

Dipl.-Ing. Michael Grafl, Bakk.techn.

Scalable Media Delivery Chain

with Distributed Adaptation

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

1. Begutachter: Univ.-Prof. DI Dr. Hermann Hellwagner

 Institut für Informationstechnologie

 Alpen-Adria-Universität Klagenfurt

2. Begutachter: Dr. Cyril Concolato

 Département Traitement du Signal et des Images

 Ecole Nationale Supérieure des Télécommunications, Paris

 (Télécom ParisTech)

Juni 2013

Ehrenwörtliche Erklärung
Ich erkläre ehrenwörtlich, dass ich die vorliegende wissenschaftliche Arbeit

selbstständig angefertigt und die mit ihr unmittelbar verbundenen Tätigkeiten selbst

erbracht habe. Ich erkläre weiters, dass ich keine anderen als die angegebenen

Hilfsmittel benutzt habe. Alle ausgedruckten, ungedruckten oder dem Internet im

Wortlaut oder im wesentlichen Inhalt übernommenen Formulierungen und Konzepte

sind gemäß den Regeln für wissenschaftliche Arbeiten zitiert und durch Fußnoten

bzw. durch andere genaue Quellenangaben gekennzeichnet.

Die während des Arbeitsvorganges gewährte Unterstützung einschließlich

signifikanter Betreuungshinweise ist vollständig angegeben.

Die wissenschaftliche Arbeit ist noch keiner anderen Prüfungsbehörde vorgelegt

worden. Diese Arbeit wurde in gedruckter und elektronischer Form abgegeben. Ich

bestätige, dass der Inhalt der digitalen Version vollständig mit dem der gedruckten

Version übereinstimmt.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Michael Grafl Klagenfurt, 28.06.2013

Declaration of Honour
I hereby confirm on my honour that I personally prepared the present academic work

and carried out myself the activities directly involved with it. I also confirm that I have

used no resources other than those declared. All formulations and concepts adopted

literally or in their essential content from printed, unprinted or Internet sources have

been cited according to the rules for academic work and identified by means of

footnotes or other precise indications of source.

The support provided during the work, including significant assistance from my

supervisor has been indicated in full.

The academic work has not been submitted to any other examination authority. The

work is submitted in printed and electronic form. I confirm that the content of the

digital version is completely identical to that of the printed version.

I am aware that a false declaration will have legal consequences.

Michael Grafl Klagenfurt, 28.06.2013

Acknowledgements V

Acknowledgements
I would like to thank Univ.-Prof. Dr. Hermann Hellwagner, Dr. Christian Timmerer,

and Dr. Cyril Concolato for their guidance, support, and very valuable feedback on

my work.

Several co-authors have contributed to the papers comprised in this thesis, to whom I

am very grateful: Christian Timmerer, Hermann Hellwagner, Daniele Renzi, Daniel

Negru, Stefano Battista, Eugen Borcoci, Alex Chernilov, Wael Cherif, Anne-Lore

Mevel, Markus Waltl, George Xilouris, Angelos-Christos G. Anadiotis, Jaime

Delgado, Angelo Difino, Sam Dutton, Michael Eberhard, Georgios Gardikis, Adlen

Ksentini, Panos Kudumakis, Stefan Lederer, Silvia Llorente, Keith Mitchell,

Christopher Müller, Benjamin Rainer, Víctor Rodríguez-Doncel, Mark Sandler,

Giuseppe Tropea, Iakovos S. Venieris, Xin Wang, and Nikolaos Zotos.

Furthermore, I would like to thank my colleagues for helping and enduring me,

especially Dr. Markus Waltl for implementation and integration efforts on countless

occasions, DI Stefan Lederer for his help with simulation results, DI Christopher

Müller for his support on DASH, DI Benjamin Rainer for his lessons in statistics, and

DI Daniela Pohl. I am also grateful to many partners in the ALICANTE project for

their support and assistance, especially Daniele Renzi, MSc, for his assistance with

the bSoft SVC encoder, Wael Cherif, MSc, for his help on SVC encoding evaluations,

and Stefano Battista, ME, for his efforts in maintaining and improving the bSoft

encoder.

Most of all, I would like to thank Nina Winkler, Bakk.techn., for all her support,

encouragement, feedback, advice, and care. Heartfelt thanks also go to my whole

family for their support during my education, especially to my mother, Andrea Grafl.

This work was supported in part by the EC in the context of the ALICANTE project

(FP7-ICT-248652).

Kurzfassung VII

Kurzfassung

Auf Fernsehern, PCs, Tablets und Mobiltelefonen ist Videostreaming ein ständiger Begleiter

unseres täglichen Lebens geworden. Für jedes Video erwarten wir hohe visuelle Qualität, frei von

Unterbrechungen oder Verzerrungen, die an das jeweilige Gerät angepasst ist. Aber wie können

Streaming-Systeme mit steigendem Datenverkehr, daraus resultierenden

Netzwerküberlastungen, sowie den verschiedenen Charakteristika der Ausgabegeräte umgehen?

Diese Dissertation behandelt Ansätze zur verteilten Adaptierung skalierbarer Videoströme für

Medienübertragungen. Skalierbare Videoströme bestehen aus mehreren Schichten, die

verschiedene Auflösungen, Bildwiederholraten oder Qualitätsstufen des Inhalts ermöglichen.

Durch das Weglassen einiger dieser Schichten kann das Video an die verfügbare Bandbreite

oder ein bestimmtes Ausgabegerät angepasst werden. Die Adaptierung kann auf der

Senderseite, auf der Empfängerseite, sowie auf einem oder mehreren Netzwerkknoten

durchgeführt werden. Skalierbare Videocodierung kann auch helfen, Bandbreitenanforderungen

in Multicast-Szenarios (z.B. für IPTV) zu reduzieren. Eine berühmte Realisierung skalierbarer

Videocodierung ist der Scalable Video Coding (SVC) Standard. Diese Dissertation besteht aus

drei Hauptteilen, die sich mit verschiedensten Herausforderungen für effiziente SVC Adaptierung

befassen.

Der erste Teil dieser Dissertation widmet sich der Codierung von SVC. Um effiziente Adaptierung

zu ermöglichen, muss zum Zeitpunkt der Codierung die Konfiguration der Schichten sorgfältig

gewählt werden. Daher wird die Performanz verschiedenster Codierungskonfigurationen und

Encoder-Implementierungen evaluiert. Außerdem werden Codierungsrichtlinien für SVC

entwickelt, die im Einklang mit den Empfehlungen industrieller Streaming-Lösungen stehen. Die

Evaluierungsresultate der entwickelten Codierungsrichtlinien legen nahe, dass

Qualitätsskalierung gegenüber Auflösungsskalierung bevorzugt werden sollte. Unterschiedliche

Auflösungen zur Unterstützung von Ausgabegeräte-Klassen sollten stattdessen als separate

SVC-Ströme bereitgestellt werden.

Der zweite Teil dieser Dissertation beschäftigt sich mit der Tatsache, dass skalierbare

Medienformate, wie beispielsweise SVC, nach wie vor weder auf der Senderseite noch auf

Ausgabegeräten weit verbreitet sind. Um die Verwendung von SVC für die Netzwerkübertragung

zu ermöglichen und um die Streaming-Unterstützung zu verschiedenartigen Ausgabegeräten zu

verbessern, wird in dieser Dissertation das Konzept des SVC Tunneling eingeführt. Das Video

wird auf der Senderseite in SVC transcodiert und später auf der Empfängerseite auf einem

erweiterten Home-Gateway wieder zurück in ein anderes Videoformat transcodiert. Das

Transcodieren zwischen Videoformaten hat jedoch einen negativen Einfluss auf die

Videoqualität. Der Trade-Off zwischen dem Qualitätsverlust und der Bandbreiteneffizienz wird

evaluiert. SVC Tunneling mit Qualitätsschichten ermöglicht Bandbreiteneinsparungen bei

moderatem Qualitätsverlust (ca. 2,5 dB) im Vergleich zum Streaming separater nicht-skalierbarer

Repräsentationen der gleichen Qualitäten.

Im dritten Teil dieser Dissertation werden Adaptierungstechniken für sogenannte Content-Aware

Networks untersucht. In Content-Aware Networks sind manche Netzwerkknoten fähig,

Videoströme in Reaktion auf schwankende Netzwerklasten dynamisch zu adaptieren. Mit der

steigenden Verbreitung von HTTP Streaming wird client-seitige Adaptierung zu einem

Hauptfaktor des Betrachtungserlebnisses. Das Umschalten zwischen zwei Repräsentationen

(z.B. unterschiedlichen Bitraten) eines Videos kann dieses Betrachtungserlebnis stören. Um den

Effekt eines abrupten Qualitätswechsels zu reduzieren, wird das Konzept eines weichen

Übergangs zwischen den Repräsentationen entwickelt und evaluiert. Eine subjektive

Benutzerstudie deutet darauf hin, dass durch diesen Ansatz die gesamte Betrachtungsqualität

tatsächlich gesteigert werden kann. Abschließend werden die Erkenntnisse der vorherigen Teile

in einem adaptiven Ende-zu-Ende-SVC-Streaming-System integriert. Evaluierungen dieses

Streaming-Systems zeigen, dass das entwickelte Adaptierungsframework die Videoqualität unter

Paketverlust im Vergleich zu nicht-adaptivem Streaming maßgeblich (um bis zu 6 dB) verbessert.

Abstract IX

Abstract

On TV screens, PCs, tablets, and mobile phones, video streaming has become a constant

companion in our daily lives. For every video, we expect high visual quality, free from distortions,

that is adjusted to the device at hand. But how can streaming systems cope with the increasing

network traffic, the subsequent network congestions, and the different characteristics of end-user

terminals?

This thesis covers approaches for distributed adaptation of scalable video resources in media

delivery. Scalable video resources consist of several layers that enable various spatial

resolutions, frame rates, or qualities of a content. By dropping some of these layers, the video

can be adjusted to the available bandwidth or to a specific end-user terminal. The adaptation can

be performed on the sender side, on the receiver side, and on one or more network nodes.

Scalable media coding can also help to reduce bandwidth requirements in multicast scenarios

(e.g., for IPTV). One popular realization of scalable media coding is the Scalable Video Coding

(SVC) standard. This thesis consists of three main parts, addressing various challenges towards

efficient SVC adaptation.

The first part of this thesis focuses on the encoding of SVC. In order to enable efficient

adaptation, the configuration of layers has to be carefully chosen at encoding time. Thus, the

performances of various encoding configurations and encoder implementations are evaluated.

Furthermore, encoding guidelines for SVC are developed, which are aligned with

recommendations of industry streaming solutions. The evaluation results of the developed SVC

encoding guidelines suggest that quality scalability should be preferred over spatial scalability for

adaptive streaming scenarios. Different resolutions for supporting device classes should rather be

provided as separate SVC streams.

The second part of this thesis deals with the fact that scalable media formats, such as SVC, are

still not widely adopted neither on the sender side nor on the end-user terminal. In order to enable

the deployment of SVC for network transmission and to improve the support for streaming to

heterogeneous devices, the concept of SVC tunneling is introduced in this thesis. The video is

transcoded to SVC at the sender side and then transcoded back to another video format at the

receiver side at an advanced home-gateway. However, the transcoding between video formats

has a negative impact on the video quality. The trade-off between quality loss and bandwidth

efficiency of SVC tunneling is evaluated. SVC tunneling with quality layers enables bandwidth

savings at moderate quality loss (approx. 2.5 dB) compared to streaming separate non-scalable

representations of the same qualities.

In the third part of this thesis, adaptation techniques for content-aware networks are investigated.

In content-aware networks, some network nodes are capable to dynamically adapt video streams

in reaction to varying network loads. With the increasing adoption of HTTP streaming, adaptation

at the client side becomes a main factor for the viewing experience. The switch between two

representations (e.g., different bitrates) of a video can disrupt that viewing experience. To reduce

the effect of an abrupt quality change, the approach of a smooth transition between

representations is developed and evaluated. A subjective user study indicates that this approach

can indeed improve the overall viewing quality. Finally, the findings of the previous parts are

integrated in an adaptive end-to-end SVC streaming system. Evaluations of this streaming

system show that the developed adaptation framework significantly improves the video quality

under packet loss (by up to 6 dB) compared to non-adaptive streaming.

Table of Contents XI

Table of Contents

1 Introduction 1

1.1 Motivation 1

1.2 Research Objectives 2

1.3 Contributions 3

1.4 Structure 4

2 Technical Background 7

2.1 Video Coding 7

2.1.1 Encoding Tools 7

2.1.2 Advanced Video Coding 8

2.2 Scalable Video Coding 10

2.3 ALICANTE Project 12

2.3.1 ALICANTE Architecture 12

2.3.1.1 Overview 13

2.3.1.2 Scalable Video Coding and Content-Aware Networks 13

2.3.1.3 Media Streaming Advances 15

2.3.1.4 Towards Media Service Platform Technologies 15

2.3.2 Use Cases 16

2.3.2.1 Multicast/Broadcast 16

2.3.2.2 Home-Box Sharing 17

2.3.2.3 Video Conferencing 18

2.3.2.4 Peer-to-Peer Media Streaming 18

2.3.3 Research Challenges and Open Issues 18

2.3.3.1 Distributed Adaptation Decision-Taking Framework 19

2.3.3.2 Efficient, Scalable SVC Tunneling 20

2.3.3.3 Impact on the Quality of Service/Experience 20

2.4 Conclusions 21

3 Scalable Video Coding Framework 23

3.1 Introduction 23

3.2 Related Work 24

3.2.1 SVC Performance 24

3.2.2 Multi-Bitrate Streaming of Single-Layer Formats 26

3.3 Test-bed Setup 30

3.3.1 Deduced Bitrate Suggestions 30

3.3.2 SVC Encoders and Evaluation Metrics 34

XII Table of Contents

3.3.3 Selection of Test Sequences 36

3.4 High-Definition SVC Encoding Performance for Adaptive Media Streaming 37

3.4.1 Rate Control Modes 38

3.4.2 Combination of Spatial Scalability and MGS 43

3.4.3 Number of MGS Layers 44

3.4.4 Quality Scalability Modes 48

3.4.5 Requantization of MGS Layers 51

3.4.6 Encoding Durations 55

3.5 Hybrid SVC-DASH with High-Definition Content 56

3.5.1 Deployment of SVC in DASH 56

3.5.2 SVC Encoding Performance 59

3.5.2.1 Encoder Comparison and Bitrate Validation for 4 Quality Layers 59

3.5.2.2 Combination of Spatial Scalability and MGS 64

3.5.2.3 Combination of CGS and MGS 66

3.6 Conclusions 67

4 SVC Tunneling 71

4.1 Introduction 71

4.2 Concept and Considerations 73

4.2.1 SVC Transcoding 73

4.2.1.1 Transcoding to SVC 74

4.2.1.2 Transcoding from SVC 76

4.2.1.3 Repeated Transcoding 76

4.2.2 Partial SVC Tunneling 77

4.2.3 Delay and Rate Control Considerations 77

4.3 Evaluations 78

4.3.1 Same-Bitrate Evaluation 79

4.3.1.1 Initial Test-Bed Setup 79

4.3.1.2 Experimental Results 80

4.3.1.3 Discussion of Experimental Results 81

4.3.2 Comparing Rate Control Modes for SVC Tunneling 84

4.3.2.1 Test-Bed Setup and Quantization Considerations 84

4.3.2.2 Experimental Results and Discussion 88

4.3.3 Advanced Configuration Options for SVC Tunneling 90

4.3.3.1 Test-Bed Setup and Configuration Improvements 90

4.3.3.2 Experimental Results 91

4.3.3.3 Partial SVC Tunneling Evaluation 96

4.3.3.4 JSVM-Based Evaluation 97

4.4 Conclusions 99

Table of Contents XIII

5 Distributed Adaptation and Media Transport 103

5.1 Introduction 103

5.2 Scalable Media Coding Enabling Content-Aware Networking 104

5.2.1 Use Cases 105

5.2.1.1 Unicast Streaming 106

5.2.1.2 Multicast Streaming 106

5.2.1.3 Peer-to-Peer Streaming 107

5.2.1.4 Adaptive HTTP Streaming 108

5.2.2 Analysis of Use Cases 109

5.2.2.1 Flow Processing 109

5.2.2.2 Caching and Buffering 112

5.2.2.3 QoS/QoE Management 115

5.2.3 Conclusions 118

5.3 Distributed Adaptation Framework 119

5.3.1 Adaptation Framework Architecture 119

5.3.1.1 Adaptation Decision-Taking 120

5.3.1.2 Coordination of Adaptation Decisions 121

5.3.1.3 SVC Tunneling 121

5.3.2 Related Work 121

5.3.3 Adaptation at Network Edges 122

5.3.3.1 RTP Streaming 122

5.3.3.2 Adaptive HTTP Streaming 124

5.3.3.3 P2P Streaming 125

5.3.4 In-Network Adaptation 125

5.3.5 Scalability Considerations 126

5.4 SVC Adaptation 127

5.4.1 Related Work 127

5.4.1.1 Adaptation Strategies 128

5.4.1.2 Adaptation for HTTP Streaming 130

5.4.1.3 Standardization 132

5.4.1.4 Conclusions 133

5.4.2 Adaptation Logic 133

5.4.3 Smooth Transition between Representations 138

5.4.3.1 Introduction and Concept 138

5.4.3.2 Implementation Options 139

5.4.3.3 Evaluation 142

5.4.3.4 Conclusions 146

5.5 Validation of End-to-End Adaptation System 147

XIV Table of Contents

5.5.1 Test-Bed Setup 147

5.5.2 Evaluation 149

5.5.2.1 End-to-end Delay 149

5.5.2.2 Video Quality Impact 151

5.6 Conclusions 156

6 Conclusions and Future Work 161

6.1 Summary 161

6.2 Findings 162

6.3 Future Work 166

Annex A – Abbreviations and Acronyms 169

Annex B – Configurations of Tested Encoders 175

Annex C – Additional SVC Rate-Distortion Performance Results 199

Annex D – SVC Decoding and Transcoding Speeds 203

Annex E – Generation of Local MPD 205

Annex F – Questionnaire for the Subjective Evaluation of Representation

Switch Smoothing 207

Annex G – Adaptation Logic Implementation for MPEG-21 ADTE 209

Annex H – SVC-to-AVC Transcoder Rate-Distortion Performance Results 217

List of Figures 219

List of Tables 225

List of Listings 227

Bibliography 229

Introduction 1

1 Introduction

1.1 Motivation

When you think about it, digital video streaming is quite an impressive technological

achievement. A digitized sequence of pictures is compressed with such efficiency

that it can be sent as a stream of 0s and 1s over a packet-switched network such as

the Internet to a computer that is capable of reconstructing and displaying the

pictures in real-time. This requires first, efficient video coding formats, second, high-

bandwidth networks, and third, computers powerful enough to perform real-time

video decoding and playback. Since all these three aspects improve continuously,

higher resolutions, better video qualities, and higher frame rates become possible

and increasingly common.

As this technology is even available on our mobile phones, we also tend to utilize it

more and more often. Be it on TV screens, PCs, tablets, or mobile phones, video

streaming has become a constant companion in our daily lives. Our demands for

high-definition media streaming often increase faster than the necessary network

bandwidths. Thus, we have to cope with the increasing network traffic, the

subsequent network congestions, and many different characteristics of end-user

terminals. Those terminals have a plethora of different display resolutions and

processing capabilities. The particular configuration and encoding of the streamed

media does not necessarily match those capabilities. Network congestion results in

lower throughput, retransmission delay, or packet loss. Consequently, the end user

does not experience the desired quality. Adaptation helps to improve the quality of

experience in two respects. First, the streamed media can be adjusted to the terminal

in terms of spatial resolution, bitrate, coding format, etc. Second, the media bitstream

can be adjusted on the fly by reducing the bitrate to accommodate network

congestions. Special media coding techniques can aid the adaptation by making the

media representations scalable in terms of spatial resolution, bitrate, and frame rate.

Traditionally, adaptation is performed at the server side or at the client side. The

deployment of adaptation at network nodes can increase the flexibility of adaptation

operations, especially in case of network congestion. In the scope of a media-driven

Future Internet, adaptation at the network edges and even within the network

becomes increasingly relevant. That is, adaptation can be distributed between the

server, the client, and one or more network nodes. However, many challenges

remain as how to deploy, configure, and distribute adaptation operations. This thesis

will address some of the key research questions towards realizing a scalable media

delivery chain featuring distributed adaptation.

"Je n'ai fait celle-ci plus longue que parce que

je n'ai pas eu le loisir de la faire plus courte."

Blaise Pascal (1623-1662), Lettres provinciales

2 Introduction

1.2 Research Objectives

This thesis investigates mechanisms for distributed adaptation in scalable media

streaming systems. Distributed adaptation enables media streaming to

heterogeneous devices under varying network conditions. While previous works have

focused either on adaptation at network edges or on in-network adaptation, this

thesis will combine these approaches, enabling adaptation towards device

capabilities at the network edge as well as dynamic adaptation based on network

conditions during media delivery. The content-aware media delivery relies on

scalable media coding formats such as the Scalable Video Coding (SVC) extension

of H.264/AVC.

The research objectives of this thesis are:

(1) to evaluate the performance of SVC encoding configurations and scalability

features;

(2) to develop guidelines for SVC encoding in the context of adaptive media

streaming;

(3) to investigate the feasibility of SVC tunneling for device-independent

access;

(4) to analyze the effects of scalability features and adaptation configurations

on content- and context-aware media delivery;

(5) to investigate the applicability of distributed adaptation in content-aware

networks for different transport mechanisms;

(6) to evaluate the performance of distributed media adaptation in an end-to-

end streaming system.

The thesis will inquire reasonable encoding configurations for adaptive media

streaming and evaluate their rate-distortion performance (1). Encoding configurations

are guided by display characteristics of typical end-user devices and by realistic

network bandwidth estimations. Furthermore, the scalability features of the encoding

configurations depend on the anticipated adaptation operations.

