/Wireless
Networks (QSHINE), Dallas, TX, Oct. 2004, pp. 300-303.

[9] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A.
Kaup, “An MPEG-7 tool for compression and streaming of
XML data”, Proceedings of the 2002 IEEE Int’l Conf. on
Multimedia and Expo (ICME), vol. 1, Lausanne,
Switzerland, Aug. 2002, pp. 521–524.

[10] World Wide Web Consortium (W3C), “XSL
Transformations (XSLT) Version 1.0”, W3C
Recommendation, Nov. 1999, available at
http://www.w3.org/TR/xslt.

[11] “Streaming Transformations for XML (STX) Version 1.0”,
Working Draft, Jul. 2004, available at
http://stx.sourceforge.net/.

[12] A. Berlea, H. Seidl, “Fxt - A Transformation Tool for
XML Documents”, Proceedings of the Int’l XML
Conference & Exposition, Dec. 2001.

[13] H. Hosoya and B. C. Pierce, “XDuce: A typed XML
processing language”. ACM Transactions on Internet
Technology, vol. 3, no. 2, May 2003, pp. 117-148.

[14] M. Wallace and C. Runciman, “Haskell and XML: Generic
Combinators or Type-Based Translation?”, Proceedings of
the Int’l Conf. on Functional Programming, September
1999, pp. 148-259.

[15] R. J. Bayardo, D. Gruhl, V. Josifovski, J. Myllymaki, “An
Evaluation of Binary XML Encoding Optimizations for
Fast Stream Based XML Processing”, Proceedings of the
13th Int’l Word Wide Web Conf., New York, USA, May,
2003, pp. 345-354.

[16] C. Cooper, “Using expat”, xml.com, 1999, available at
http://www.xml.com/pub/a/1999/09/expat/index.html.

	cbmi05_final.pdf
	ABSTRACT
	INTRODUCTION
	MOTIVATION AND BACKGROUND
	BINARY TRANSFORMATION OF MPEG-21 METADATA
	Usage scenarios
	Mapping metadata to BiM access units
	Transformation within the binary domain
	Binary Transformation Framework (BTF)

	EXPERIMENTAL SETUP
	Datasets
	Testing modes
	Test environment

	RESULTS
	DISCUSSION
	RELATED WORK
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