In conjunction with the performance evaluations of SVC encoding configurations,

guidelines will be developed for the encoding and deployment of SVC for adaptive

media streaming (2). They shall comprise suitable resolutions and bitrates, as well as

recommendations for the use and configuration of spatial and quality scalability in

SVC. In particular, the thesis will investigate whether a single SVC bitstream is

always the most suitable choice for streaming of heterogeneous devices.

The concept of SVC tunneling allows for device-independent media access in a

scalable media streaming system. Inspired by IPv6-over-IPv4 tunneling, content can

be converted to and from SVC on the network edges, enabling both delivery of

content originally encoded in a non-scalable media format and consumption by

Introduction 3

devices without built-in support for scalable media formats. The feasibility and

performance of this concept will be evaluated (3).

If network nodes are aware of the transported content and its scalability features (i.e.,

its spatial, quality, and temporal layers), they can intelligently adapt the content in

order to preserve a satisfactory Quality of Experience (QoE) for the end user in case

of network congestion. Furthermore, the awareness of an end user's context and the

capabilities of end-user terminals allow for advanced adaptation at the network

edges. These potentials pose many challenges for the configuration of scalability

features and adaptation algorithms. Suitable choices of adaptation configurations will

result in guidelines on what, where, when, and how often to adapt (4).

SVC is traditionally transported over the Real-time Transport Protocol (RTP), but with

the advance of Dynamic Adaptive Streaming over HTTP (DASH), transport of SVC

over HTTP becomes increasingly popular. Another transport mechanism is peer-to-

peer (P2P) streaming that allows the retrieval of SVC layers from multiple peers.

Media-Aware Network Elements (MANEs) may process and cache SVC layers to

improve the network resource utilization and, ultimately, the QoE for the end user.

Media- or content-awareness refers to a network node's ability to intelligently handle

the forwarded data based on a limited knowledge about the nature of that data. This

thesis will analyze the impact of different transport mechanisms on adaptive SVC

streaming in the context of content-aware networking (5).

Finally, the thesis will evaluate the performance of distributed adaptation in an end-

to-end streaming system (6). This end-to-end streaming system will demonstrate the

integration of SVC encoding guidelines and SVC tunneling over a content-aware

network with distributed adaptation. The performance will be evaluated in terms of

end-to-end delay and impact on the video quality.

While this thesis covers a wide range of topics in the domain of scalable media

delivery, its main focus will be the deployment of SVC in a context-aware media

streaming system featuring distributed adaptation in the course of the EU FP7 project

ALICANTE.

1.3 Contributions

This thesis comprises multiple scientific contributions in the field of distributed

adaptation that have been published in the proceedings of international conferences

and workshops, in international standards, project deliverables, book chapters, and

journals.

The research on best practices of SVC encoding for adaptive media streaming was

published in [1] and [2]. While previous studies of SVC encoding performance

typically did not consider realistic encoding configurations as those used by actual

industry streaming solutions, our work has investigated encoding recommendations

of popular streaming solutions in order to devise guidelines for encoding scalable

media resources at multiple representations. Based on those guidelines, we

4 Introduction

performed extensive SVC encoding performance studies of multiple SVC encoder

implementations at various configurations for high-definition (1080p) content.

Furthermore, we proposed and evaluated the concept of hybrid SVC-DASH to

optimize the usage of SVC in adaptive HTTP streaming for heterogeneous devices.

The concept of SVC tunneling was introduced and evaluated in [3], [4], and [5].

Media resources are transcoded at the network edges to allow the use of SVC in the

network for fast adaptation and network resource optimization on the one hand, and

media access from heterogeneous devices on the other hand. We have evaluated

the trade-off between quality loss and bandwidth efficiency in order to enable

advanced control of transcoding configurations.

An overview of the ALICANTE architecture, along with research challenges for

scalable media adaptation in content-aware networks was published in [6] and

subsequently in [7]. The research challenges and innovation areas were further

evaluated in [5]. Additional information on the ALICANTE adaptation framework was

provided in the project deliverables [8] and [9].

Use cases and challenges for scalable media coding in content-aware networks were

published in [10] and [11]. The work has identified the advantages and open issues

of deploying scalable media coding for different forms of media transport (i.e., RTP

unicast and multicast, HTTP streaming, and P2P streaming) and explored the

potential of distributed adaptation in such settings. The distributed adaptation

framework of the ALICANTE architecture was demonstrated in an integrated end-to-

end streaming system prototype. Some auxiliary tools for this streaming system were

made available as open-source software [12][13].

For the particular issue of flickering experienced when adaptation is performed in

HTTP streaming, we have introduced the concept of smooth transitions between

representations, also referred to as representation switch smoothing [14]. Instead of

a single, noticeable switch between two (bitrate) representations, the video quality is

continuously adjusted to result in a smooth transition between those representations.

In the broader scope of interoperable media delivery towards the Future Internet,

contributions to International Standards for Multimedia Content Description

(MPEG-7) [15] and Multimedia Service Platform Technologies (MPEG-M) [16][17]

were made as documented in [18], [19], [20], and [21].

1.4 Structure

The remainder of this thesis is structured as follows. Chapter 2 will give an overview

of the technical background on Scalable Video Coding and on the ALICANTE project.

Chapter 3 will target encoding guidelines for SVC. In addition to recommendations

derived from industry solutions, we will also provide performance evaluations of

major encoder implementations at a wide range of encoding configurations.

Introduction 5

The concept of SVC tunneling will be introduced and evaluated in Chapter 4. SVC

tunneling allows the use of scalable media resources in the network, regardless of

the media coding formats deployed at the server or client. The goal is to facilitate

adaptation and to reduce network resource utilization in multicast streaming

scenarios. The necessary transcoding steps to and from SVC impact the video

quality. We will evaluate the trade-off between bandwidth savings and quality

degradation.

Distributed adaptation of SVC and various aspects of media transport will be

discussed in Chapter 5. In particular, use cases for scalable media coding in content-

aware networks will be analyzed and an in-depth discussion of SVC adaptation in the

context of the ALICANTE project will be given. An adaptive end-to-end streaming

demonstrator will be described and evaluated in that chapter as well.

Chapter 6 will conclude the thesis with a wrap-up of the research objectives and an

outlook on future work in this field.

Technical Background 7

2 Technical Background

Before we dive into the research carried out for this thesis, the following sections

provide some background on the involved technologies. We will explain how

scalability in video coding is achieved and how it can be utilized. Before that, a brief

introduction of video coding tools in general is provided. Towards the development of

a media delivery chain, an overview of the FP7 ALICANTE project is presented. The

key innovations and research challenges related to a distributed adaptation

framework within that project are also discussed.

The purpose of this chapter is for the reader to become familiar with the concepts of

SVC and content-aware media delivery. Special discussions of related work on

particular topics will be provided within the respective chapters.

Parts of the work presented in this chapter are published in [7], [6], [8], [19], [20], and

[21].

2.1 Video Coding

Digital video is nowadays omnipresent in many different forms (e.g., entertainment,

surveillance, communication) and on an increasing variety of devices. For this to

work, an efficient digital representation of moving pictures is necessary.

 Encoding Tools 2.1.1

In uncompressed, unencoded form, digital video simply comprises the color

information of each pixel, frame after frame. One possible representation of such raw

digital video is YUV, which contains the luminance component (Y), and the

chrominance components (U and V) of each pixel. As the human visual system is

more sensitive to luminance than to chrominance, luminance values are often

sampled at double the resolution of the corresponding chrominance values [22].

Video coding drastically reduces the size of a digital video through specialized

compression techniques. Video encoders partition a raw input picture into so-called

macroblocks, typically consisting of 16x16 samples for their processing. The main

processing tools of a typical video encoder are [23][24][25]:

 Image compression tools are deployed to compress each frame:

o The picture data is transformed from the spatial domain into the

frequency domain via a discrete Fourier-related transformation, such as

a discrete cosine transform (DCT) or Hadamard transform (HT). The

transformation removes spatial redundancy and, thus, allows for better

compression.

8 Technical Background

o The transform coefficients are quantized. That is, the transform

coefficients are divided by values specified in a quantization matrix. As

a result, the less significant transform coefficients become small or

even zero. This step loses image information as the precision of less

significant transform coefficients is reduced. The quantization is

controlled by a quantization parameter (QP), based on which the

quantization matrix is produced.

o Then, entropy coding is performed on the quantized transform

coefficients to compress the data.

 To reduce inter-frame redundancy, motion estimation (also known as motion

prediction) is deployed. For each block of luminance samples of the current

frame, a block-matching algorithm finds the best match in a reference frame.

The displacement is represented as a motion vector. Some video coding

formats also allow intra-prediction, where macroblocks are predicted from the

current frame (instead of a past or future reference frame).

 Motion compensation accounts for the mismatches between the motion

prediction model and the current frame itself. A motion-compensated residual

frame is produced and stored along with the motion vectors.

 Some video coding formats comprise also a deblocking filter that reduces the

visual artifacts from block-based transform and motion compensation. While

deblocking can also be performed as post-filtering after the decoder,

integration within the encoder loop improves the video quality [25].

Figure 1 shows a generalized block diagram of a typical video encoder.

For lossy video encoding, the QP determines the compression efficiency of the

coded video (i.e., the bitrate) as well as its visual quality, more precisely, the

distortion of the reconstructed frames. The relationship between bitrate and distortion

is called rate-distortion (RD) performance. The rate control of the encoding process is

either achieved by statically setting the QP or by applying a rate control algorithm

that dynamically adjusts the QP during encoding to achieve a certain bitrate.

 Advanced Video Coding 2.1.2

Video coding standards often specify only the decoder, leaving the encoder

counterpart open for competition and innovation. Throughout this thesis, we focus on

the deployment of the MPEG-4 Advanced Video Coding (AVC) International

Standard [23] and its extension for SVC. The standard was jointly developed by the

Moving Picture Experts Group (MPEG) and the International Telecommunication

Standardization Sector (ITU-T). The standard is formally known as ISO/IEC

14496-10 as well as ITU-T Rec. H.264. It is commonly referred to as H.264/AVC or

simply AVC.

Technical Background 9

H.264/AVC uses the low-complexity integer-based HT for the transformation into the

frequency domain. Entropy coding is performed either via context-adaptive variable

length coding (CAVLC) or context-adaptive binary arithmetic coding (CABAC). The

format supports inter-frame motion prediction and intra-frame prediction modes. The

decoding loop also includes a deblocking filter [23][25].

A coded frame can either be self-contained by relying only on intra-prediction

(I frame), or its macroblocks are predicted (P frame) from a (past or future) reference

frame, or its macroblocks are bi-predicted (B frame) from two reference frames.

(Technically, a frame is divided into one or more slices, to which the prediction

modes apply, and H.264/AVC specifies two additional types of slices as explained in

[25]. For the sake of this discussion, the notions of I, P, and B frames are sufficient.)

A self-contained set of consecutive frames is called a group of pictures (GOP). A

GOP limits error propagation in time and can provide entry points for a decoder as

the frames inside a GOP only reference each other but no frame from outside the

GOP. To facilitate random entry into a bitstream, instantaneous decoding refresh

(IDR) frames allow the decoder to initialize and to start decoding at a certain GOP.

This is especially useful for video transmission if the receiver wants to consume a

video stream that has already started.

The design of H.264/AVC covers a video coding layer (VCL), handling the actual

coded video data, and a network abstraction layer (NAL) that encapsulates the VCL

Figure 1: Generalized block diagram of an example video encoder, adopted from [25].

10 Technical Background

data into so-called NAL units (NALUs) and equips them with header information. The

NALU is designed to enable flexible media transport and storage. NALUs contain

video data (typically one frame or slice per NALU) as well as control information [24].

A coded video bitstream can be further encapsulated in a container format, such as

the MP4 file format [26]. The container also provides media access, synchronization,

and control information as well as other video, audio, and metadata streams. In

differentiation from the container format, a mere video (or audio) bitstream is often

called Elementary Stream (ES).

2.2 Scalable Video Coding

SVC follows a layered coding scheme comprising a base layer (BL) and one or more

enhancement layers (ELs) with various scalability dimensions [27]:

 Spatial scalability

A video is encoded at multiple spatial resolutions. By exploiting the correlation

between different representations of the same content with different spatial

resolutions, the data and decoded samples of lower resolutions can be used

to predict data or samples of higher resolutions in order to reduce the bitrate to

code the higher resolutions.

 Quality scalability

A spatial resolution can be encoded at different qualities. The data and

decoded samples of lower qualities can be used to predict data or samples of

higher qualities in order to reduce the bitrate to code the higher qualities.

Quality scalability is also known as signal-to-noise ratio (SNR) or bitrate

scalability.

 Temporal scalability

The motion compensation dependencies are structured so that complete

pictures (i.e., their associated packets) can be discarded from the bitstream,

thus, reducing the frame rate of the video. Note that temporal scalability is

already enabled by AVC and that SVC only provides supplemental

enhancement information (SEI) to improve its usage. A hierarchical prediction

structure between frames has to be used to allow temporal scalability [24].

To identify an enhancement layer, the NALU header provides information about the

comprised data. The NALU header specifies the dependency identifier (DID) for the

spatial layer, the quality identifier (QID) for the quality layer, and the temporal

identifier (TID) for the temporal layer.

SVC specifies two different modes for spatial scalability. With dyadic spatial

scalability, the resolution of a video is doubled (in both width and height) from one

layer to the next. With extended spatial scalability (ESS), the ratio between

Technical Background 11

resolutions can be arbitrary, involving even changes in aspect ratio and cropping

[28]. Temporal scalability also supports dyadic and nondyadic modes [27].

The concept of scalable media coding has been around for several decades, early

spatial scalability techniques for video are attributed to Jones [29] back in 1979 [30]

and all three scalability dimensions (spatial, temporal, and quality) were supported by

MPEG-2 [31], approved in 1994, via the scalable profile. However, scalability

features of MPEG-2 were never adopted by industry, mainly due to their high

compression overhead. In 2007, the SVC extension for H.264/MPEG-4 AVC was

standardized [32], providing a promising scalability coding scheme that reduced

compression overhead down to approx. 10% compared to AVC [33].

For audio coding, bitrate scalability is discussed, e.g., in [34], [35], and [36]. Note that

for multimedia streaming scenarios, video scalability is generally preferred over audio

scalability because video coding requires far higher bitrates than audio coding.

Note that throughout this work, the term SVC denotes the H.264/AVC extension,

while scalable media coding stands for the general concept.

SVC is not the only scalable media coding scheme available today. Wavelet-based

scalable video coding (WSVC) deploys discrete wavelet transform (DWT), an

operator that decomposes the original signal into a set of so-called subbands, to

obtain scalability [37]. Another technique of scalable media coding is Multiple

Description Coding (MDC) [38]. While SVC has a cumulative layered scheme, with

enhancement layers depending on lower layers, MDC encodes the content into

independent layers, called descriptions. The content can be reconstructed from any

subset of these descriptions. More descriptions yield better quality of the

reconstructed content. The independence of descriptions makes MDC well-suited for

application areas where a video is transported through multiple disjoint unreliable

channels.

SVC enables fast, low-complexity video adaptation, even on devices with restricted

computing resources, by avoiding computationally expensive transcoding operations.

Lower resolutions, frame rates, and bitrates can be extracted from the video

bitstream by removing unnecessary NALUs. A prerequisite for this adaptation is that

these extraction points have been foreseen at encoding time, i.e., that the encoder

has considered all adaptation operations that may subsequently be performed on the

video.

The main advantages of SVC (or scalable media coding in general) can be

summarized as follows:

 low-complexity adaptation that allows dynamic adjustment of video streaming

to the network conditions and device characteristics;

 media storage savings, i.e., a server only has to store a single SVC bitstream

instead of multiple representations for the different resolutions or bitrates it

offers;

12 Technical Background

 ensuing bandwidth utilization savings in certain scenarios such as multicast

streaming;

 selective treatment of SVC layers to enable:

o SVC-specific encryption to protect specific layers [39] – e.g., encryption

of some enhancement layers to provide a free low-quality version of a

video and to charge for higher quality in an entertainment media

streaming use case;

o unequal error protection [40] and differentiated routing/forwarding of

SVC layers, i.e., lower SVC layers receive higher error protection.

Detailed information on SVC and its coding tools can be found in [27].

2.3 ALICANTE Project

The demand for access to advanced, distributed media resources is nowadays

omnipresent due to the availability of Internet connectivity almost anywhere and

anytime, and of a variety of different devices. This calls for rethinking of the current

Internet architecture by making the network aware of which content is actually

transported. This section introduces the European FP7 Integrated Project "Media

Ecosystem Deployment through Ubiquitous Content-Aware Network Environments"

(ALICANTE) [41] that researches, among other topics, the deployment of SVC as a

tool for Content-Aware Networks (CANs). As this thesis focuses on the distributed

adaptation of SVC and on SVC-based media delivery in general, a description of the

project this research originated from contributes to a better comprehension of the

conveyed ideas. The architecture of ALICANTE with respect to SVC and CAN is

presented, use cases are described, and research challenges and open issues are

discussed.

 ALICANTE Architecture 2.3.1

In recent years the number of contents, devices, users, and means to communicate

over the Internet has grown rapidly and with that the heterogeneity of all the involved

entities. Many issues can be associated with that, which are generally referred to as

ongoing research in the area of the Future Internet (FI) [42]. One project in this area

is the FP7 project ALICANTE which proposes a novel concept towards the

deployment of a new networked Media Ecosystem. The proposed solution is based

on a flexible cooperation between providers, operators, and end users, finally

enabling every user (1) to access the offered multimedia services in various contexts,

and (2) to share and deliver her/his own audiovisual content dynamically, seamlessly,

and transparently to other users [43].

Technical Background 13

2.3.1.1 Overview

The ALICANTE architecture promotes advanced concepts such as content-

awareness to the network environment, network/user context-awareness to the

service environment, and adapted services/content to the end user for her/his best

service experience. The end user can take the role of a consumer and/or producer.

The term environment denotes a grouping of functions defined around the same

functional goal and possibly spanning, vertically, one or more architectural

(sub-)layers. This term is used to characterize a broader scope than the term layer.

Two novel virtual layers are proposed on top of the traditional network layer as

depicted in Figure 2: the CAN layer for network packet processing and a Home-Box

(HB) layer for the actual content adaptation and delivery. Furthermore, SVC is

heavily employed for the efficient, bandwidth-saving delivery of media resources

across heterogeneous environments. The ALICANTE project also contributed to

standardization actions in MPEG in order to foster interoperability of media service

platforms.

Innovative components instantiating the CAN are called MANEs. They are CAN-

enabled routers and offer content-aware and context-aware Quality of

Service/Experience (QoS/QoE), content-aware security, and monitoring features, in

cooperation with the other elements of the ecosystem.

At the upper layers, the Service Environment uses information delivered by the CAN

layer and enforces network-aware application procedures, in addition to user context-

aware ones. The Service Environment comprises Service Providers and Content

Providers (SP/CP) which offer high-level media services (e.g., video streaming, video

on demand, live TV) to the end users.

The novel proposed Home-Box entity is a physical and logical entity located at end

users' premises which is gathering context, content, and network information

essential for realizing the big picture. Associated with the architecture there exists an

open, metadata-driven, interoperable middleware for the adaptation of advanced,

distributed media resources to the users' preferences and heterogeneous contexts

enabling an improved Quality of Experience. The adaptation is deployed at both the

HB and CAN layers making use of scalable media resources as outlined below.

For more detailed information about the ALICANTE architecture, the interested

reader is referred to [43].

2.3.1.2 Scalable Video Coding and Content-Aware Networks

In the ALICANTE architecture, adaptation relies on SVC. The adaptation deployed at

the CAN layer is performed in a MANE [44]. MANEs, which receive feedback

messages about the terminal capabilities and delivery channel conditions, can

remove the non-required parts from a scalable bitstream before forwarding it. Thus,

the loss of important transmission units due to congestion can be avoided and the

14 Technical Background

overall error resilience of the video transmission service can be substantially

improved.

Design options for in-network adaptation of SVC have been described in previous

work [45] and first measurements of SVC-based adaptation in an off-the-shelf WiFi

router have been reported in [46]. More complex adaptation operations that are

required to create scalable media resources, such as transcoding [47] of media

resources which have increased memory or CPU requirements, are performed at the

edge nodes only, i.e., in the Home-Boxes. Therefore, the ALICANTE project has

developed an SVC (layered-multicast) tunnel, as detailed later on in Chapter 4,

inspired by IPv6-over-IPv4 tunnels. That is, within the CAN layer only scalable media

resources – such as SVC – are delivered adopting a layered-multicast approach [48]

which allows the adaptation of scalable media resources by the MANEs

implementing the concept of distributed adaptation. At the border to the user, i.e., the

Home-Box, adaptation modules are deployed enabling device-independent access to

the SVC-encoded content by providing X-to-SVC and SVC-to-X transcoding/rewriting

functions, where X={MPEG-2, MPEG-4 Visual, MPEG-4 AVC, etc.}. An advantage of

this approach is the reduction of the load on the network (i.e., no duplicates), making

it free for (other) data (e.g., more enhancement layers). However, multiple

adaptations may introduce challenges that have not been addressed in their full

complexity (cf. Section 2.3.3).

Due to multiple locations within the delivery network where content may be subject to

adaptation, we propose a distributed Adaptation Decision-Taking Framework (ADTF)

that coordinates the local adaptation decisions of modules at the content source, the

border to the user (Home-Box), and within the network at MANEs.

Figure 2: ALICANTE concept and system architecture, adopted from [7].

Technical Background 15

The key innovations of the ALICANTE project with respect to service/content

adaptation are as follows [8][5]:

 Better network resource utilization based on adaptation and maintaining a

satisfactory QoS/QoE: Content is encoded in or transcoded to scalable media

formats such as SVC for efficient layered multicast distribution enabling in-

network adaptation. End users and network devices provide QoS/QoE

feedback to the ADTF, to adjust the service in a distributed and dynamic way.

 Context information from multiple receivers is aggregated at MANEs and used

for local adaptation decision-taking. Additionally, adaptation decisions are

propagated within the media delivery network enabling distributed adaptation

decision-taking.

 Distributed coordination for optimal adaptation and improved bandwidth usage

involves the active participation of multiple entities across the media delivery

network such as adaptation decision-taking, actual adaptation, and QoS/QoE

probes.

2.3.1.3 Media Streaming Advances

While media streaming is traditionally performed via RTP [49], DASH [50] has

recently become popular both in the research community and industry solutions. In

DASH, a client realizes continuous streaming via the sequential download of

temporal media segments. The segments are listed in a Media Presentation

Description (MPD). The MPD also describes multiple representations of the same

content (e.g., at different resolutions or bitrates) between which the client can

dynamically switch. The ALICANTE and Social Sensor [51] projects have jointly

contributed to the implementation of tools for DASH [52].

In addition to RTP- and HTTP-based streaming, the ALICANTE architecture also

deploys P2P-streaming tools developed by the P2P-Next project [53].

2.3.1.4 Towards Media Service Platform Technologies

An advanced media ecosystem as envisaged by the ALICANTE project comprises

not only adaptive media delivery, but also innovation and interoperability along the

entire media-handling value chain. The media-handling value chain spans from

content creation and registration over editing, processing, and publication to delivery

and ultimately consumption. Therefore, the ALICANTE project has contributed to the

standardization of MPEG-M Elementary Services [16] and Service Aggregation [17]

in order to provide interoperable media services [54].

MPEG-M, also referred to as Multimedia Service Platform Technologies (MSPT), is a

suite of standards that has been developed for the purpose of enabling the easy

design and implementation of media services via devices that interoperate

seamlessly because they are all based on the same set of technologies, exposed

16 Technical Background

through standard APIs. MPEG-M specifies a set of Elementary Services and

respective protocols enabling distributed applications to exchange information related

to content items and parts thereof, including rights and protection information.

Service Aggregation specifies mechanisms for enabling the combination of

Elementary Services and other Services to build Aggregated Services. For example,

Elementary Services provide interfaces for processing (i.e., adaptation, transcoding,

etc.) or delivery of content [19].

For a detailed description of MPEG-M, the interested reader is referred to [55], [20],

and [21].

The ALICANTE and P2P-Next [53] projects have also jointly contributed to the

standardization of an amendment to MPEG-7 Multimedia Description Schemes

(MDS), targeting social metadata [15]. The amendment provides means for

describing a person in the context of social networks [56], fostering the integration of

social networking in interoperable future media ecosystems [18].

 Use Cases 2.3.2

In order to demonstrate the concept of SVC in the context of CANs/HBs, several use

cases have been defined, a selection of which is briefly introduced in the subsequent

sections.

2.3.2.1 Multicast/Broadcast

In this scenario, multiple users are consuming the same content from a single

provider (e.g., live transmission of sport events). The users may have different

terminals with certain capabilities as depicted in Figure 3. The ALICANTE

infrastructure is simplified in Figure 3 to highlight the interesting parts for this

scenario (i.e., the Home-Boxes and the MANEs). Note that the SVC layers depicted

in the figure are only examples and that SVC streams in ALICANTE may comprise

temporal, spatial, and quality (SNR) scalability with multiple layers. The properties

and numbers of SVC layers will be determined by the Home-Box at the

Service/Content Provider side based on several parameters (e.g., diversity of

terminal types, expected network fluctuations, size overhead for additional layers,

available resources for SVC encoding/transcoding, etc.) which are known a priori or

dynamically collected through a monitoring system operating across all network

layers.

Technical Background 17

2.3.2.2 Home-Box Sharing

In this scenario, a user consumes content through a foreign (shared) Home-Box,

e.g., the user accesses the content/service to which she/he has subscribed while

being abroad (e.g., business trip, vacation). Figure 4 depicts a user consuming

content at two different locations on two different terminals, connected to different

Home-Boxes. Note that the user might as well use a mobile phone to consume

content through HB2.

Figure 3: Multicast/broadcast use case with SVC adaptation, adopted from [7].

Figure 4: Home-Box sharing use case, adopted from [7].

18 Technical Background

2.3.2.3 Video Conferencing

This scenario consists of a video conferencing session (e.g., in family meetings,

office meetings, etc.) as depicted in Figure 5. The media distribution is handled over

a multicast shared bi-directional non-homogeneous tree in the ALICANTE network. In

such a way only the minimum amount of network resources are spent, while assuring

maximum quality to the end user. Assymetric connections (e.g., between HB2 and

MANE1 are also considered.

2.3.2.4 Peer-to-Peer Media Streaming

The Home-Boxes operate in P2P mode within the ALICANTE ecosystem as

illustrated in Figure 6. The MANEs, through which the P2P traffic flows, act as proxy

caches which intercept requests for content pieces issued by Home-Boxes and

aggregate them respecting the capabilities of requesting terminals. Furthermore,

content pieces are only forwarded if the requesting terminals can decode them.

Therefore, unnecessary traffic is reduced to a minimum freeing up the network

resources for other data (e.g., additional enhancement layers).

 Research Challenges and Open Issues 2.3.3

The heterogeneity of devices, platforms, and networks is and most likely will be a

constant companion within future media (Internet) ecosystems. Thus, we need to

provide tools to cope with that heterogeneity in order to support a maximum of use

cases while optimizing (network) resource utilization and improving QoE. One such

tool is the SVC tunneling approach featuring edge and in-network media adaptation.

Figure 5: Video conferencing use case, adopted from [7].

Technical Background 19

In this section we point out some research challenges and open issues with respect

to utilizing Scalable Video Coding within Content-Aware Networks.

2.3.3.1 Distributed Adaptation Decision-Taking Framework

Due to the fact that many, possibly heterogeneous entities are involved – in the

production, ingestion, distribution, and consumption stages – there is a need to

develop a framework for distributed adaptation decision-taking; that is, finding the

optimal decision regarding the adaptation of the content for a single entity (i.e.,

Home-Box, MANE) within a network of various entities in the delivery system. Note

that decision-taking is needed at the request stage and during the delivery of the

multimedia content as (network) conditions might change.

While the adaptation framework operates mainly at flow level – a flow denotes the

media stream data transmitted over an individual transport-layer session between

two network sockets – whereas the CAN management deals with control information

at an aggregated level (i.e., it is not aware of individual media streams). Appropriate

cooperation between them and mappings for monitoring and control information have

to be defined in order to ensure efficient use of transport resources.

The actual adaptation at both layers needs to be done efficiently, based on several

criteria, in order to obtain low (end-to-end) delay, minimum quality degradation, and

assuring scalability in terms of the number of sessions that can be handled in

parallel.

Figure 6: P2P media streaming use case, adopted from [7].

20 Technical Background

The following research questions arise:

 Where to adapt? At the content source, within the network (with multiple

options), at the receiving device, and combinations thereof.

 When to adapt? At request and during the delivery enabling dynamic, adaptive

streaming based on the user's context.

 How often to adapt? Too often may increase the risk of flickering, whereas too

seldom may result in stalling, both having a considerable impact on the QoE.

 How to adapt? The optimization towards bitrate, resolution, frame rate, SNR,

modality, accessibility, region-of-interest (ROI), etc. results in (too) many

possibilities and often depends on the actual content, genre, and application.

2.3.3.2 Efficient, Scalable SVC Tunneling

The approach of tunneling the content within SVC streams in the (core) network

opens up a number of issues due to SVC adaptation within the MANEs, SVC

transcoding/rewriting within the Home-Boxes, and the associated signaling

requirements. The issues range from efficiency and scalability to quality degradations

and latency:

 Minimum quality degradation and scalability w.r.t. the number of parallel

sessions and acceptable (end-to-end) latency.

 How can transcoding and adaptation steps be organized to minimize impact

on QoS and video quality?

 How many parallel sessions can be supported on network and client

equipment?

2.3.3.3 Impact on the Quality of Service/Experience

As there may be many adaptations happening during the delivery of the content, the

impact on QoS and QoE needs to be studied in order to find the best trade-off for the

use cases in questions. While for the QoS many objective measures are available,

the QoE is highly subjective and requires tests involving end users. These tests are

time consuming and costly. In any case, a good test-bed is needed for both objective

and subjective tests for the evaluation of the QoS and QoE, respectively. The

corresponding research challenges are:

 The QoS/QoE trade-off for the use cases and applications developed in

ALICANTE. One example is the trade-off between quality degradation due to

transcoding against the QoE gain of dynamic bitrate adaptation.

 Possible mappings of QoS to QoE. Established network QoS parameters

(such as packet loss, delay, and jitter) as well as objective video quality are

taken into account for estimating the viewing experience.

Technical Background 21

2.4 Conclusions

In this chapter, we have provided a brief overview of video coding principles and the

Scalable Video Coding technology. We have also introduced the usage of SVC in

Content-Aware Networks for various use cases. In particular, SVC is a promising tool

for making the network aware of the actual content being delivered, i.e., when it

comes to technical properties such as bitrate, frame rate, and spatial resolution.

Furthermore, it allows for efficient and easy-to-use in-network adaptation due to the

inherent structure of SVC.

The goal of the ALICANTE project is to provide an advanced Media Ecosystem that

enables the management of media services with respect to QoS and QoE on the one

hand, while delivering the media content at dynamically adaptable bitrates to

heterogeneous terminals on the other hand. The outlined use cases of the

ALICANTE architecture indicate the advantages of using SVC and in-network

adaptation. We have highlighted research challenges and open issues, some of

which will be tackled in the following chapters.

Scalable Video Coding Framework 23

3 Scalable Video Coding Framework

3.1 Introduction

The need for scalability (e.g., spatial, temporal, signal-to-noise ratio) in video coding

is often motivated to address heterogeneous environments in terms of terminal

characteristics (e.g., different resolutions) and network conditions (e.g., varying

available bandwidth). Recently, the development of a scalable extension for High

Efficiency Video Coding (HEVC) has started [57]. Today's state of the art solution is

SVC, an extension to the AVC standard which employs a cumulative layered coding

approach [27]. In addition to temporal scalability of AVC, SVC supports spatial and

quality scalability. Quality scalability can be achieved through coarse-grain scalability

(CGS), which uses the same mechanisms as spatial scalability but at a single

resolution, or through medium-grain scalability (MGS), which enables a finer

granularity for adaptation per video frame. For the MGS mode, most encoders, such

as the reference software Joint Scalable Video Model (JSVM) [58], perform

requantization, the QP for which is configured manually.

The deployment of SVC has an important role in adaptive media streaming. In

particular, it allows the adaptation to the users' contexts and enables in-network

adaptation in emerging content-aware networks [7]. MANEs can adapt SVC streams

on the fly during the delivery to accommodate changing network conditions (e.g.,

congestion) [45]. For this technique to work, the content has to be encoded

appropriately, taking expected terminal capabilities (such as resolution) and

characteristics of the codec into account.

SVC offers significantly more encoding configuration parameters than non-scalable

video formats due to the configurations of its layers. Suitable configurations depend

on the expected adaptations in a given use case. Possible use cases include Video

on Demand (VoD) streaming, multicast of live or non-live content, streaming of user-

generated content, video conferencing, and video surveillance. Each of these use

cases poses different requirements on adaptation and subsequently on the SVC

encoding configuration. In use cases where network transmission is involved, coding

efficiency is an important aspect of the encoding process. Constellation and number

of layers can have considerable impact on the coding efficiency.

This chapter devises encoding recommendations for SVC for adaptive media

streaming applications based on a survey of media streaming industry solutions. The

RD performance of these recommendations is validated for various encoders and

several further encoding configurations for adaptive media streaming are evaluated

for high-definition (HD) content. In our tests, we investigate appropriate SVC layer

configurations for selected streaming-related use cases and study the trade-off

between bandwidth requirements and video quality. We further extend our studies to

focus on SVC-based HTTP streaming.

24 Scalable Video Coding Framework

The majority of devised guidelines and performed evaluations on SVC apply to

streaming scenarios regardless of the media transport (i.e., RTP, P2P streaming, or

DASH). The implications of deploying SVC-based streaming in Content-Aware

Networks (CANs) with various media transports will be discussed in Chapter 5. Since

the delivery of SVC over DASH (SVC-DASH) has recently gained attention by the

research community [59][60][61][62], we also place special focus on SVC-DASH for

selected evaluations. In this context, we introduce the concept of Hybrid SVC-DASH,

which is based on the hypothesis that SVC encoding with one stream (including

several quality layers) per resolution is better suited for DASH than a single stream

that combines spatial and quality scalability. We validate our hypothesis in terms of

RD performance, and present further quality evaluations of SVC configurations

related to SVC-DASH.

The work presented in this chapter is published in [1] and [2].

In the following sections we first discuss related work and streaming

recommendations of prominent industry solutions, devise guidelines for SVC, present

the tested SVC encoders, explain the selection of test sequences, and then detail the

SVC configurations of our test scenarios. Thereafter we present and discuss test

results.

3.2 Related Work

 SVC Performance 3.2.1

A considerable amount of SVC performance tests is available in the technical

literature. Wien et al. [33] and Schwarz et al. [27] provide performance evaluations of

several encoding configurations, targeting spatial scalability (dyadic spatial scalability

and ESS) as well as quality scalability (CGS and MGS). Their evaluations indicate a

10% bitrate overhead of SVC compared to H.264/AVC, presuming no coding penalty

at the AVC-compatible base layer of the SVC bitstream. They also discuss low-level

encoding configurations, such as hierarchical prediction structures, inter-layer

prediction methods, and drift control. Spatial scalability of SVC is discussed and

evaluated in [28]. Guidelines for testing conditions of the JSVM for the development

of SVC by the Joint Video Team (JVT) are documented in [63]. An improved encoder

control is proposed in [64].

Based on the proclaimed 10% bitrate overhead of SVC, a subjective performance

evaluation [65] investigated the subjective quality of SVC for three different

application areas (mobile broadcast, video conferencing, HD broadcast). For mobile

broadcast and video conferencing, the study deployed two-layer SVC configurations

featuring spatial scalability and quality scalability separately and compared them to

H.264/AVC. The subjective quality ratings confirm the 10% bitrate overhead of SVC.

HD broadcasting material with quality scalability was compared to H.264/AVC

Scalable Video Coding Framework 25

encoding at the same bitrate, which also yielded overlapping subjective quality

ratings. An important aspect of the study is that it targets different application areas,

selecting typical video sequences and appropriate resolutions and bitrates for each

application area. However, the study is limited to configurations with two layers, the

base layer and one enhancement layer. A survey of subjective SVC evaluations is

given in [66]. A broader range of SVC settings is assessed in [67], including a test for

the best extraction path (i.e., whether to adapt in spatial, temporal, or quality

direction). Each test sequence was encoded with different resolutions and frame

rates, covering all spatio-temporal combinations, each layer at the same bitrate.

Subjective quality ratings indicated a higher preference of the highest frame rate (60

fps) rather than the highest resolution (4CIF – 704x576), in contrast to objective

methods, which had yielded better results for the highest resolution. Both subjective

and objective results show that lowest resolutions (QCIF – 176x144) and lowest

frame rates (7.5 fps) should be avoided. For further background on these

assessments, the interested reader is referred to [68] and [69].

An extensive study of SVC-based adaptation techniques was conducted in [70] and

[71], which classifies content based on motion intensity and structural features in

order to develop a utility function for adaptation decision-taking and a NALU

prioritization scheme. The study also examines viewing preferences w.r.t. spatial

resolutions and frame rates at various bitrates. However, it does not directly address

SVC layer configurations and their impact on video quality.

The SVC performance of full HD (1080p – i.e., 1920x1080, p indicates progressive

scan) video sequences was evaluated in a recent study [72]. The RD performance of

a fine-granular packet-dropping scheme that consecutively discards MGS

enhancement layer NALUs of lower temporal layers was analyzed. The evaluations

were conducted on two video sequences with a single SVC encoding configuration

using 1 CGS enhancement layer and 3 MGS enhancement layers. The results

indicate over 50% bitrate overhead compared to AVC. The authors have attributed

the overhead to the bad coding efficiency of the JSVM reference software

implementation. As we will show later in this chapter, the overhead was rather

caused by the selected encoding configuration (in particular by the number of layers

– the proclaimed 10% bitrate overhead apply per layer, not for the entire bitstream).

Our tests show that the JSVM exhibits the best coding efficiency of all tested SVC

encoders.

The quality and rate variability of CGS and MGS was evaluated in [73] for long-

running video sequences (about 54,000 frames per sequence) with various EL

configurations. The study concludes that the extraction mechanism for MGS is an

important aspect for the video quality and that an extraction mechanism based on

priority IDs performs considerably better than extracting MGS layers. Furthermore,

the results show 10-30% coding overhead for CGS with two ELs over single-layer

encoding and up to 83% for five ELs. Yang and Tang [74] performed an evaluation of

SVC configurations featuring 4 to 8 quality layers on CIF (352x288) and 4CIF test

sequences. The tests showed unexplained encoder anomalies and unstable RD

performance behavior at 8 layers.

26 Scalable Video Coding Framework

Scenarios for the use of SVC in IPTV services are presented in [75] along with an

evaluation of the scalability types of SVC. The evaluations comprise objective and

subjective test results of CIF and 4CIF test sequences. The work discusses the

application of SVC for IPTV and the benefits in terms of content portability, optimized

content management and distribution, smart management of access network

throughput, and improved QoS/QoE. Studies [76] and [77] investigate the application

of SVC for IPTV. A thorough comparison of AVC simulcast and SVC in terms of

required capacity is given in [76] by modeling user behavior of IPTV consumption

and channel switching. The findings indicate that SVC can reduce required network

capacity by around 18% compared to AVC simulcast in some scenarios. Further

evaluations of SVC for IPTV with content encoded at resolutions from QVGA

(320x240) up to 720p (1280x720) with variable bitrate (VBR) mode are given in [77].

The study investigates several parameters that influence the comparison of SVC vs.

AVC simulcast. The study developed a user behavior model for IPTV channel

consumption, switching, and selection of representations (i.e., quality versions). It

concludes that SVC is best suited for scenarios where most IPTV channels are being

requested at most of their quality versions at any given time. Lambert et al. [78]

discuss the deployment of SVC with spatial scalability for IPTV. Among others, they

point out the options for dealing with different aspect ratios at individual resolutions.

Most performance evaluations use different test sequences and do not provide exact

encoding configurations. Those circumstances make comparisons of results between

studies very hard. Nevertheless, the studies sketch an overall picture of a coding

scheme with around 10% coding overhead per EL, a significant quality drop towards

very low resolutions and frame rates, and the advantage of MGS over CGS for

quality scalability. The studies mainly focus on content with CIF resolutions, a few go

up to 4CIF and 720p resolutions. Although [65] tries to use realistic bitrates, none of

the studies performed evaluations based on bitrates used in actual industry solutions.

To the best of our knowledge, no considerable research has been conducted to

evaluate different SVC encoding configurations for adaptive media streaming of full

HD (1080p) content.

One major deployment of SVC is Google+ Hangout [79], a video conferencing tool

within the social networking website Google+. The tool uses SVC to enable video

delivery to heterogeneous devices and to adapt to the client's network conditions

[80]. A measurement study of Google+ Hangout and other video conferencing

systems is conducted in [81].

 Multi-Bitrate Streaming of Single-Layer Formats 3.2.2

Despite the academic activity and performance studies of SVC, scalable media

coding has only recently gained some attention by the industry [82]. In order to

establish recommendations for SVC-based video streaming, we take a look at

existing industry recommendations for multi-bitrate streaming of single-layer video

formats. (Note that in this context a single-layer format is characterized by the lack of

Scalable Video Coding Framework 27

spatial and quality scalability. In other words, we denote AVC as a single-layer

format, despite its support of temporal scalability.) Among the most prominent

streaming solutions and streaming platforms are: Apple HTTP Live Streaming (HLS)

[83], Adobe Dynamic Streaming [84][85], Microsoft Smooth Streaming [86], YouTube

[87], Netflix [88], Hulu [89], and MTV [90]. Furthermore, Google+ Hangout [79] and

Facebook Video Calling [91] based on a Skype [92] plugin are popular web-based

video conferencing tools. Several of these technologies provide recommendations for

content encoding: Apple HLS [93], Apple QuickTime [94], Adobe HTTP Dynamic

Streaming [95], Adobe Flash Media Server [96], Microsoft Smooth Streaming

[97][98], YouTube [99][100], and MTV [97].

In this section, we analyze those recommendations and later on deduce suggestions

for SVC streaming.

The spatial resolutions listed in those recommendations range from QCIF (176x144)

at bitrates around 50 kbps (even 112x64 for thumbnail display, to be precise) up to

1920x1080 at maximum bitrates around 8 Mbps. The most comprehensive

recommendations are for Apple HLS and Adobe Dynamic Streaming.

Apple HLS recommends resolutions around 416x234 for streaming in 16:9 aspect

ratio to cellular networks and 640x480 up to 1280x720 for WiFi networks, along with

bitrate, frame rate, and profile suggestions [93]. The recommendation contains

typically 2 or 3 bitrates per resolution. Furthermore, Apple provides encoding

recommendations for QuickTime [101], specifying resolutions, frame rates, and

bitrates for different use scenarios [94]. The bitrates suggested for QuickTime (up to

6 Mbps for 720p) are higher than those for HLS (up to 4,500 kbps for 720p). Also, the

QuickTime recommendations provide an additional use scenario with a resolution of

1080p.

Adobe provides encoding recommendations for multiple bitrate delivery in Flash

Media Server with resolutions from 176x144 up to 1280x720, targeting different

categories of connection speeds [96]. Its recommendation lists suggested bitrates (2

bitrates per resolution) and the percentage of US broadband consumers with

sufficient bandwidth to support the respective bitrate in 2008. For example, 69% of

US consumers were capable of receiving a resolution of 1280x720 at 2,400 kbps.

While Adobe Flash Media Server realizes streaming via the proprietary Real-Time

Messaging Protocol (RTMP) [102], Adobe also provides comprehensive encoding

recommendations for its HTTP Dynamic Streaming solution [95]. The

recommendations feature seven different variants of multi-bitrate configurations with

resolutions ranging from 256x144 up to 1920x1080. The variants have up to 14

streams with between three and five different resolutions. Note that the

recommendations focus on an aspect ratio of 16:9, although for resolutions of

768x432 and below they also present alternatives in 4:3 aspect ratio.

Most encoding recommendations rely on a single frame rate (around 24 to 30 fps) for

all content representations. Adobe Flash Media Server recommendations [96] and

Apple HLS [93][94] suggest lower frame rates (10-15 fps) for cellular connections at

28 Scalable Video Coding Framework

the lowest resolution. Still, the frame rate shall not be changed during a streaming

session.

The investigated bitrate recommendations are compiled in Table 1. For each

resolution, the table lists bitrates stated in the recommendations of the investigated

industry solutions. The bitrates are represented as follows: If a recommendation

states multiple bitrate points, they are written separated by comma (e.g., "8000,

6000, 5500, 5000, 4000"), starting at the highest bitrate. If a recommendation

provides a bitrate range, that range is written in the table (e.g., "7000-8000"). All

investigated recommendations suggest progressive scan. For Adobe Flash Media

Server, only recommendations for 16:9 aspect ratio are included in order not to

overload the table. Note that YouTube recommendations for content uploads

(represented in gray) are significantly higher than bitrate configurations from other

streaming solutions since YouTube prefers to collect content of highest video quality

and to transrate it on the server side. At the time of writing no reliable information on

streaming bitrates of YouTube VoD content was available. However, YouTube

provides recommendations for live streaming. It should also be noted that some

recommendations list multiple configurations for multi-bitrate streaming, sometimes

with different bitrates for the same resolution. Thus, the number of bitrates in the

table does not necessarily reflect the number of streams recommended by a

streaming solution. In general, around one to four streams per resolution are

suggested.

Table 1: Combined bitrate suggestions for multi-rate streaming of industry solutions [1].

Resolution Bitrate [kbps] Streaming solution Resolution

divisibility

Dyadic

spatial

scalability

1920x1080 6000, 5000 Microsoft Smooth Streaming mod-8 down

 8000, 6000, 5500, 5000,

4000

Adobe HTTP Dynamic

Streaming

 7000-8000 Apple QuickTime

 8000-50000 (upload) YouTube

1280x960 4500 Apple HLS mod-16 down

1280x720 3450, 2272, 1672 Adobe Flash Media Server mod-16 down

 4000, 3500, 3000, 2500,

2000, 1500

Adobe HTTP Dynamic

Streaming

 4500, 2500, 1800 Apple HLS

 5000-6000 Apple QuickTime

 3450, 3000, 2100, 1400 Microsoft Smooth Streaming

 5000-30000 (upload);

2400 (live)

YouTube

 3500 MTV

960x540 2250 Microsoft Smooth Streaming mod-4 up

 1800 Apple HLS

 2200 MTV

Scalable Video Coding Framework 29

Resolution Bitrate [kbps] Streaming solution Resolution

divisibility

Dyadic

spatial

scalability

720x486 1072, 672 Adobe Flash Media Server mod-2

854x480 2500-15000 (upload);

1000 (live)

YouTube mod-2

848x480 1950 Microsoft Smooth Streaming mod-16

640x480 1200, 600 Apple HLS mod-16 up

 1000-2000 Apple QuickTime

848x440 1950 Microsoft Smooth Streaming mod-8

768x432 1740, 1140 Adobe Flash Media Server mod-16 down

 1700, 1500, 1200, 1000 Adobe HTTP Dynamic

Streaming

 1700 MTV

736x416 1600 Microsoft Smooth Streaming mod-16

720x404 1500 Microsoft Smooth Streaming mod-4

640x360 1250 Microsoft Smooth Streaming mod-8 up

 1200, 600 Apple HLS

 1000-5000 (upload);

600 (live)

YouTube

 1200 MTV

554x304 950 Microsoft Smooth Streaming mod-2

400x300 400, 200, 110 Apple HLS mod-4

512x288 900 Microsoft Smooth Streaming mod-16 down

 650, 450, 300 Adobe Flash Media Server

 1700, 1500, 1200, 900,

600, 450, 300

Adobe HTTP Dynamic

Streaming

 750 MTV

352x288 372, 268 Adobe Flash Media Server mod-16 down

448x252 450, 150 MTV mod-4

426x240 300 (live) YouTube mod-2

416x234 400, 200, 110 Apple HLS mod-2

384x216 400 MTV mod-8 up

312x176 400 Microsoft Smooth Streaming mod-8

288x160 350 Microsoft Smooth Streaming mod-16

256x144 300, 250, 150 Adobe HTTP Dynamic

Streaming

mod-16 up

176x144 80, 32 Adobe Flash Media Server mod-16 up

 50-60 Apple QuickTime

112x64 50 Microsoft Smooth Streaming mod-16

30 Scalable Video Coding Framework

Furthermore, Table 1 indicates several characteristics of the listed resolutions.

Resolution divisibility denotes whether both horizontal and vertical resolution are

divisible by 16 (mod-16) or any lower power of two (i.e., mod-8, mod-4, mod-2).

Since AVC and other common video codecs use macroblock sizes of 16x16 block

luma samples [23], resolutions adhering to the mod-16 rule are better suited for

optimizing coding performance. Resolutions with lower divisibility typically require the

encoder to pad the last macroblocks. Note that some encoders, e.g., the bSoft SVC

encoder [103], try to optimize coding performance by removing those incomplete

macroblocks, thus cropping a small part of the video. The column labeled dyadic

spatial scalability marks those resolutions for which another resolution in the table

either has half the horizontal and half the vertical resolution of the first (dyadic

downscaling) or has double the horizontal and double the vertical resolution of the

first (dyadic upscaling).

Less than half of the 26 resolutions in Table 1 adhere to the mod-16 rule. Only six

resolutions meet the dyadic downscaling criterion, the same goes for dyadic

upscaling, but none meets both criteria. This means that the listed resolutions would

not support SVC encoding with three dyadic spatial resolutions. It can also be

observed that the CIF resolution (352x288), which is commonly used in research

literature, is only used in the encoding recommendations for Adobe Flash Media

Server; most other streaming solutions prefer 512x288, which has a wider aspect

ratio of 16:9. None of the recommendations lists the 4CIF resolution (704x576),

which is also often used in research literature. While most of the listed resolutions

have aspect ratios around 16:9, some lower resolutions have narrower aspect ratios,

CIF and QCIF (176x144) resolutions having the narrowest aspect ratio of 11:9.

As a final remark, Table 1 shows that major industry streaming solutions use lots of

different resolutions, often with slight discrepancies across these systems.

Resolutions 1280x720 and 1920x1080 are common to most platforms, but at lower

resolutions, both the exact resolution and aspect ratio are different across platforms.

Since all recommendations target single-layer formats, the support of dyadic spatial

scalability is irrelevant in their scenarios, which is reflected by the choice of

recommended resolutions.

3.3 Test-bed Setup

 Deduced Bitrate Suggestions 3.3.1

Based on the encoding recommendations of industry solutions for multi-bitrate

streaming (Section 3.2.2), this section devises guidelines for AVC-based multi-rate

streaming and for SVC streaming. In order to create guidelines viable for both

research and industrial deployment, the criteria for the selection of resolutions and

bitrates are as follows. First, the plethora of resolutions shall be boiled down to at

most 7 resolutions. Each resolution should allow dyadic upscaling or downscaling.

Scalable Video Coding Framework 31

The bitrates shall be distributed properly to ensure that video quality increases in

constant steps. We argue that 4 bitrates per resolution are sufficient for most use

cases. Thus, we devise bitrate suggestions for 2 and 4 bitrates per resolution. This

provides a baseline from which other numbers of bitrates can easily be interpolated.

Note that a higher number of bitrates should typically span a slightly wider bitrate

range as well.

Table 2 comprises a list of suitable bitrates for typical resolutions. These guidelines

take the popularity of resolutions among streaming solutions, top and bottom bitrates,

as well as bitrate steps into account. We placed special emphasis on assembling

meaningful resolutions, reducing the number of different resolutions from Table 1.

Although none of the industrial solutions lists the 4CIF resolution in their

recommendations, we included it to enable dyadic spatial resolutions from QCIF to

CIF up to 4CIF. The bitrate suggestions for 4CIF are interpolated from other

suggestions. With the exception of CIF and 4CIF resolutions, each of the listed

resolutions is mentioned in at least two streaming solution recommendations. The

resolution 512x288 was removed in favor of CIF (352x288).

The bitrate recommendations of industry solutions and the deduced bitrate

suggestions for 2 bitrates are shown in Figure 7. Resolutions are sorted by the

number of pixels. Our suggestions for resolution 352x288 are based on the

respective industry recommendations for 512x288. From the figure, we can observe

how the highest bitrate of resolution compares to the lowest bitrate of resolution

 for the different recommendations. Only the recommendations for Apple QuickTime

and YouTube live streaming consequently increase the bitrates for such resolution

changes. For all other recommendations, the bitrates overlap from one resolution to

the next at least to some extent.

Table 2 focuses on two and four bitrates per resolution. For those resolutions, for

which Table 1 does not list sufficient different bitrates, the column for 4 bitrates in

Table 2 was left blank. Suggested bitrates at 4 streams for resolutions 960x540 and

640x360 were also interpolated from other resolutions. It should be mentioned that

the table does not take characteristics and requirements of SVC into account. In

Table 2: Derived guidelines for bitrates in AVC-based multi-rate streaming.

Resolution Bitrate suggestions

4 bitrates [kbps] 2 bitrates [kbps]

1920x1080 8000, 6000, 5000, 4000 8000, 5500

1280x720 6000, 4000, 2500, 1500 4500, 2500

704x576 2000, 1225

960x540 2700, 2250, 1800, 1200 2250, 1800

640x360 1600, 1250, 900, 600 1600, 600

352x288 1500, 900, 450, 270 1200, 300

176x144 100, 50

32 Scalable Video Coding Framework

particular, it does neither consider SVC coding overhead nor is it optimized for dyadic

spatial scalability. When adjusting the bitrates for coding overhead of SVC, one must

consider both targeted quality and connection speed for streaming. We assume that

the recommendations of industry streaming solutions are based on real-life scenarios

that take typical network conditions into account. Simply increasing the bitrate to

maintain the same quality as AVC might potentially exceed the network bandwidth in

some cases if the coding overhead is too high. On the other hand, simply keeping the

same bitrate decreases the video quality. Scientific literature typically assumes a

coding overhead of 10% [27][33] compared to AVC. Note that this overhead is based

on a single enhancement layer. Each additional enhancement layer requires another

10% overhead. We reckon that the bitrate can be increased accordingly (i.e., by

around 10% for the first enhancement layer, by around 20% for the second, and so

on), considering three relevant aspects. First, the use of SVC enables dynamic

bitrate adaptation, alleviating the risk of stalling. Second, we assume that the

recommendations of industry streaming solutions include a safety factor towards

higher bitrates. That is, we expect that their bitrate recommendations are designed

so that streaming does not have to operate on the limit of network resources. Third,

network traffic forecasts [104] and broadband surveillance reports [105][106][107]

shown a continuous increase of video network traffic and connection speeds that

would easily accommodate the proposed bitrate increase.

Scalable Video Coding Framework 33

We further adjust the bitrate recommendations for SVC in Table 3. For streams with

2 layers, we propose to add 10% overhead for both bitrates compared to Table 2

(with some rounding where appropriate). However, with 4 layers, we keep the original

bitrate for the base layer in order to support low bandwidths, increase the bitrate for

the first enhancement layer by 10%, for the second by 20% and for the third by a

total of 30%. As mentioned before, we added the 4CIF resolution (704x576) in order

to better support dyadic spatial scalability. The table also indicates whether dyadic

spatial scalability (up- or downscaling) is supported by the listed resolutions.

Figure 7: Bitrate recommendations of AVC-based streaming solutions and deduced
suggestions.

34 Scalable Video Coding Framework

Depending on the scenario and targeted client devices, we suggest streams with a

total of six to twelve extraction points out of the possible combinations in Table 3,

ranging over 2 to 4 resolutions. We also suggest allocating proportionally more

bitrates per resolution for higher resolutions. For example, a configuration may

contain the four bitrates indicated for 1920x1080 and two bitrates for 960x540.

 SVC Encoders and Evaluation Metrics 3.3.2

Besides the reference software, JSVM, several proprietary SVC encoders exist. To

our knowledge, the most prominent ones are MainConcept [108], VSS [109], and

bSoft [103].

Note that the encoders exhibit many different encoding configuration options and

yield individual bitstream characteristics. Occasionally, they have differing

interpretations of various coding concepts, and are of varying stability. While the

MainConcept and VSS encoders use requantization for MGS layers, the bSoft

encoder distributes transform coefficients automatically across layers (also known as

MGS vectors). The JSVM encoder supports both behaviors (i.e., requantization and

manual distribution of transform coefficients) [110]. The MainConcept, VSS, and

bSoft encoders provide configuration options for constant bitrate (CBR) mode.

However, the tested version of the MainConcept encoder was only able to encode in

CBR mode at a few specific configurations. The bSoft encoder requires an initial QP

value even for CBR encoding. We noticed that fixed QP settings always yielded

better RD performance than any CBR setting with that initial QP. Thus, only fixed QP

rate control was used for the bSoft encoder. Only the VSS encoder supported CBR

at all resolutions and applied configurations. In contrast to the other encoders, VSS

has a different approach for extracting layers from an SVC bitstream as further

detailed in Section 3.5.2.2. Furthermore, bitstreams encoded by one encoder (e.g.,

VSS or bSoft) are not necessarily decodable by another decoder (e.g., JSVM). Also,

the JSVM tool set has one tool (called BitStreamExtractor) for adapting SVC

bitstreams and another tool for decoding, while the other encoders couple adaptation

Table 3: Adjusted bitrate recommendations for SVC streaming [1].

Resolution Bitrate suggestions Dyadic

spatial

scalability 4 bitrates [kbps] 2 bitrates [kbps]

1920x1080 10400, 7200, 5500, 4000 8800, 6050 down

1280x720 7800, 4800, 2750, 1500 5000, 2750 down

704x576 2200, 1350 down

960x540 3500, 2700, 1975, 1200 2475, 1980 up

640x360 2075, 1500, 990, 600 1760, 660 up

352x288 1950, 1080, 500, 270 1320, 330 up & down

176x144 110, 55 up

Scalable Video Coding Framework 35

and decoding into a single tool. Performance tests of all these encoders will be

presented throughout this chapter.

Unless noted otherwise, the resolution was set to 1920x1080 and the deltaQP (dQP)

for requantization between MGS layers was set to 2. For example, the dQP of 2

denotes QPs of MGS layers (from highest to lowest layer) of 28, 30, 32, and 34. The

entropy coding mode was set to CABAC. We used a fixed interval of 32 frames for

IDR frames. While MainConcept and VSS encoders support scene change detection,

where IDR frames are inserted dynamically, we used a fixed IDR frame interval to

ensure consistency with other encoders.

Peak Signal-to-Noise Ratio (PSNR) is one of the most widely used full reference

metrics for objective video quality assessment due to its simplicity and its low

computational requirements. A possible PSNR to Mean Opinion Score (MOS)

conversion was given in [111] and subsequently used in [112], [113], [114], [115] and

others. But to the best of our knowledge, no evaluation on the actual correlation of

that particular mapping is available. Another mapping table with different PSNR

values was proposed in [116] based on correlation evaluations on still images in

[117].

The NTIA Video Quality Metric (VQM) [118][119] is a standardized full-reference

objective method. VQM compares an original video sequence to a distorted

sequence in order to estimate the video quality by combining perceptual effects of

several video impairments such as blurring, jerky/unnatural motion, global noise,

block distortion, and color distortion. The VQM output describes the distortion of a

video on a scale from 1 (high distortion) to 0 (no distortion). The VQM results can be

mapped to the MOS scale as shown in Table 4. VQM was specifically designed to

Figure 8: Spatial-Temporal plot for test sequences.

36 Scalable Video Coding Framework

correlate better with the human visual system than PSNR [120][121][122][123][124],

therefore, we also use VQM results in addition to PSNR in our performance tests.

 Selection of Test Sequences 3.3.3

We selected four different video sequences for our evaluations. Video content can be

characterized by its Spatial Information (SI) – i.e., amount of structural features – and

Temporal Information (TI) – i.e., amount of motion – as defined in [125]. Both aspects

have impact on the encoding process (e.g., encoding duration and RD performance).

The Xiph.Org Foundation provides a collection of test sequences at various

resolutions [126]. The collection comprises 20 sequences with resolutions of

1920x1080 or above (not counting three full movies). We analyzed those sequences

in order to select appropriate sequences that represent different SI and TI

characteristics.

The SI and TI of all sequences are shown in Figure 8. The first 250 frames of each

sequence were used in order to have uniform durations and because longer

sequences caused the VQM software to crash during quality evaluations. The

BlueSky sequence only has 217 frames. The Dinner sequence is a computer-

generated video. Sequences with resolutions above 1920x1080 were downsampled

to 1920x1080, sequences with frame rates of 50 fps were downsampled to 25 fps.

Note that TI computes the differences between frames and selects the maximum

value. Some sequences contain multiple shots. TI values for scene cuts were

removed in accordance with [125] before computing the maximum value (indicated

via *). Fade-overs were not removed.

Based on the results, we selected the following test sequences: PedestrianArea (low

SI, low TI), Dinner (low SI, high TI), DucksTakeOff (high SI, low TI), and CrowdRun

(high SI, high TI). Snapshots of the four test sequences are shown in Figure 9. The

Dinner sequence has a frame rate of 30 fps, the other sequences have 25 fps.

DucksTakeOff and CrowdRun have original resolutions of 3840x2160 at 50 fps. One

factor of the test sequence selection was the depiction of different sceneries, such as

people and faces in medium shot (PedestrianArea), people in wide shot (CrowdRun),

animals (DucksTakeOff), and synthetic scenes (Dinner). As our goal was to assess

SVC configurations for typical media streaming purposes, we decided to avoid

Table 4: Mapping of VQM results to MOS.

VQM MOS

0.0 – 0.2 5 (Excellent)

0.2 – 0.4 4 (Good)

0.4 – 0.6 3 (Fair)

0.6 – 0.8 2 (Poor)

0.8 – 1.0 1 (Bad)

Scalable Video Coding Framework 37

extreme cases (e.g., BlueSky or SnowMnt sequences) in favor of having different

sceneries.

Based on the deduced coding suggestions, the following sections provide

performance evaluations of several SVC configurations. It is important to note that

the following performance results are implementation-dependent and provide a

volatile snapshot of current SVC encoder performances. Nevertheless, we strive to

highlight performance characteristics of SVC as a coding scheme that we expect to

remain valid beyond the mere comparison of encoder implementations.

3.4 High-Definition SVC Encoding Performance for
Adaptive Media Streaming

In this section, extensive performance evaluations of SVC with a focus on 1080p

resolutions are presented, including various SVC configurations and different

encoders (JSVM, MainConcept, VSS, and bSoft). The goals of these evaluations are

(1) to provide RD performance results in terms of PSNR and VQM, (2) to investigate

various encoding configurations, (3) to highlight the characteristics of different

encoders, and (4) to validate the encoding recommendations devised in

Section 3.3.1.

(a) (b)

(c) (d)

Figure 9: Snapshots of (a) PedestrianArea, (b) Dinner, (c) DucksTakeOff, and (d) CrowdRun
sequences.

38 Scalable Video Coding Framework

We first evaluate rate control modes (i.e., constant bitrate vs. fixed QP) for different

encoders in order to compare their RD performance and to validate whether the

devised bitrate recommendations yield consistent qualities at all resolutions. Then,

we test the combination of spatial and quality scalability to decide whether to encode

one stream per resolution or all resolutions in one stream for media streaming

scenarios. Another factor to adaptive streaming configurations is the number of

quality layers for a given resolution, which affects the flexibility of adaptations at the

cost of coding overhead. This aspect is evaluated with 1 to 4 quality layers for

various encoders. Finally, we investigate the impact of requantization on the RD

performance, which controls the bitrate distances between quality layers.

 Rate Control Modes 3.4.1

As a first evaluation in our set of tests, we validate the bitrate recommendations

discussed in Section 3.3.1, comparing RD performance of rate control modes (CBR

and fixed QP) of several encoders.

The configurations for this test are as follows. For each resolution (from 1920x1080

down to 176x144), bitstreams were encoded with 2 MGS layers. In CBR mode, target

bitrates were set to the values stated in Table 3 (for two bitrates). For encoding with

fixed QP, we selected for each sequence the two QPs that resulted in bitrates just

above and just below the target bitrate of the enhancement layer for the respective

resolution in Table 3 (for two bitrates). As mentioned in the base test configuration

description in Section 3.3.2, the dQP between MGS layers was set to 2.

We note that this static dQP of 2 can cause the bitrate of the base layer to deviate

from the suggested target bitrate in some cases, but we argue that this static dQP

makes the results better comparable to the bSoft encoder and to the results of our

other tests. Our results also show that the chosen dQP fits surprisingly well for most

resolutions and respective target bitrate suggestions.

The tested version of the MainConcept encoder has some limitations concerning

supported bitrates for CBR mode. Therefore, we were only able to obtain results for

1920x1080 with target bitrates of 4,400 kbps for the base layer and 8,800 kbps for

the enhancement layer.

The JSVM encoder was only evaluated for a resolution of 1920x1080 at fixed QP

mode. Although the tested version of the JSVM provides basic CBR support, it only

supports CBR mode at the base layer, making it unsuitable for our tests.

Scalable Video Coding Framework 39

Configurations for all encoders in fixed QP mode are provided in Annex B.

The PSNR results at a resolution of 1920x1080 are shown in Figure 10. The bitrate

ranges from the suggestions in Table 3 (for 2 bitrates) are indicated as green

background. The corresponding VQM results are given in Figure 11. Note that the y-

axis of VQM results is an impairment scale from 1 (high distortion) to 0 (no

distortion), indicating the expected quality of a sequence. In contrast to PSNR

results, where the range of the y-axis is dynamically adjusted to the results, graphs

for VQM are always shown for the entire y-axis range from 1 to 0 in order to better

indicate the overall expected quality instead of quality changes. Different line types

are used for the encoders for fixed QP mode.

In terms of encoder comparison, the JSVM outperforms the other encoders with

respect to RD performance, followed by MainConcept and VSS. The bSoft encoder

has somewhat lower PSNR results and shows a sharp decrease of PSNR for the

base layer, but the VQM results show that the quality decrease of the bSoft encoder

(a) (b)

(c) (d)

Figure 10: PSNR results of rate control modes for different encoders for (a) PedestrianArea,
(b) Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences [1].

40 Scalable Video Coding Framework

towards the base layer is comparable to – if not lower than – the decrease of other

encoders. Especially for sequences with high SI, the VQM results are on par with the

other encoders. Since VQM correlates better with the human visual system, these

results suggest that the actual visual quality of the bSoft encoder is significantly

higher than indicated by the corresponding PSNR values. Similar to the behavior of

the bSoft encoder, CBR modes of the MainConcept and VSS encoders tend to have

better VQM than corresponding PSNR results.

From the tested sequences we conjecture that SI has a higher coding efficiency than

TI. In particular, the DucksTakeOff and CrowdRun sequences have low PSNR

results. However, the number of test sequences does not allow conclusive inference.

When comparing rate control modes, we see that the MainConcept encoder achieves

higher quality in fixed QP mode than in CBR mode. In contrast, the VSS encoder

yields equal or slightly lower quality in fixed QP mode compared to CBR mode.

(a) (b)

(c) (d)

Figure 11: VQM results of rate control modes for different encoders for (a) PedestrianArea,
(b) Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences [1].

Scalable Video Coding Framework 41

Among the tested encoders and rate control modes, the VSS encoder in CBR mode

shows the lowest decrease of RD performance towards the base layer.

Whether the MainConcept or VSS encoder gives better RD performances in CBR

mode highly depends on the content. Similar to the already observed behavior of the

bSoft encoder, CBR modes of both encoders tend to have better VQM than

corresponding PSNR results. For example, PSNR results of the CrowdRun sequence

in Figure 10 (d) show that the RD performance of the VSS encoder in CBR mode

(labeled VSS CBR) is clearly below that of the MainConcept encoder at QP=37

(labeled MainConcept QP37), whereas the VQM results in Figure 11 (d) show the

opposite. We can thus conclude that (for a given sequence) PSNR and VQM results

correlate to some extent for JSVM, MainConcept and VSS encoders in fixed QP

mode, while the bSoft encoder in fixed QP mode and MainConcept and VSS

encoders in CBR mode yield better VQM results compared to PSNR.

Encoding durations per frame of the different encoders are exemplarily shown in

Figure 12 for the PedestrianArea sequence. Due to the very low encoding speed of

the JSVM, results are depicted on a logarithmic scale. The MainConcept and VSS

encoders are about two orders of magnitude faster than the JSVM encoder, while the

bSoft encoder is roughly one order of magnitude faster than the JSVM. Interestingly,

CBR mode is slightly faster for both MainConcept and VSS encoders. A more

detailed breakdown of encoding durations is provided in Section 3.4.6.

Figure 12: Encoding durations of rate control modes for different encoders for the
PedestrianArea sequence.

42 Scalable Video Coding Framework

(a) (b)

(c) (d)

(e) (f)

Figure 13: VQM results of rate control modes for different encoders for PedestrianArea
sequence at (a) 1280x720, (b) 704x576, (c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144

resolutions [1].

Scalable Video Coding Framework 43

VQM results for lower resolutions are presented for the PedestrianArea sequence in

Figure 13. Further test results for lower resolutions are shown for the PedestrianArea

sequence in Figure 77 (PSNR), as well as for the CrowdRun sequence in Figure 78

(PSNR) and Figure 79 (VQM) in Annex C. Due to the high number of resolutions and

resulting figures, we selected only the sequences with lowest and highest spatio-

temporal complexities (i.e., PedestrianArea and CrowdRun). Again, the suggested

bitrate ranges from Table 3 (for 2 bitrates) are indicated as green background.

The suggested bitrates yield quite constant and good qualities across all resolutions,

except for the lowest resolution 176x144 (QCIF). The rationale behind the low target

bitrate suggestions for QCIF is to enable video transmission even for very low

bandwidths. QCIF is intended for miniature preview or as a fallback solution in case

of bad connectivity, i.e., cases in which the end user prefers low quality over no video

playback at all.

As already observed for 1920x1080, the VSS encoder in CBR mode and the bSoft

encoder (in fixed QP mode) perform consistently better in terms of VQM results

compared to PSNR results. For the CrowdRun sequence the VSS encoder in CBR

mode has best VQM results for all resolutions and is almost on par with JSVM

performance in Figure 11 (d).

It can also be noticed that the differences between encoders in terms of RD

performance decrease for more complex sequences (such as CrowdRun).

 Combination of Spatial Scalability and MGS 3.4.2

In the following test we investigate the RD performance of spatial scalability at two

resolutions combined with two MGS layers. We compare the RD performance to

bitstreams without spatial scalability with two MGS layers at either resolution.

This configuration is also relevant for determining whether to use one SVC bitstream

for multiple resolutions or to use separate SVC bitstreams featuring quality scalability

for each resolution in SVC streaming scenarios.

The tested version of the bSoft encoder supports spatial scalability only for dyadic

resolutions, i.e., extended spatial scalability (ESS) is not supported. Thus, we use the

following configurations in our tests:

 Resolution 1: 960x528;

 Resolution 2: 1920x1056, each resolution with 2 MGS layers.

Note that the bSoft encoder requires that the vertical resolution be divisible by 16

(known as "mod-16"), which is the reason for the slightly cropped vertical resolutions

in this test. For this test, we aimed for bitrates conforming to the recommendations of

Table 3. The PSNR results are shown in Figure 14 for the PedestrianArea sequence

and in Figure 15 for the CrowdRun sequence. Note that Figure 14 (a) and Figure 15

(a) show extraction points for resolution 960x528, while Figure 14 (b) and Figure 15

44 Scalable Video Coding Framework

(b) show extraction points for resolution 1920x1056. Note that the lines labelled

spatial scalability range over both resolutions, i.e., the lines represent the two

resolutions of a single bitstream.

The bitstream with spatial scalability has only a small overhead for the lower

resolution (i.e., extra bits that enable the upscaling prediction). Since the layers of the

higher resolution depend on the lower resolution ones, the RD performance at

1920x1056 is worse than for bitstreams without spatial scalability. To achieve the

same quality, the single-resolution bitstreams need around 18% to 26% less bitrate

for PedestrianArea and 25% to 35% less bitrate for CrowdRun. Conversely, a single-

resolution bitstream of the same bitrate as the spatial scalability bitstream achieves

roughly 1-1.5 dB higher PSNR at 1920x1056. It requires almost the same disk space

to store the spatial scalability bitstream or two separate bitstreams for the two

respective resolutions. Due to the high quantization used for the CrowdRun

sequence to achieve the recommended bitrates, the PSNR results are very low.

The bitstream with spatial scalability loses slightly less quality between layers as

indicated by the lower slopes of the lines representing spatial scalability compared to

single-resolution bitstreams in Figure 14 (b) and Figure 15 (b), resulting in smoother

in-network adaptation. However, we consider the bitrate overhead to be a more

relevant factor in favor of using separate SVC bitstreams for each resolution.

 Number of MGS Layers 3.4.3

The following test investigates the impact of the number of SVC layers in MGS mode

on the RD performance. Intuitively, higher numbers of layers come with some bitrate

penalties. We tested the JSVM, MainConcept, and bSoft encoders with the following

(a) (b)

Figure 14: PSNR results for spatial scalability of the bSoft encoder for the PedestrianArea
sequence. The line labeled spatial scalability represents a single bitstream ranging over both

resolutions (a) 960x528 and (b) 1920x1056 [1].

Scalable Video Coding Framework 45

configuration: the QP of the highest layer was set to 28. For the MainConcept

encoder, dQP was set to 2.

Figure 16 shows the PSNR results of 1 to 4 MGS layers for (a) PedestrianArea and

(b) CrowdRun sequences. Results for the VSS encoder are similar to the results for

the MainConcept encoder (although at slightly higher bitrates) but are not included in

order not to overload the figures. The JSVM and MainConcept encoders exhibit

rather constant decrease in RD performance for higher number of layers. The results

for the bSoft encoder show that the bitstreams with 2 and 3 MGS layers (labeled

bSoft 2MGS and bSoft 3MGS respectively) have almost the same RD performance.

For the PedestrianArea sequence, the base layer of bSoft 2MGS even has lower

bitrate and PSNR than the base layer of bSoft 3MGS.

(a) (b)

Figure 15: PSNR results for spatial scalability of the bSoft encoder for the CrowdRun
sequence. The line labeled spatial scalability represents a single bitstream ranging over both

resolutions (a) 960x528 and (b) 1920x1056.

(a) (b)

Figure 16: PSNR results for varying number of MGS layers for different encoders, for
(a) PedestrianArea and (b) CrowdRun sequences [1].

46 Scalable Video Coding Framework

The PSNR results of the highest layers remain relatively static across the number of

MGS layers for all encoders, even though they slightly decrease for MainConcept.

Instead, encoders allocate less quality to the base layers for each additional MGS

layer due to the applied configuration.

Table 5: Relative bitrate penalties for additional MGS layers.

PedestrianArea

Bitrate penalty JSVM MainConcept VSS bSoft

1MGS to 2MGS 25.0% 39.3% 30.1% 9.8%

2MGS to 3MGS 17.1% 15.7% 21.7% 1.6%

3MGS to 4MGS 14.0% 11.1% 16.4% 11.7%

Average 18.7% 22.0% 22.7% 7.7%

Dinner

Bitrate penalty JSVM MainConcept VSS bSoft

1MGS to 2MGS 21.7% 31.9% 43.4% 10.6%

2MGS to 3MGS 17.0% 14.8% 22.7% 4.7%

3MGS to 4MGS 13.9% 10.8% 15.5% 9.9%

Average 17.5% 19.1% 27.2% 8.4%

DucksTakeOff

Bitrate penalty JSVM MainConcept VSS bSoft

1MGS to 2MGS 0.4% 15.2% 14.9% 19.3%

2MGS to 3MGS 9.2% 6.9% 12.6% 0.0%

3MGS to 4MGS 1.4% 5.0% 10.6% 5.4%

Average 3.7% 9.0% 12.7% 8.2%

CrowdRun

Bitrate penalty JSVM MainConcept VSS bSoft

1MGS to 2MGS 6.1% 16.4% 23.7% 17.0%

2MGS to 3MGS 9.5% 8.6% 14.6% 0.3%

3MGS to 4MGS 5.1% 6.2% 10.7% 8.3%

Average 6.9% 10.4% 16.3% 8.6%

Total Average 11.7% 15.2% 19.7% 8.2%

Scalable Video Coding Framework 47

The relative bitrate penalties of additional MGS layers are provided in Table 5. The

bitrate differences are measured at the highest layers; the values describe the bitrate

increases for adding one MGS layer.

On average across all sequences, the JSVM encoder requires around 11.7% more

bitrate for adding one MGS layer, the MainConcept encoder around 15.2% more

bitrate, the VSS encoder around 19.7%, and the bSoft encoder only around 8.2%

more bitrate. The overhead for the JSVM roughly confirms the findings of previous

studies on lower resolutions [27][33], overheads for the MainConcept and VSS

encoders are a bit higher than expected. For all encoders, the bitrate penalty for

additional layers generally decreases with the number of MGS layers used as

starting point. While the bSoft encoder has the lowest coding overhead for additional

MGS layers, it has also the most stable one. For the JSVM, the overhead varies

between 3.7% and 18.7%, depending on the content.

(a) (b)

(c) (d)

Figure 17: bSoft PSNR results for MGS vs. CGS for (a) PedestrianArea, (b) Dinner,
(c) DucksTakeOff, and (d) CrowdRun sequences.

48 Scalable Video Coding Framework

 Quality Scalability Modes 3.4.4

There are two approaches for quality scalability in SVC: CGS and MGS. CGS

deploys the same mechanisms as spatial scalability but for a single resolution, while

MGS offers a finer granularity for frame-based quality adaptation. For the bSoft

encoder, this is achieved by partitioning the transform coefficients of a coded picture

in order to obtain different qualities of a video. The RD results for the bSoft encoder

in Section 3.4.3 have indicated quite low quality of lower SVC layers for MGS. In this

section, we compare MGS and CGS performance of the bSoft encoder.

The rate-distortion performance of the bSoft encoder for MGS and CGS layers is

shown in Figure 17. We compared the extraction points of SVC streams for the

CrowdRun sequence with 4 MGS layers against 4 CGS layers with dQP of 2. Note

again that all QP declarations correspond to the highest SVC layer. As we used the

(a) (b)

(c) (d)

Figure 18: bSoft VQM results for MGS vs. CGS for (a) PedestrianArea, (b) Dinner,
(c) DucksTakeOff, and (d) CrowdRun sequences.

Scalable Video Coding Framework 49

same QPs for all test sequences, the DucksTakeOff and CrowdRun sequences

resulted in extremely high bitrates for QP=28.

The results show that MGS has better RD performance at the highest layer, but for

lower layers of the bitstream the RD performance degrades quickly. On the other

hand, CGS maintains a steady RD performance, although bitrates are higher. For the

lower SVC layers, RD performance of CGS is generally better than for MGS at the

same bitrate.

The PSNR results of base layers in CGS mode (i.e., the left-most data points of

continuous lines in the figure) follow a curve with a high slope as we would usually

expect from the different quantizations. For MGS mode, on the other hand, the PSNR

results of base layers are relatively constant, independent of the QP. In other words,

the base quality remains the same, regardless of the quality we want to achieve at

(a) (b)

Figure 19: Varying dQP between MGS layers for different encoders for PedestrianArea
sequence, (a) PSNR results and (b) VQM results.

(a) (b)

Figure 20: Varying dQP between MGS layers for different encoders for Dinner sequence,
(a) PSNR results and (b) VQM results.

50 Scalable Video Coding Framework

the highest layer. The encoder puts a lot of information for prediction of higher layers

into the base layer, but this information does not increase the quality of the base

layer itself. Moreover, the RD performance of SVC layers in CGS mode is always

better for lower QPs, e.g., the RD curve for the SVC layers of the bitstream labeled

bSoft CGS QP28 lies above the RD curve for bSoft CGS QP32.

The aforementioned behavior only appears for PSNR, VQM results for MGS mode

(Figure 18) show stronger bending of the RD curves of SVC layers. Also, VQM

results of the base layers depend on the QP, as normally expected. In contrast to

PSNR results, the RD curves for MGS mode intersect, e.g., the first EL of the

CrowdRun sequence at QP=28 yields better VQM performance than the highest EL

at QP=32.

(a) (b)

Figure 21: Varying dQP between MGS layers for different encoders for DucksTakeOff
sequence, (a) PSNR results and (b) VQM results.

(a) (b)

Figure 22: Varying dQP between MGS layers for different encoders for CrowdRun sequence,
(a) PSNR results and (b) VQM results [1].

Scalable Video Coding Framework 51

The other encoders show far less differences between CGS and MGS, the VSS

encoder yields almost identical RD performance for CGS and MGS modes. The

JSVM encoder supports only up to 3 spatial layers.

 Requantization of MGS Layers 3.4.5

In this test, the encoding performance of SVC encoders for a single spatial resolution

(1920x1080) with four MGS layers and varying dQP between those layers was

evaluated. The PSNR and VQM results for all test sequences are shown in Figure

19, Figure 20, Figure 21, and Figure 22 respectively. Note again that different line

types are used for the encoders, dQPs are marked by point types (e.g., dQP=2 has

the same point type and color across the encoders). As the figures are hard to read

due to the high number of depicted lines, a breakdown of results of the JSVM for all

dQPs and of the different encoders is given later on in this section. The bSoft

(a) (b)

(c) (d)

Figure 23: Correlation between PSNR and VQM for varying dQP of MGS layers for different
encoders for (a) PedestrianArea, (b) Dinner, (c) DucksTakeOff, and (d) CrowdRun

sequences [1].

52 Scalable Video Coding Framework

encoder distributes transform coefficients automatically across layers, eliminating the

need for different dQP encodings in this test. Also note that JSVM bitstreams allow

for further extraction points in addition to the MGS layers.

It can be observed that a dQP of 2 is sufficient for serving a decent range of bitrates

at 4 layers, while having the best RD performance. Obviously, higher dQP values

(e.g., 6 or 8) cause such a strong quantization of the base layer that VQM results

drop even below poor quality, in particular for sequences with low TI, such as

PedestrianArea in Figure 19 (b) and DucksTakeOff in Figure 21 (b).

The selection of an appropriate bitrate for the base layer is an important aspect for

SVC-based adaptive media streaming. A low bitrate reduces the risk of stalling if the

bandwidth is insufficient. On the other hand, our results show how quickly the quality

of the base layer degrades at lower bitrates (i.e., higher dQPs). The low quality of the

base layer also influences the quality of all enhancement layers (cf. Figure 24 later

(a) (b)

(c) (d)

Figure 24: VQM results for varying dQP between MGS layers for JSVM encoder for
(a) PedestrianArea, (b) Dinner, (b) DucksTakeOff, and (d) CrowdRun sequences.

Scalable Video Coding Framework 53

on), as the encoder struggles to predict high quality signals from the low quality base

layer.

As mentioned, the bSoft encoder automatically distributes transform coefficients to

create MGS layers. The base layer achieves quite low PSNR results and the

bitstream has significantly higher bitrates than other encoders for the same PSNR.

We observe that the bSoft encoder, while having somewhat lower PSNR results, has

good VQM results (especially for sequences with high SI), which are on par with the

other encoders in terms of rate-distortion. Due to VQM's better correlation with the

human visual system, these results suggest that the actual visual quality of the bSoft

encoder is higher than indicated by PSNR values.

To further analyze this behavior, we compared PSNR vs. VQM for all four sequences

in Figure 23. The plots clearly show that especially the lower layers of the bSoft

encoder yield better VQM results than other encoders at the same PSNR. For other

encoders, the plots show a strong correlation between PSNR and VQM for the

(a) (b)

(c) (d)

Figure 25: VQM results for dQP=2 between MGS layers for different encoders for
(a) PedestrianArea, (b) Dinner, (b) DucksTakeOff, and (d) CrowdRun sequences.

54 Scalable Video Coding Framework

respective sequences, with some small exceptions towards lower layers. Note

however, that this correlation is content-dependent.

In order to investigate the impact of varying dQP on coding performance more

closely, Figure 24 shows results for the JSVM encoder based on Figure 19 (b) for

PedestrianArea, Figure 20 (b) for Dinner, Figure 21 (b) for DucksTakeOff, and Figure

22 (b) for CrowdRun respectively. Note that the x-axes are adjusted to the selected

results. As noted before, it can be observed that dQP=2 is typically sufficient to cover

adequate bitrate ranges. Furthermore, lower dQP values result in better RD

performance, although the effect decreases for more complex scenes (with higher SI

and/or TI). The plots also clearly show further extraction points in addition to the

MGS layers. Those are achieved by discarding some MGS layer NALUs from the

bitstream. As expected, the RD performance is better for extracting exactly an MGS

layer than it is for any additional extraction points.

Next, we take a closer look at those very results, investigating different encoders for

dQP=2. In Figure 25 we filtered the results for dQP=2 from the VQM results of Figure

19 (b) for PedestrianArea, Figure 20 (b) for Dinner, Figure 21 (b) for DucksTakeOff,

and Figure 22 (b) for CrowdRun respectively. Although the RD performances of SVC

layers slightly vary across encoders, they generally have some extraction points that

offer comparable RD performance across encoders. As expected, the JSVM exhibits

the best RD performance across all test sequences. As a trend, the RD curve of the

VSS encoder remains somewhat parallel to that of the JSVM, i.e., the VSS encoder

distributes bitrates and quality across MGS layers in a similar way to the JSVM, but

at lower RD performance. On the other hand, the MainConcept encoder starts at low

RD performance at the base layer but the RD curve gets closer to the JSVM for

Figure 26: Encoding durations for varying dQP between MGS layers for different encoders.

Scalable Video Coding Framework 55

higher layers. Note again, that the bSoft encoder automatically distributes transform

coefficients to form MGS layers. Thus, it does not fully fit into an evaluation of

dQP=2. Nevertheless, the results are included in Figure 25 and it can be observed

that the bSoft encoder performs better for more complex sequences (with higher SI

and/or TI).

 Encoding Durations 3.4.6

Based on the previous test, we analyze encoding durations for the different

encoders.

Encoding durations per frame are shown in Figure 26 and corresponding average

durations across dQPs are provided in Table 6. Note that results are depicted on a

logarithmic scale. The fastest encoders are MainConcept and VSS, which are two

orders of magnitude faster than the JSVM. The bSoft encoder is still one order of

magnitude faster than the JSVM. For all encoders, encoding speeds are slightly

slower at lower dQP values. Also, the Dinner sequence yields shortest encoding

durations across all encoders (probably because it is a synthetic scene), followed by

PedestrianArea.

As industrial SVC encoders are optimized for encoding speed, they typically sacrifice

some RD performance, e.g., by using fast block search algorithms for motion

estimation. On the other hand, the JSVM accepts high computational complexity

throughout the video coding tool chain to ensure high RD performance.

Based on our findings, we conclude that, out of the industrial encoders, the

MainConcept encoder is better suited for good RD performance at the highest layer,

while the VSS encoder yields a more stable RD performance across layers. For the

bSoft encoder, the bitrate should be considered; on the other hand, we noted that the

encoder is better suited for more complex sequences and that the VQM results for

the encoder indicate higher RD performance than the PSNR results do.

Table 6: Average encoding durations of different encoders.

Sequence JSVM [ms/frame] MainConcept

[ms/frame]

VSS [ms/frame] bSoft [ms/frame]

PedestrianArea 43304 192 170 1840

Dinner 41200 140 180 1212

DucksTakeOff 54376 302 328 2228

CrowdRun 49079 271 327 2384

Average 46990 226 251 1916

56 Scalable Video Coding Framework

3.5 Hybrid SVC-DASH with High-Definition Content

DASH enables the client to select and adjust characteristics of a stream (e.g.,

resolution and bitrate) on the fly while benefitting from existing HTTP infrastructures.

While DASH is traditionally used with single-layer coding formats such as AVC, the

usage of SVC can offer further advantages in terms of adaptation capabilities and

optimization of resource utilization [59].

The successful deployment of SVC in DASH strongly depends on proper and

educated encoding configurations to facilitate adaptive streaming. In this section we

propose a hybrid SVC framework for DASH and HD content, comprising encoding

guidelines and quality evaluations for various scalability options with a special focus

on multiple resolutions. In particular, we suggest using multiple independent SVC

streams, each providing a given resolution corresponding to a certain device class

and allowing for SNR scalability. In this section, we give an overview of DASH and its

deployment with SVC, further validate our coding recommendations, and investigate

scalability options providing quality evaluations for major encoders.

This section focuses on SVC encoding for DASH by testing configurations for typical

DASH deployments, i.e., high number of enhancement layers and support of multiple

spatial resolutions. Nevertheless, the results also apply to other SVC-based media

streaming scenarios such as RTP streaming or P2P streaming. While the validation

of bitrate recommendations for 2 bitrates and the combination of spatial scalability

and MGS have been covered in Sections 3.4.1 and 3.4.2 respectively, we argue that

evaluations for 4 bitrates are more relevant to DASH deployments.

 Deployment of SVC in DASH 3.5.1

With DASH, a server may offer multiple representations of the same content where

each representation is typically characterized by – but not limited to – a specific

resolution and bitrate. Those representations are described in an XML-based

manifest file, called MPD, which the client retrieves before starting the streaming

session. The client picks the representation that is best suited for its current context

(e.g., display resolution and available bandwidth). Each representation is split into

temporal segments (e.g., 2-10 sec. each). The client can adapt to fluctuating network

conditions by switching to lower bitrate representations at segment boundaries.

Traditionally, representations are encoded as separate/independent (AVC)

bitstreams. The deployment of SVC can bring some advantages in terms of storage

(alleviating the need for multiple bitstreams of the same content to be stored at the

server), cache performance [59], and adaptation [61]. With AVC, if the download of a

segment cannot be completed before playout time, e.g., due to a sudden bandwidth

decrease, the client has to decide whether to continue the download and risk stalling

or to discard the current segment and switch to a lower representation. Note that the

downloaded bits of the discarded segment are wasted.

Scalable Video Coding Framework 57

As an optimization for stream-switching, double decoding can be applied, in which

the client uses as many frames as possible from the unfinished higher representation

before displaying the lower representation. With this approach, less downloaded bits

are wasted. Nevertheless, the client must download the entire segment of the lower

representation to ensure proper decoding.

SVC can be deployed in DASH as follows. Each representation contains an SVC

layer and describes the dependencies between layers as shown in Listing 1. The

dependencyId attribute indicates which other representations (i.e., lower SVC

Figure 27: Hybrid SVC-DASH.

<AdaptationSet>

 <Representation id="0" width="960" height="540"

bandwidth="1200000">

 <SegmentList> <SegmentURL media="540p-BL-seg1.264"/>

 </SegmentList>

 </Representation>

 <Representation id="1" dependencyId="0" width="960"

height="540" bandwidth="1975000">

 <SegmentList> <SegmentURL media="540p-EL1-seg1.264"/>

 </SegmentList>

 </Representation> <!-- Further representations... -->

 <Representation id="4" dependencyId="0 1 2 3" width="1920"

height="1080" bandwidth="4000000">

 <SegmentList> <SegmentURL media="1080p-EL4-seg1.264"/>

 </SegmentList>

 </Representation> <!-- Further representations... -->

</AdaptationSet>

Listing 1: Simplified MPD for SVC streaming of multiple resolutions with a single bitstream
featuring spatial scalability [2].

58 Scalable Video Coding Framework

layers) are required for decoding a given representation. As long as the client has

downloaded the SVC base layer, it can decode at least a basic representation of the

content, thus avoiding the risk of stalling. Each additional enhancement layer

increases the video quality.

We argue that well-chosen SVC configurations are an important aspect towards a

successful deployment of SVC. Throughout this section, we discuss and evaluate

several deployment options for SVC in DASH. One option is to use a single SVC

bitstream to comprise all representations. The advantage of such a configuration is

that the redundancy of having multiple similar bitstreams for a single content is

removed. Furthermore, caching performance can be increased as all clients use the

same SVC base layer. The downside of this approach is that the coding overhead

increases with the number of SVC layers, specifically when covering a high range of

resolutions. If the coding overhead becomes too high, it will outweigh the advantages

of SVC.

(a) (b)

(c) (d)

Figure 28: VQM results of AVC and SVC with 4 bitrates for (a) PedestrianArea, (b) Dinner, (c)
DucksTakeOff, and (d) CrowdRun sequences [2].

Scalable Video Coding Framework 59

Our proposal is to encode the content into multiple independent SVC bitstreams, one

per resolution (e.g., representing certain device classes), and only relying on SVC

quality scalability. The approach is referred to as hybrid SVC-DASH and the idea

behind this approach is to confine the coding overhead by avoiding spatial scalability

while benefitting from SVC's advantages. The approach is illustrated in Figure 27.

Provided a sufficient bitrate range for each bitstream, a client will try to maintain one

resolution during the entire streaming session as resolution switches are more

disturbing for the viewer than mere bitrate changes [127][128]. While the lower

resolution can be upsampled to be displayed with the same size as the higher

resolution, upsampling causes undesirable blurring artifacts.

SVC offers two modes for quality scalability, CGS and MGS. In order to obtain a

higher number of SVC quality layers for covering a higher range of bitrates, these two

modes could be combined. However, the issue arises that not all of these layers are

actually useful for a client as we will discuss later. In the following sections, we

establish and validate encoding recommendations for SVC streaming.

 SVC Encoding Performance 3.5.2

Based on the bitrate suggestions deduced in Section 3.3.1 and Table 3 in particular,

Table 7 provides selected bitrate recommendations for AVC and SVC streaming with

4 bitrates at resolutions from 1920x1080 (1080p) down to 640x360. The bitrate

values are the same as in Table 2 (for AVC) and Table 3 (for SVC); however, we

focus exclusively on 4 bitrates for DASH, providing a more concise set of

recommendations. Quality evaluations based on these recommendations are given in

the following subsection.

In this section, we validate the devised SVC coding recommendations for various

encoders and provide RD performance evaluations for several scalability options.

In addition to the SVC encoders JSVM, MainConcept, VSS, and bSoft, we also test

the AVC encoder x264 [129]. Again, we use the four test sequences PedestrianArea,

Dinner, DucksTakeOff, and CrowdRun, using the first 250 frames of each sequence.

As indicated in Section 3.3.2, the JSVM encoder supports MGS layers by using

requantization as well as by splitting transform coefficients (i.e., MGS vectors). While

the evaluations of the JSVM in the previous section were based only on

requantization, we also include results for distribution of transform coefficients. Since

the MainConcept and VSS encoders rely on requantization, our focus remains on

requantization for the JSVM encoder as well.

3.5.2.1 Encoder Comparison and Bitrate Validation for 4 Quality
Layers

We first compare the RD performance of the x264 encoder to SVC encoders in order

to establish a base line for our further tests. For SVC we use a single-layer

60 Scalable Video Coding Framework

configuration (i.e., an AVC-compatible base layer) and a configuration with 4 MGS

layers. Single-layer (AVC) bitstreams are encoded in CBR mode with target bitrates

suggested for AVC streaming. SVC bitstreams with 4 MGS layers are encoded in

fixed QP rate control mode for all SVC encoders. The re-quantization between MGS

layers was set to a deltaQP of 2 (except for the bSoft encoder, which does not need

any requantization as explained in Section 3.3.1). Additionally, the sequences were

encoded with the VSS encoder in CBR mode as it was the only one of the tested

SVC encoders to provide decent CBR support at all tested resolutions.

We also tested the JSVM encoder using MGS vectors with a partitioning into three

MGS slices containing 1, 2, and 13 transform coefficients. The partitioning was found

through empirical testing to best match the recommended bitrates. The deltaQP

between the base layer and the enhancement layer was set to 6, which amounts to

the same as the 3 requantized enhancement layers with a deltaQP=2.

The VQM results for the tested sequences at 1080p resolution are shown in Figure

28. Note again that the y-axis of VQM results is an impairment scale from 1 (high

distortion) to 0 (no distortion), indicating the expected quality of a video. For fixed QP

mode, bitstreams with bitrates just below and just above the bitrate suggestions for

the highest SVC layer (cf. Table 7) are shown. The results for the MainConcept

encoder and for AVC configurations in fixed QP mode are only shown for

PedestrianArea for the sake of readability. The RD performance of the MainConcept

encoder in relation to JSVM and VSS for the PedestrianArea sequence is

representative for the other sequences. Results for the JSVM encoder in MGS vector

mode are only shown for the CrowdRun sequence for the same reason.

As expected, AVC yields a higher RD performance than SVC with multiple MGS

layers. However, at the lowest bitrate, the SVC bitstream from the VSS encoder in

CBR mode (labeled VSS CBR) has only marginal overhead compared to the

corresponding AVC bitstream from the same encoder (labeled VSS AVC CBR).

Whether the x264 encoder outperforms VSS depends on the content.

Table 7: Selected bitrate recommendations for SVC streaming [2].

Resolution Bitrate suggestions (4 bitrates) [kbps]

AVC streaming SVC streaming

1920x1080 8000, 6000, 5000, 4000 10400, 7200, 5500, 4000

1280x720 6000, 4000, 2500, 1500 7800, 4800, 2750, 1500

960x540 2700, 2250, 1800, 1200 3500, 2700, 1975, 1200

640x360 1600, 1250, 900, 600 2075, 1500, 990, 600

Scalable Video Coding Framework 61

The JSVM encoder with 4 MGS layers tends to reach the quality of the AVC

encoders in several cases if we consider the expected SVC coding overhead

discussed in Section 3.3.1. That is, qualities of the individual layers of the JSVM

encoder are roughly on the same level as the corresponding AVC encoders. For

example, in Figure 28 (a) the JSVM with 4 layers at QP=25 (labeled JSVM QP25)

has a VQM result of 0.136 while the VQM score for the x264 encoder at 8,000 kbps

(labeled x264 AVC CBR) is 0.139 and the VQM score of the JSVM in AVC mode at

QP=24 (labeled JSVM AVC QP24) is 0.118. However, there are significant

discrepancies in RD performance between AVC encoders, which constrict conclusive

comparisons.

Among SVC encoders, the JSVM yields the best RD performance, followed by

MainConcept, VSS and bSoft. The bSoft encoder allocates only poor quality to the

base layer. However, the bSoft encoder outperforms VSS for more complex

sequences such as CrowdRun. Sequences with high SI exhibit poor overall encoding

performance for all encoders, as observed earlier in Section 3.4.1.

(a) (b)

(c) (d)

Figure 29: PSNR results of AVC and SVC encoders with 4 bitrates for (a) PedestrianArea, (b)
Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences [2].

62 Scalable Video Coding Framework

For the JSVM encoder, the MGS vector mode yields slightly higher RD performance

than requantization. Starting from virtually the same base layer quality as the

(a)

(b)

(c)

Figure 30: VQM results of AVC and SVC encoders with 4 bitrates at (a) 1280x720, (b) 960x540,
and (c) 640x360 resolutions [2].

Scalable Video Coding Framework 63

requantization mode, the first two MGS slices have higher RD performance than

requantization mode. From the second MGS slice to the full MGS enhancement

layer, VQM results almost stagnate. It appears that the last and biggest MGS slice

(13 of 16 coefficients) contributes little to the video quality. We find this behavior for

other sequences as well.

We note that the VSS encoder in CBR mode yields a surprisingly high quality at the

base layer, but enhancement layers only bring little quality increases. On the one

hand, such a low slope in RD performance makes bitrate switches in media

streaming less perceivable. On the other hand, a higher bitrate that does not yield

higher quality is basically a waste of bandwidth.

For comparison, Figure 29 shows the PSNR results for all sequences. It can be

observed that several encoders yield better VQM performance than the PSNR results

indicate (in particular for the CrowdRun sequence in Figure 29 (d)). For example, the

PSNR results for AVC bitstreams are below the RD performance of the JSVM, while

the VQM results show the opposite. We find this behavior for encoding in CBR mode

for several sequences and for the bSoft encoder at lower layers for all sequences. In

contrast to the corresponding VQM results, the JSVM encoder with MGS vector

mode only outperforms requantization mode at the full MGS enhancement layer in

terms of RD performance.

Figure 30 shows the VQM results at lower resolutions for the PedestrianArea

sequence. Again, results for the MainConcept encoder are not shown for the sake of

readability. Due to an encoder error, we were not able to obtain results for the bSoft

encoder at resolution 960x540.

As with 1080p, the JSVM encoder with 4 MGS layers tends to reach the quality of the

AVC encoders in most cases considering the expected SVC coding overhead.

In terms of storage requirements, SVC is more efficient than AVC with multiple

representations for 4 MGS layers (if accepting small quality reductions in some

cases) as shown in Table 8. Of course, the storage reduction comes at the cost of

the discussed SVC coding overhead for every streaming session. The bitrate

recommendations from Table 7 for 4 MGS layers yield consistent qualities for all

resolutions. The applied re-quantization with a dQP of 2 for fixed QP mode correlates

with the bitrate suggestions of lower layers to a reasonable extent for JSVM,

MainConcept, and VSS encoders as further discussed in [1].

Table 8: Storage requirements for SVC streaming per resolution.

Resolution AVC bitstreams SVC bitstream Reduction

1920x1080 23,000 kbps 10,400 kbps 54.8%

1280x720 14,000 kbps 7,800 kbps 44.3%

960x540 7,950 kbps 3,500 kbps 55.8%

640x360 4,350 kbps 2,080 kbps 52.2%

64 Scalable Video Coding Framework

3.5.2.2 Combination of Spatial Scalability and MGS

SVC streaming of multiple resolutions can be achieved by either encoding one SVC

bitstream that features spatial scalability or encoding several bitstreams, one per

resolution. Example MPDs for the two approaches are depicted in Listing 1 and

Listing 2 respectively. In Listing 2, two individual SVC bitstreams are described, one

with spatial resolution 960x540, the other with 1920x1080. Each bitstream has

multiple quality enhancement layers, described as representations depending on the

base layer.

In this section we evaluate the RD performance of SVC bitstreams with both spatial

and quality scalability compared to hybrid SVC-DASH with just quality scalability.

In SVC, each layer is identified by its dependency (i.e., resolution), quality, and

temporal id, commonly denoted DQT. We consider two different extraction paths for

achieving spatial scalability. A quality layer q of an upper resolution d, e.g.,

DQT=(d,q,0), can either depend on the same quality layer of the previous resolution,

i.e., DQT=(d-1,q,0), or on the highest layer Q of the previous resolution, i.e.,

DQT=(d-1,Q,0). The first extraction path (subsequently denoted partial extraction

path), which is implemented in the reference software, yields a lower bitrate at the

expense of discarded enhancement information from the lower resolution. The VSS

<AdaptationSet>

 <Representation id="0" width="960" height="540"

bandwidth="1200000">

 <SegmentList> <SegmentURL media="540p-BL-seg1.264"/>

 </SegmentList>

 </Representation>

 <Representation id="1" dependencyId="0" width="960"

height="540" bandwidth="1975000">

 <SegmentList> <SegmentURL media="540p-EL1-seg1.264"/>

 </SegmentList>

 </Representation> <!-- Further representations with

enhancement layers at 960x540... -->

<Representation id="4" width="1920" height="1080"

bandwidth="4000000">

 <SegmentList> <SegmentURL media="1080p-BL-seg1.264"/>

 </SegmentList>

 </Representation>

 <Representation id="5" dependencyId="4" width="1920"

height="1080" bandwidth="5000000">

 <SegmentList> <SegmentURL media="1080p-EL1-seg1.264"/>

 </SegmentList>

 </Representation> <!-- Further representations with

enhancement layers at 1920x1080... -->

</AdaptationSet>

Listing 2: Simplified MPD for SVC streaming of multiple resolutions with one bitstream per
resolution [2].

Scalable Video Coding Framework 65

encoder also supports the second extraction path (subsequently denoted full

extraction path). Figure 31 illustrates how adaptation is performed for both extraction

paths. With the JSVM tool set, adaptation is performed by specifying the DID for the

spatial layer and the QID for the MGS layer, based on which the SVC layers are

extracted from the bitstream. Conversely, the VSS decoder extracts SVC layers

based on the absolute layer number as depicted in Figure 31 (b).

Figure 32 shows VQM results for both extraction paths at resolutions 640x360 and

1280x720 for the VSS encoder. Note that the bitstreams range over both resolutions.

Single resolution SVC bitstreams are shown for comparison.

At the lower resolution, both extraction paths have roughly the same RD performance

as the single resolution bitstream with only a slight overhead at the base layer. Note

however that the PSNR results for both extraction paths are at the base layer 0.2 dB

lower and at the highest layer around 0.7 dB lower than for the single resolution

bitstream.

At the higher resolution, the full extraction path starts at a quality that is on par with

the single resolution bitstream RD performance. Since the bitstream for full extraction

path depends on the highest layer of the lower resolution, it starts at a bitrate of

2,134 kbps. Subsequent enhancement layers do not increase the quality of the

bitstream; rather the first enhancement layer even reduces the quality.

On the other hand, the partial extraction path starts at a low quality but increases

almost to the quality of the single resolution bitstream for the highest layer. Even with

the low starting quality, we argue that the partial extraction path is far better suited for

multi-resolution SVC streaming.

The VQM results for both extraction paths at resolutions 960x540 and 1920x1080 are

shown in Figure 33. Again, there is only negligible loss at 960x540 (similar to Figure

32 (a)). Since the lower resolution has a target bitrate of 3,500 kbps at the highest

layer and the higher resolution starts at 4,000 kbps, the full extraction path is able to

meet that target bitrate and the quality increases with enhancement layers at the

higher resolution. Still, we consider the partial extraction path to be better suited for

spatial scalability in SVC streaming.

(a) (b)

Figure 31: Adaptation for (a) partial extraction path and (b) full extraction path.

66 Scalable Video Coding Framework

In terms of PSNR, the average quality loss due to coding overhead across all

sequences and both resolution pairs are shown in Table 9 for the partial extraction

path. As spatial scalability only yields around 24.6% reduction of storage

requirements compared to , we argue that hybrid SVC-DASH with one SVC bitstream

per resolution is better suited for the given use case. Moreover, hybrid SVC-DASH

makes a clear distinction between quality scalability – valuable for dynamic

adaptation – and different resolutions supporting heterogeneous devices.

Due to an encoder error, we were not able to encode a bitstream with all four

resolutions with the VSS encoder.

3.5.2.3 Combination of CGS and MGS

In the following test, we evaluate the RD performance for combining CGS and MGS

modes in one bitstream. The encoding configuration comprises 4 CGS layers and 4

MGS layers, resulting in 16 quality layers per stream.

Figure 34 shows the PSNR results for the combination of CGS and MGS for the

PedestrianArea sequence encoded with the bSoft encoder with the QP at the highest

layer set to 28. For comparison, PSNR results of the bitstream with 4 CGS layers

(labeled bSoft 4CGS) and the bitstream with 4 MGS layers (labeled bSoft 4MGS) are

also shown. The combination of CGS and MGS (labeled bSoft 4CGSx4MGS) is

depicted with lines that show the possible extraction paths for each quality layer. For

(a) (b)

Figure 32: VQM results of spatial scalability for the VSS encoder. The lines labeled VSS CBR 2
res represent single bitstreams ranging over both resolutions (a) 640x360 and (b) 1280x720 [2].

Table 9: PSNR loss for spatial scalability.

Resolution Layer 0 Layer 1 Layer 2 Layer 3

Resolution 1 0.13 dB 0.25 dB 0.31 dB 0.47 dB

Resolution 2 2.54 dB 2.64 dB 3.00 dB 0.77 dB

Scalable Video Coding Framework 67

example, starting at the base layer, we can either add one MGS layer, resulting in the

layer with DQT=(0,1,0), or can add one CGS layer in order to obtain the layer with

DQT=(1,0,0). From either of these two layers, the layer with DQT=(1,1,0) can be

reached.

Due to the sharp decrease of PSNR for lower layers for MGS mode as observed in

Sections 3.4.4 and 3.5.2.1, also the combination of CGS and MGS suffers from this

behavior along MGS layers. Thus, the depiction of PSNR results resembles a grid,

where MGS layers form the (almost) vertical lines. This also means that the bitstream

contains many extraction points that just have a high bitrate but very low PSNR. In

particular, the layers with DQT values of (1,0,0), (2,0,0), (3,0,0), (1,1,0), (2,1,0), and

(3,1,0) are not useful for adaptation. For example, the layer with DQT=(3,0,0) has a

PSNR of 33.23 dB at 13,578 kbps, while the layer with DQT=(0,2,0) has a PSNR of

35.86 dB at only 6,770 kbps. We conclude that out of the entire 16 SVC layers only

the 10 layers forming the outer curve of bSoft 4CGSx4MGS are useful for adaptation

but at poor overall RD performance.

The discussed configuration of 4 CGS layers and 4 MGS layers was not supported

by the tested version of the VSS encoder. The configurations of the JSVM and

MainConcept encoders do not allow for such combination of CGS and MGS.

3.6 Conclusions

In this chapter, we have investigated encoding guidelines of dominant industry

solutions for MPEG-AVC-based media streaming and devised SVC encoding

guidelines therefrom. We have validated these guidelines together with further

evaluations of encoding configurations of high-definition video content relevant for

adaptive media streaming in content-aware networks. Our tests have also highlighted

(a) (b)

Figure 33: VQM results of spatial scalability for the VSS encoder. The lines labeled VSS CBR 2
res represent single bitstreams ranging over both resolutions (a) 960x540 and

(b) 1920x1080 [2].

68 Scalable Video Coding Framework

characteristics of various encoders. Furthermore, we have investigated deployment

options of SVC for DASH with a special focus on scalability options. Additional

performance evaluations of major encoder implementations with HD content have

focused on SVC-DASH.

Our evaluations on HD SVC encoding performance show that CBR as well as fixed

QP rate control modes yield solid quality for the devised bitrate suggestions for all

resolutions. Our findings also indicate that it is more suited for media streaming to

encode one SVC stream per spatial resolution rather than a single stream comprising

all resolutions. For several encoders, the number of SVC layers at 1080p resolution

induces higher bitrate overheads than anticipated. We also found that some

encoders yield better RD performance in VQM than PSNR results.

Additionally, our findings suggest that a hybrid SVC-DASH approach with one SVC

bitstream featuring quality scalability per resolution provides a good trade-off

between the advantages of SVC and its coding overhead. Furthermore, we tested

the combination of CGS and MGS modes in one bitstream. The results show that

only some combinations of layers are useful for adaptation but at poor overall RD

performance.

Based on our study, encoding recommendations and evaluation results for high-

definition SVC streaming can be summarized as follows:

 Bitrate recommendations for SVC at seven common resolutions are given in

Table 3. The recommendations were devised from an extensive survey of

industry solutions. A typical streaming session would comprise six to twelve

SVC extraction points (or conversely different AVC streams) at two to four

resolutions.

 The bitrate recommendations have been validated for various encoders. The

tested video sequences show a significant impact of a sequence's Spatial

Information on the coding efficiency.

Figure 34: PSNR results for combination of CGS and MGS for the bSoft encoder [2].

Scalable Video Coding Framework 69

 For multiple MGS enhancement layers, each additional layer induces a coding

overhead of slightly above 10%, depending on the encoder.

 The JSVM reference software outperforms proprietary encoders in terms of

coding efficiency. Proprietary encoders are up to two orders of magnitude

faster than the JSVM.

 For Dynamic Adaptive Streaming over HTTP, we propose a hybrid SVC-DASH

approach that features one independent SVC base layer at each resolution.

The approach separates bitrate adaptation from support of heterogeneous

devices. Compared to a single SVC bitstream, hybrid SVC-DASH provides

around 2.2 dB higher PSNR quality at the highest resolution for quality layers

below the highest layer, subject to a moderate increase in storage

requirements.

 Even though some proprietary SVC encoders support the combination of CGS

and MGS quality scalability mechanisms, such a combination has shown

unnecessary coding overhead and little added value in terms of suitable

extraction points for adaptation.

There are several aspects to SVC encoding and to video coding for streaming in

general that have not been discussed in this chapter.

In our evaluations, we have assumed that SVC is transported as elementary

streams. In practice, video data is often encapsulated by a container format such as

MPEG-2 Transport Stream (TS), AVI, Matroska Multimedia Container (MKV), or

MP4. Container formats are important for interleaving audio and video data, providing

stream access information and streaming hints as well as other metadata. The

container format can affect the bandwidth requirements for streaming as investigated

by Kofler et al. [62]. A low overhead container format for adaptive HTTP streaming is

proposed by Riiser et al. [130]. We decided to rely on elementary streams in order to

avoid any interference from the container format overhead.

Media segmentation is an important aspect for adaptive HTTP streaming. It controls

the flexibility for consecutive adaptation operations. While DASH solutions typically

deploy segments of 2-10 seconds [86][93], the sheer number of segment files for

content of long durations and small segment durations can cause file system and

network overhead [131]. For example, a 2-hour movie at 2 second segments and 6

different representations has 21,600 individual files. Alternatively, DASH also

supports HTTP GET requests with byte ranges, thus not requiring for segments to be

stored in individual files. The byte ranges are indicated in the MPD. Media segments

have to be cut at GOP boundaries in order to ensure that each segment can be

processed and decoded independently. The segment duration also limits the

maximum GOP size, which, in turn, influences the coding efficiency. We configured

all encoders in our tests to emit IDR frames at a fixed rate as explained in Section

3.3.1 in order to support fixed segmentation.

70 Scalable Video Coding Framework

Many adaptive media streaming solutions calculate the current streaming rate based

on available network bandwidth and the expected media bitrate. Such adaptation

logics often assume that the bitrate does not vary too much during the streaming

session. Therefore, the content is often encoded in CBR mode. While the fixed QP

rate control mode is supported by all tested SVC encoders, CBR support is still

sparse (cf. Section 3.4.1). The traffic variability of an SVC bitstream (in particular for

fixed QP rate control mode) is also a challenge for media streaming [132]. Different

sizes of coded frames can lead to bursts of video traffic, depending on the spatio-

temporal complexity of a scene. For (non-live) HTTP-based streaming, traffic

variability only matters on a per-segment basis. Intuitively, the per-segment traffic

variability is lower than that of individual frames. For SVC, DASH clients request the

base layer prior to the enhancement layers of a segment. If an enhancement layer is

not fully downloaded due to traffic variability, it will merely result in the playback of a

lower quality. Additionally, typical DASH clients buffer three or more 2-second

segments [61], further alleviating the impact of traffic variability. As the segment size

can be indicated in the MPD (via byte ranges), the adaptation logic may consider

traffic variability in its decisions. Due to the short duration of the test sequences (250

frames), we did not evaluate the bitrate variability in our tests. Nevertheless, both

rate control modes, CBR and fixed QP are subject to changing video quality

depending on a scene's spatio-temporal complexity as can be observed in Sections

3.4.1 and 3.5.2.1. Some encoders offer VBR or average bitrate (ABR) rate control

modes. Another option for rate control is equitable quality streaming [133], which

finds for each frame a QP for encoding that yields a predefined quality. This way, the

entire sequence has roughly the same, constant video quality. While fixed QP is

typically used in video quality evaluations, CBR is often used in industrial streaming

solutions [95][97].

At the time of writing, MPEG is also developing implementation guidelines for DASH

[134], including content generation guidelines for GOP structures, stream access

points, and enabling bandwidth adaptation.

SVC Tunneling 71

4 SVC Tunneling

4.1 Introduction

Today's omnipresent demand for access to multimedia content via diverse devices

places new challenges on efficient content delivery. Scalable media coding formats,

such as SVC, enable efficient content adaptation within the network and reduce

network resource utilization in multicast scenarios. SVC tunneling describes the

deployment of scalable media coding in the network, independently of the coding

formats supported at the sender or receiver side. Assume that the content has been

encoded in a non-scalable coding format a-priori on the sender side and/or that the

receiver uses a legacy device, which does not support scalable media coding formats

either. How can in-network adaptation be applied to improve media delivery in such a

scenario? With the proposed SVC tunneling approach, the content is transcoded to

SVC at the sender side, allowing for SVC-based in-network adaptation during

delivery, and is transcoded back to a non-scalable coding format at the receiver side

for device-independent access. An obvious downside of this approach is the loss in

video quality due to transcoding. This chapter will introduce and evaluate the concept

of SVC tunneling, investigating the trade-off between the transcoding-induced quality

loss and the benefits of SVC streaming.

The work presented in this chapter is published in [3], [4], [5], and [9].

While the SVC extension of AVC has proven to be a useful tool for the advanced

delivery of video content, it has not yet found major adoption in practice (with

perhaps the exception of Google+ Hangout as discussed in Section 3.2.1). The

d

 [76][77] and facilitates more robust video transport in content-aware

networks [45]. Many devices, however, do not support scalable video formats and

rely on non-scalable formats, e.g., MPEG-4 AVC, or even legacy formats like MPEG-

2. One solution to the problem of deploying SVC streams in such an environment is

the transcoding of video streams at the ingress and egress points of the network and

the deployment of SVC tunneling within the network, thus enabling SVC content

delivery and device-independent access.

For a better understanding of the SVC tunneling concept and its development within

ALICANTE, this section briefly highlights the relevant aspects of the ALICANTE

architecture from Section 2.3. Towards the goal of an advanced media ecosystem,

an SVC (layered-multicast) tunnel is developed in ALICANTE, inspired by IPv6-over-

IPv4 tunnels.

Video multicast (e.g., for IPTV services) to heterogeneous devices can be

traditionally realized by two approaches; a third approach is provided by the

ALICANTE architecture.

72 SVC Tunneling

The first approach is to use a non-layered video format (such as AVC or MPEG-2)

and send all content representations simultaneously. This approach is referred to as

simulcast mode. Content representations may comprise different resolutions or

different quality versions of a video. For simulcast mode, it is also possible to send

the content in different video formats, thus enabling format independence for the

receiver. The bandwidth requirement for delivering the content is the sum of the

bitrates of all representations being consumed by at least one user.

The second approach is to use SVC and to configure the SVC layers to fit these

representations. In such a (receiver-driven) layered mode, the maximum required

bandwidth is the bitstream up to the highest SVC layer being consumed by at least

one user. Compared to AVC simulcast, this mode can reduce the required network

capacity by around 18% [76]. The use of SVC at the network layer also empowers a

content-aware network to perform efficient in-network adaptation, e.g., for QoS

management.

ALICANTE introduces a third approach for multicast content delivery as illustrated in

Figure 35. Within the content-aware network, only scalable media resources, such as

SVC, are delivered, allowing for in-network adaptation at MANEs. If the content at the

server side originally has been encoded in a non-scalable legacy video format, e.g.,

MPEG-2, it is transcoded to SVC at the Home-Box layer before delivery. Layered

multicast is deployed at the CAN layer. When arriving at the client side, the scalable

media resources can be transcoded to a format supported by the end-user terminal

(e.g., again MPEG-2). The Home-Box, which is a next generation interconnected

home-gateway, performs the transcoding. The Home-Box sends the transcoded

content via unicast through the home network towards the terminal for consumption.

This approach combines the format independence of the simulcast mode with the

capabilities for bandwidth reduction and efficient in-network adaptation. However, this

approach reduces the video quality due to its potentially two transcoding steps. This

quality impact of the full SVC tunneling approach with both transcoding steps is

investigated in Section 4.3. There are two variations of the SVC tunneling approach

which require only one transcoding step. First, if the content is originally encoded in

SVC, there is no need for transcoding at the server side. Second, if transcoding to

SVC is performed at the server side but the terminals support SVC, the second

transcoding step can be omitted.

For the evaluations in this chapter, we assume that both content provider and end

user require the same video format (i.e., MPEG-2). The ALICANTE architecture is

more general in this respect and allows for different video formats at the sender and

receiver sides as detailed later on in Section 5.3.

SVC tunneling also enables advanced QoS/QoE management in content-aware

networks. MANEs distributed across the network can perform in-network adaptation

[45] on the SVC bitstream in order to adjust to changing network conditions.

SVC Tunneling 73

4.2 Concept and Considerations

In this section, we discuss the main aspects of SVC tunneling, comprising SVC

transcoding and related work, variants for partial SVC tunneling, as well as quality,

rate control, and delay considerations. SVC tunneling provides device-independent

media access through transcoding. Any video coding format can be used at the

server or client side, e.g., MPEG-1 [135], MPEG-2 [31], Motion JPEG 2000 [136],

MPEG-4 Visual [137], AVC [23], VC-2 [138], VP8 [139], or HEVC [140]. The

transcoding speed and quality depends on the selected video coding format. As SVC

is an extension of AVC, transcoding can be performed much faster and with less

quality impact than for other formats. For our evaluations, we chose MPEG-2 on the

server and client sides for the following reasons. First, it is still a popular legacy video

coding format due to its adoption in DVDs and by the digital television industry.

Second, transcoding to and from SVC is challenging in terms of quality loss and

delay. Thus, the use of MPEG-2 can be regarded as a realistic worst-case scenario

for SVC tunneling. Our evaluations establish a baseline for SVC tunneling, from

which its efficiency can be improved for other video coding formats.

 SVC Transcoding 4.2.1

SVC follows a layered coding scheme comprising a base layer and one or more

enhancement layers providing scalability along various dimensions [27]. Three basic

scalable coding modes are supported, namely spatial scalability, temporal scalability,

and SNR scalability, which can be combined into a single coded bitstream.

When it comes to compression, SVC with two layers of either quality scalability or

dyadic spatial scalability requires about 10% more bitrate than single layer AVC for

the same video quality [33]. But compared to MPEG-2, which requires approx. 170%

Figure 35: Adaptation Framework Overview [5].

74 SVC Tunneling

more bitrate than AVC [141], SVC still provides a bitrate reduction of about 59%

(calculated from (

)) with respect to MPEG-2. For an SVC bitstream with 4

layers, the theoretical bitrate reduction would be around 52%.

In the following, we discuss related work in the area of video transcoding and focus

on transcoding from MPEG-2 to SVC and vice versa.

4.2.1.1 Transcoding to SVC

The simplest but slowest architecture of transcoding between two video formats is

accomplished by fully decoding the video and then re-encoding the pixels into the

target format, which is known as pixel domain transcoding (PDT), cascaded

transcoding, or full transcoding [142][143]. It usually provides the best quality and is

used as a reference for more advanced transcoding mechanisms. Since the video

has to be fully decoded and fully re-encoded, this technique is rather slow and

computationally expensive. The computational complexity can be reduced by using

information from the coded source video to create the target video. For example, the

motion vectors can be extracted and mapped to the target coding format. Advanced

transcoding is usually performed in the transform domain. The transform coefficients

are extracted from the encoded source video and converted to the transform

coefficients of the desired format. This technique is called transform domain

transcoding (TDT) [142]. TDT is considerably faster than PDT but usually introduces

higher quality losses [144].

However, each format has its own way of encoding videos. For example, MPEG-2

uses DCT, while H.264/AVC uses low-complexity integer transform (HT), and the

conversion between them is not trivial [145]. Furthermore, both formats deploy

different coding tools (e.g., AVC introduces intra-prediction and allows multi-frame

references for inter-frame prediction) [146][147]. This leads to specialized

transcoders for each format conversion.

A special case of transcoding is bitstream rewriting, which converts the video from

one format to another without any quality losses. Bitstream rewriting is only possible

if both video formats use the same bitstream syntax and coding techniques, which is

the case for AVC and SVC. De Cock et al. have developed a technique for low-

complexity AVC-to-SVC transcoding in [148] and subsequently improved it into an

AVC-to-SVC bitstream rewriting technique in [149] and [150]. This rewriting provides

perfect reconstruction at the (highest) enhancement layer. A multi-layer control

mechanism for the trade-off between quality and bitrate at the base layer was added

in [151] together with improved motion data refinement. The proposed technique only

targets SNR scalability, spatial scalability is not supported. Note that lossless

bitstream rewriting still increases the bitrate even at perfect reconstruction if the

target format has a lower coding efficiency, as it is the case for AVC-to-SVC

rewriting. For further details on AVC-to-SVC transcoding, the interested reader is

referred to [152].

SVC Tunneling 75

While a variety of transform domain transcoders from different formats to AVC exist

(e.g., from MPEG-2 [153][144][154][155][146][156]), for SVC only transcoding and

rewriting techniques from AVC as the source format have been researched so far

[150]. To the best of our knowledge, no MPEG-2-to-SVC TDT has been addressed in

any research so far. In order to transcode from MPEG-2 to SVC, either PDT or

(a)

(b)

(c)

(d)

Figure 36: Multicast streaming scenarios for (a) reference MPEG-2 simulcast, (b) full SVC
tunneling, (c) partial SVC tunneling with SVC-encoded source content, and (d) partial SVC

tunneling with SVC-capable end-user terminals.

76 SVC Tunneling

cascaded TDTs can be deployed. In the first case, the video is decoded from

MPEG-2 and then re-encoded to SVC. In the latter case, a fast MPEG-2-to-AVC

transform domain transcoder and a fast AVC-to-SVC rewriter are cascaded.

In this work, we focus on MPEG-2-to-SVC PDT rather than cascaded TDTs. The

PDT architecture is more generic and allows for transcoding from virtually any source

format to SVC by simply plugging in the appropriate decoder. PDT also establishes a

proper baseline for MPEG-2-to-SVC transcoding.

4.2.1.2 Transcoding from SVC

The SVC base layer is backward-compatible to AVC. The full SVC bitstream can be

converted to AVC through lossless bitstream rewriting [157][158][159]. Note that such

bitstream rewriting requires certain modifications to inter-layer intra prediction and

residual prediction in the encoding process as discussed in [158] and is only

applicable to SNR scalability [159]. Different techniques for SVC-to-AVC transcoding

supporting spatial scalability were proposed in [160] and [161]. Sablatschan et al.

have evaluated the performance of SVC-to-AVC bitstream rewriting on a MANE

in [162].

To the best of our knowledge, transcoding techniques from SVC have only been

researched for AVC as target format. For transcoding SVC to other target formats,

such as MPEG-2, two architectures are possible, similar to the X-to-SVC transcoding

architectures described above. The first architecture uses PDT, fully decoding the

SVC bitstream and re-encoding it to the target format. The second architecture

comprises cascaded TDTs, i.e., SVC-to-AVC bitstream rewriting followed by fast TDT

from AVC to the target format (e.g., AVC-to-MPEG-2 TDT [163][164]). Again, we

have chosen the more general PDT architecture for SVC-to-MPEG-2 transcoding in

order to establish a proper baseline for future research.

4.2.1.3 Repeated Transcoding

In multicast scenarios, the content may have been originally encoded to a non-

scalable legacy format like MPEG-2 (e.g., DVD-Videos) and also the user terminals

may require MPEG-2 for playback. We have proposed an SVC tunnel for content

delivery in the ALICANTE architecture that could be deployed in order to enable

QoS/QoE management at the network and possibly to reduce network load.

However, such an SVC tunnel requires two transcoding operations, first MPEG-2-to-

SVC transcoding at the server side and second SVC-to-MPEG-2 transcoding at the

client side (i.e., the Home-Box). Since the PSNR is computed from the mean squared

error (MSE), which contains quadratic terms, it is not possible to estimate the quality

impact of this repeated transcoding by just accumulating the PSNR values of each

transcoding run.

SVC Tunneling 77

 Partial SVC Tunneling 4.2.2

The full SVC tunneling approach assumes that the content at the server is pre-

encoded in a non-scalable format and that the end-user terminal does not support

SVC. If either the content is available in SVC or the end-user terminal supports SVC,

we speak of partial SVC tunneling, which requires only one transcoding step. The

different scenarios are illustrated in Figure 36.

Partial SVC tunneling obviously enables higher bandwidth efficiency and lower

quality loss than the full SVC tunneling approach.

 Delay and Rate Control Considerations 4.2.3

The transcoding steps for SVC tunneling introduce quality loss and additional delay.

Delay may not matter for non-real-time media services, like pre-recorded TV

broadcasts or Video on Demand services, if the content can be transcoded and

prepared in advance. On the other hand, especially for live content low transcoding

delay and high processing performance of the transcoding equipment are crucial.

Typically, video encoders have higher computational complexity than decoders. SVC

encoder speeds were evaluated in Section 3.4.6. The real-time constraints for live

streaming and video conferencing scenarios can be met either by more powerful

equipment or by reducing the computational complexity of the encoding process

(typically at the expense of RD performance). In our evaluations, we will focus on the

traditional architecture (i.e., high computational complexity at the encoder) due to the

characteristics of available encoders.

MPEG-2 encoders are considerably faster than SVC encoders, due to lower

encoding complexity and their implementation maturity. For the SVC tunneling chain,

transcoding delay is accumulated from MPEG-2 decoding, SVC encoding, SVC

decoding, and MPEG-2 encoding. In non-live scenarios, we assume that the content

has been transcoded to SVC prior to streaming, thus reducing that part of the delay.

In general, the client side must receive an entire GOP before the SVC decoder is

able to decode the video due to the prediction structure inside a GOP. Similarly, the

MPEG-2 encoder will need roughly one GOP for inter-frame prediction before the

stream can be emitted to the end-user terminal. This structural delay could be

reduced to zero by avoiding prediction from future frames at the expense of lower

coding efficiency [27]. The evaluations presented in this chapter focus on quality

impact of SVC tunneling, leaving aside any delay aspects, real-time constraints, and

processing performance.

Since most streaming scenarios of SVC tunneling require on-the-fly transcoding from

SVC to MPEG-2 on the client side (i.e., at the Home-Box), the maximum supported

resolution and frame rate are limited by the decoder and encoder implementations as

well as the equipment performance. Details on the transcoding speed in an

integrated test-bed and on transcoding delays will be reported later on in

Section 5.5.2.

78 SVC Tunneling

The alignment of encoding configurations between source and target material is an

important aspect of transcoding. Maintaining the same GOP size and rate control

mode during transcoding prevents unnecessary quality loss. In our evaluations, we

will investigate the suitability of fixed QP and CBR rate control modes for SVC

tunneling and how the rate control should be configured for transcoding. A first

intuitive approach that we test for CBR mode is to apply the same bitrate as the

source material for the target material. However, this does not take the different RD

performances of the source and target codecs into account. While increased bitrates

of the target material reduce the quality loss, they also affect the bandwidth efficiency

of the approach. Thus, SVC tunneling configurations are always a trade-off between

quality loss one is willing to accept and achievable bandwidth efficiency.

4.3 Evaluations

In the following tests, we gradually improve the transcoding configurations for both

transcoding steps, MPEG-2-to-SVC and SVC-to-MPEG-2, also investigating the

quality loss characteristics at different target qualities.

Note that, at least in theory, SVC tunneling with AVC as source and target formats

could be achieved without quality loss, based on lossless AVC-to-SVC bitstream

rewriting [149][150][151] and lossless SVC-to-AVC bitstream rewriting

[157][158][159]. In our evaluations, we rather focus on MPEG-2 as the source and

target formats.

The first evaluation (Section 4.3.1) was performed to investigate the overall feasibility

of SVC tunneling. It was therefore performed on only two test sequences, while

further evaluations in Sections 4.3.2 and 4.3.3 use four test sequences.

As streaming scenarios require the SVC-to-MPEG-2 transcoding at the client side to

be performed in real-time, we limited our evaluations to a resolution of 352x288 (see

also Annex D).

This chapter focuses on the quality impact of SVC tunneling. The impact on the delay

due to transcoding is documented later on in Section 5.5.2.1.

SVC Tunneling 79

 Same-Bitrate Evaluation 4.3.1

We first performed an evaluation based on the primitive configuration of maintaining

the same bitrate for both transcoding operations in order to establish a baseline for

further tests.

4.3.1.1 Initial Test-Bed Setup

In order to evaluate the quality impact of the repeated transcoding of SVC tunneling,

we performed the transcoding operations on two standard test sequences, Foreman

and Mobile (CIF at 30 fps, 300 frames).

In the first step, each sequence was encoded from raw YUV to MPEG-2 using

FFmpeg version SVN-r25599 [165] and its mpeg2video codec. In the second step,

the output stream was then transcoded by decoding it using the GPL MPEG-1/2

DirectShow Decoder Filter Version 0.1.2 [166] and encoding it to SVC using the

MainConcept SVC/AVC/H.264 Video Encoder Version 1.0.0.236699 [108]

DirectShow filter. The SVC bitstream has three layers with the following encoder

configuration. The base layer is specified at QCIF at 30 fps and 15% of the entire

target bitrate and the first enhancement layer with CIF at 30 fps and 30% of the entire

target bitrate. The second enhancement layer (i.e., highest layer) is specified with

Figure 37: Test-bed setup for same-bitrate evaluation of SVC tunneling.

80 SVC Tunneling

CIF at 30 fps. (Note that this configuration does not comply with the encoding

recommendations provided in Chapter 3 and was only used in this first evaluation.)

The bitstream was transcoded back to MPEG-2 in the final step by decoding it using

the MainConcept SVC/AVC/H.264 Video Decoder Version 1.0.0.236699 DirectShow

filter and encoding it using FFmpeg and the mpeg2video codec.

The encoding of each sequence was performed at several target bitrates. At all three

steps, encoding was performed at fixed target bitrates in CBR mode, i.e., the video

was encoded to MPEG-2 at the same target bitrate as it was transcoded to SVC and

transcoded back to MPEG-2. For example, if the video was initially encoded to

MPEG-2 at a target bitrate of 2,000 kbps, it was transcoded to SVC at 2,000 kbps

target bitrate and transcoded back to MPEG-2 at this same target bitrate.

The PSNR was always measured against the original raw YUV video. The

differences in PSNR and bitrates between two steps were calculated as Bjontegaard

Delta (BD) [167][168]. The BD measures the average distance between two RD

curves along the PSNR and bitrate axes. An illustration of the test-bed setup is given

in Figure 37.

4.3.1.2 Experimental Results

The RD curves of the repeated transcoding are shown in Figure 38 for the Foreman

sequence and in Figure 39 for the Mobile sequence, each for the extraction of all

SVC enhancement layers. The RD curve after MPEG-2 encoding is labeled MP2, the

RD curve after MPEG-2-to-SVC PDT is labeled SVC(MP2), and the RD curve for the

final SVC-to-MPEG-2 PDT is labeled MP2(SVC(MP2)).

For the Foreman sequence, both transcoding steps (MPEG-2-to-SVC and SVC-to-

MPEG-2) have nearly the same impact on the video quality. Conversely, the Mobile

sequence indicates only slight quality losses for MPEG-2-to-SVC transcoding (BD-

PSNR of 0.5 dB between first and second curve) compared to the impact of SVC-to-

MPEG-2 transcoding (BD-PSNR of 1.5 dB between second and third curve).

Figure 38: Y-PSNR for repeated transcoding of Foreman sequence [3].

SVC Tunneling 81

The individual and average results are represented as the BD of the PSNR and

bitrate in Table 10. On average, the repeated transcoding results in a total PSNR

drop of 2.1 dB or conversely a bitrate increase of 43% in order to compensate for the

PSNR drop.

Based on these results, the bandwidth requirements for a multicast streaming

architecture can be estimated for three scenarios as shown in Figure 40. The MPEG-

2 simulcast mode, in which 3 quality versions of the content (as specified in Section

3.3) are streamed, requires 145% of the bitrate of the original MPEG-2 video. The

simulcast mode is depicted as a baseline in Figure 40, labeled Scenario 1. The other

two scenarios considered in the figure are the full SVC tunneling mode, labeled

Scenario 2, with MPEG-2-to-SVC and SVC-to-MPEG-2 transcoding, and, as

Scenario 3, SVC multicast streaming with only MPEG-2-to-SVC transcoding at the

ingress point of the network. SVC content delivery in both latter scenarios reduces

the bandwidth requirements at the core network by approx. 31% w.r.t. the simulcast

mode, at the expense of degraded video quality (-2.1 dB for Scenario 2 and -0.8 dB

for Scenario 3). Scenario 3 assumes that the end-user terminals also support SVC

and thus no SVC-to-MPEG-2 transcoding is required.

Note that the content delivery in all three scenarios is based on the same video at the

sender. In order to obtain equal video quality results at the end-user terminals for

MPEG-2 simulcast mode and SVC layered multicast, the bitrate of the MPEG-2 video

for simulcast mode (Scenario 1) could be throttled according to Table 10. However,

this would imply deliberately sending suboptimal video quality to simulcast mode

users, which only makes sense if the available network bandwidth is scarce.

4.3.1.3 Discussion of Experimental Results

While the SVC tunnel architecture with the presented test setup provides a moderate

reduction of bandwidth over MPEG-2 simulcast, it should be noted that the repeated

transcoding in this test setup has used fixed target bitrates for all three operations in

order to establish a valuable baseline for further research.

Figure 39: Y-PSNR for repeated transcoding of Mobile sequence [3].

82 SVC Tunneling

The current architecture can be improved for both transcoding steps. In the MPEG-2-

to-SVC transcoding step, the target bitrate for SVC could be reduced according to

SVC's higher coding efficiency over MPEG-2. In theory, it should be possible to

reduce the bitrate of an SVC stream with 2 layers by 59% (cf. Section 4.2.1) while

maintaining BD-PSNR results similar to fixed target bitrates. However, as coding

efficiency may vary depending on the content, the selection of appropriate SVC

target bitrates remains a research challenge. The naïve solution is to statically

reduce the bitrate for MPEG-2-to-SVC transcoding by about 59%. Since the coding

efficiencies of MPEG-2 encoders have also improved over the years [169], this

number is probably obsolete by now. A more elaborate solution would be to encode

the raw video to SVC and measure the ratio of MPEG-2 bitrate vs. SVC bitrate in

order to determine the appropriate bitrate reduction for that specific content. But this

solution is not applicable for scenarios in which the content is only available in

MPEG-2 (e.g., DVD-Videos). Another solution would be to steer the transcoding

through the QP instead of target bitrate. As noted in Section 4.2.3, we argue that

transcoding to SVC should apply the same rate control mode as the original MPEG-2

encoding.

In addition to the architectural enhancements, the particular configuration of the

transcoding setup implemented in this section could be improved in several aspects,

such as the choice of SVC layer configuration or the deployment of other transcoding

components.

The two transcoding steps for SVC tunneling result in a PSNR drop of 2.1 dB. Based

on the proposed mapping of PSNR to the MOS in [116], the perceptibility of the

PSNR drop, represented as Differential MOS (DMOS) on the Absolute Category

Table 10: Bjontegaard Delta of RD curves for repeated transcoding [3].

Foreman sequence: BD-PSNR BD-bitrate

1
st

 to 2
nd

 curve (MPEG-2SVC) -1.1 dB 23%

2
nd

 to 3
rd

 curve (back to MPEG-2) -1.0 dB 23%

1
st

 to 3
rd

 (MPEG-2SVCMPEG-2) -2.1 dB 51%

Mobile sequence: BD-PSNR BD-bitrate

1
st

 to 2
nd

 curve (MPEG-2SVC) -0.5 dB 8%

2
nd

 to 3
rd

 curve (back to MPEG-2) -1.5 dB 26%

1
st

 to 3
rd

 (MPEG-2SVCMPEG-2) -2.1 dB 36%

Average: BD-PSNR BD-bitrate

1
st

 to 2
nd

 curve (MPEG-2SVC) -0.8 dB 15%

2
nd

 to 3
rd

 curve (back to MPEG-2) -1.3 dB 25%

1
st

 to 3
rd

 (MPEG-2SVCMPEG-2) -2.1 dB 43%

SVC Tunneling 83

Rating (ACR) scale from 1 (bad) to 5 (excellent) [125], can be roughly estimated

between 4.83 in the best case and 4.63 in the worst case according to Equation (1).

 () () () (1)

 () is the calculated differential viewer score and () and () are the

individual viewer scores of the processed video sequence and reference

respectively. This equation is also applicable to the MOS because the function for

 () and the arithmetic mean of the MOS are commutative. Note that this is only a

first estimate to provide an impression of the perceptibility of the quality reduction. As

noted in Section 3.3.2, other mappings between PSNR and MOS have been

proposed as well.

In this section, we have performed a first evaluation of the quality impact induced by

repeated transcoding at network borders. This transcoding chain results in a total

PSNR decrease of 2.1 dB, with around 1/3 of the quality impact attributed to the

initial MPEG-2-to-SVC transcoding step. A bitrate increase of 43% (compared to a

single MPEG-2 bitstream) is required to compensate the quality loss, which is still

less than the necessary bandwidth for MPEG-2 simulcast-based streaming (i.e.,

 bitrate increase compared to the single bitstream).

The results of two test sequences for an SVC tunneling test-bed setup with CBR

encoding and same bitrates for both transcoding operations have been presented.

The following sections will ameliorate the test-bed setup with respect to transcoding

configurations and will cover more test sequences.

Figure 40: Estimated bandwidth requirements at the core network and corresponding quality
degradation for multicast streaming [3].

84 SVC Tunneling

 Comparing Rate Control Modes for SVC Tunneling 4.3.2

4.3.2.1 Test-Bed Setup and Quantization Considerations

One major drawback of the test-bed setup described in Section 4.3.1.1 is the low

flexibility due to the same bitrates for both transcoding operations. This configuration

does not take different coding performances of MPEG-2 and SVC into account. The

configuration also limits the bandwidth efficiency of SVC tunneling considerably.

Furthermore, we found the previous selection of test content and the SVC encoding

configurations to be insufficient for further investigations. Two test sequences are too

few for a reliable evaluation. As discussed in Chapter 3, we consider the use of

quality scalability to be more suitable to most SVC-based streaming scenarios

compared to a combination of spatial and quality scalability.

To overcome these limitations, we performed further tests for comparing SVC

tunneling of fixed QP encoding mode against CBR encoding mode using the

following setup. The test was performed with the test sequences Foreman,

Container, Hall_Monitor, and Stefan, each having a resolution of 352x288 and 25 fps

frame rate. These test sequences were selected to represent a wider range of typical

videos than the previous selection. The test sequences were initially encoded to

MPEG-2, transcoded in a first transcoding step to SVC using PDT, and in a second

transcoding step back to MPEG-2 using PDT. These transcoding scenarios were

performed for fixed QP and CBR encodings separately. For comparing the required

bandwidth of SVC tunneling with MPEG-2 simulcast, we selected for each extracted

SVC layer an MPEG-2 encoding with best matching Y-PSNR.

One challenge in this setup is the selection of a suitable QP or target bitrate for the

SVC encoding in the first transcoding step. We chose an experimental approach

where the original YUV sequence is encoded to SVC with several target qualities

(i.e., QP or target bitrate) and then the configuration that yields a Y-PSNR just above

Table 11: SVC layer configurations for initial encoding at CBR and fixed QP rate control modes.

Label Rate control Layer 3 Layer 2 Layer 1 Layer 0

Q1
fixed QP 16 22 28 34

CBR 3,000 kbps 2,100 kbps 1,200 kbps 300 kbps

Q2
fixed QP 20 26 32 38

CBR 2,000 kbps 1,400 kbps 800 kbps 200 kbps

Q3
fixed QP 24 30 36 42

CBR 1,500 kbps 1,050 kbps 600 kbps 150 kbps

Q4
fixed QP 28 34 40 46

CBR 1,000 kbps 700 kbps 400 kbps 100 kbps

SVC Tunneling 85

that of the MPEG-2 encoding is selected. Due to different coding mechanisms,

MPEG-2 has a different range of QP values (1-32) than AVC and SVC (0-51). Thus,

the mapping between the two is not straight-forward. For the second transcoding

step (back to MPEG-2), we applied again the target quality of the initial MPEG-2

encoding.

The SVC encoding was configured with four MGS layers. We tested two industry-

grade SVC encoders, i.e., MainConcept v1.5 [108] and bSoft v120403 [103]. MPEG-

2 encoding was performed via FFmpeg v0.8 [165]. The bSoft encoder distributes

transform coefficients automatically to create MGS enhancement layers. The

MainConcept encoder performs re-quantization to obtain those MGS layers.

Compared to the highest layer, we reduced the QP by 6 per MGS layer for fixed QP

or conversely the target bitrate by 30% (of the total bitrate) for CBR. While Section

3.4.5 has suggested a deltaQP of 2, the test-bed setup of this section covers a higher

range of bitrates. Since the bSoft encoder always yielded better RD performance for

fixed QP mode, we did not perform CBR mode tests for the bSoft encoder.

Table 12: Y-PSNR results of SVC layers for the Hall_Monitor sequence with various encoders
and rate control modes, adopted from [5].

Target Quality bSoft (fixed QP)

Bitrate [kbps] L3 [dB] L2 [dB] L1 [dB] L0 [dB]

Q1 4482 44.74 33.05 26.89 23.20

Q2 2446 42.03 32.95 26.89 23.20

Q3 1244 39.84 32.77 26.87 23.21

Q4 699 37.83 32.48 26.86 23.23

 MainConcept (CBR)

Bitrate [kbps] L3 [dB] L2 [dB] L1 [dB] L0 [dB]

Q1 3095 43.87 42.64 41.03 37.74

Q2 2202 42.30 41.07 39.53 36.30

Q3 1622 40.96 39.75 38.32 35.09

Q4 1058 38.68 37.43 36.03 32.62

 MainConcept (fixed QP)

Bitrate [kbps] L3 [dB] L2 [dB] L1 [dB] L0 [dB]

Q1 3270 42.97 39.15 35.94 32.96

Q2 1867 40.10 36.62 33.38 30.39

Q3 1191 37.79 34.22 30.88 27.84

Q4 816 35.46 31.74 28.34 25.30

86 SVC Tunneling

The starting points of the test are four SVC encoding configurations (Q1, Q2, Q3, Q4)

with highest layer QP of {16, 20, 24, 28} for fixed QP and target bitrate of {3, 2, 1.5,

1} Mbps for CBR. Table 11 lists the corresponding configurations for CBR and fixed

QP rate control modes.

Note that in order to simplify our test-bed setup we kept the encoding configurations

for SVC (i.e., Q1, Q2, Q3, Q4) static across sequences and selected the encoding

quality for the original MPEG-2 streams accordingly. We acknowledge that in real-life

scenarios the initial MPEG-2 streams are fixed and the SVC encoding configurations

have to be adjusted instead. However, the quality configuration for MPEG-2 did not

show any notable fluctuations between sequences. As each test was performed with

four different quality configurations anyway, this simplification had no effect on the

evaluated quality loss and RD performance characteristics.

The qualities of the SVC layers (labeled L3 for highest layer and L2, L1, L0 for the

lower layers respectively) of the Hall_Monitor sequence are exemplarily shown in

Table 12. While the bSoft encoder yields good overall RD performance, the

automatic distribution of transform coefficients allocates little quality to the lower

layers (due to a uniform rate distribution among layers) compared to our

configuration of the MainConcept encoder.

Figure 41: Test-bed setup for QP selection and SVC tunneling evaluation.

SVC Tunneling 87

The test-bed setup for the selection of MPEG-2 and SVC QPs and the subsequent

evaluation are illustrated in Figure 41. The upper part of the figure shows the

selection process, the lower part depicts the evaluation (similar to Figure 37, with the

exception of the BD-PSNR calculation).

The qualities of MPEG-2 streams of the Hall_Monitor sequence encoded at QPs from

1 to 32 are shown in Table 13. Based on the proposed approach that the highest

SVC layer should have a Y-PSNR just above that of the MPEG-2 stream, the starting

points for our SVC tunneling evaluations for the bSoft encoder are the MPEG-2

streams with QP=2 for Q1 (44.74 dB ≥ 43.69 dB), QP=3 for Q2, QP=4 for Q3, and

QP=6 for Q4. The MPEG-2 streams that form the starting points for the other test

sequences (for both bSoft and MainConcept encoders) in fixed QP mode were

selected accordingly. For the MainConcept encoder in CBR mode, the initial MPEG-2

sequences were encoded in CBR mode at the following 32 bitrates: 9,500 kbps,

9,000 kbps, 8,500 kbps, 8,000 kbps, 7,500 kbps, 7,000 kbps, 6,500 kbps, 6,000

kbps, 5,500 kbps, 5,000 kbps, 4,500 kbps, 4,000 kbps, 3,500 kbps, 3,000 kbps,

2,750 kbps, 2,500 kbps, 2,250 kbps, 2,000 kbps, 1,750 kbps, 1,500 kbps, 1,250

kbps, 1,000 kbps, 900 kbps, 800 kbps, 700 kbps, 600 kbps, 500 kbps, 400 kbps, 300

kbps, 200 kbps, 100 kbps, and 50 kbps. The bitrates were selected to cover the

entire range of bitrates that the FFmpeg encoder was able to encode for the test

Table 13: Y-PSNR results for MPEG-2 with fixed QP for the Hall_Monitor sequence.

QP Bitrate

[kbps]

Y-PSNR

[dB]

 QP Bitrate

[kbps]

Y-PSNR

[dB]

1 7842 48.67 17 222 32.69

2 3631 43.69 18 214 32.41

3 1900 41.23 19 207 32.13

4 1309 39.75 20 199 31.85

5 873 38.77 21 194 31.60

6 674 37.85 22 188 31.37

7 543 37.14 23 184 31.15

8 456 36.46 24 179 30.93

9 384 35.90 25 174 30.71

10 337 35.41 26 172 30.51

11 305 34.98 27 168 30.31

12 286 34.52 28 166 30.14

13 271 34.09 29 163 29.96

14 257 33.71 30 161 29.79

15 246 33.32 31 159 29.63

16 234 33.01 32 125 20.98

88 SVC Tunneling

sequences, i.e., the FFmpeg encoder was not able to encode any of the test

sequences at bitrates above 9,500 kbps or below 50 kbps.

4.3.2.2 Experimental Results and Discussion

The BD results for the two transcoding steps are shown in Table 14. The BD is

measured between the initial and final MPEG-2 encodings. As mentioned before, we

applied a flexible approach for the target quality of SVC encoding. This means that

the bitrates of the SVC streams did not correspond to those of the initial and final

MPEG-2 streams. Thus, the BD is applicable neither to the MPEG-2-to-SVC

transcoding step nor the SVC-to-MPEG-2 transcoding step, but only to the result of

the entire transcoding chain.

Sequences with lower spatial detail and lower amount of movement (such as

Hall_Monitor, Container) typically show less quality degradation than those with

higher amounts. The overall results showed lower quality impact for fixed QP mode

(-1.74 dB for bSoft encoder, -1.88 dB for MainConcept encoder on average) than for

CBR mode (-2.50 dB on average).

The SVC layers were transcoded to MPEG-2 streams, the PSNR of each stream was

calculated and again compared to the set of initial MPEG-2 streams to select the

closest matching qualities for comparing the SVC tunneling bandwidth requirements

to those of MPEG-2 simulcast. This calculation yields the MPEG-2 streams needed

to perform a simulcast with the same qualities as the corresponding SVC tunneling

setup.

We acknowledge that the approach for generating the initial MPEG-2 streams at

lower qualities may prove difficult in a real-life scenario where the content is only

available as one pre-encoded MPEG-2 stream. However, in such a scenario, a

transrating tool [170][171] can be used for obtaining lower bitrate versions of the

content. Thus, the generated MPEG-2 streams mark an upper bound for the quality

achievable at the server side, and therefore also the best possible RD performance

for MPEG-2 simulcast.

Table 14: Bjontegaard Delta for SVC tunneling, adopted from [5].

Sequence bSoft (fixed QP) MainConcept (fixed QP) MainConcept (CBR)

BD-PSNR

[dB]

BD-bitrate

[%]

BD-PSNR

[dB]

BD-bitrate

[%]

BD-PSNR

[dB]

BD-bitrate

[%]

Foreman -2.08 50.3 -2.03 53.7 -2.40 61.6

Container -1.57 38.2 -1.99 51.0 -2.91 66.9

Hall_Monito

r

-0.75 22.6 -1.40 54.1 -1.82 73.6

Stefan -2.59 41.0 -2.09 32.1 -2.88 53.4

Average -1.74 38.04 -1.88 47.7 -2.50 63.9

SVC Tunneling 89

Table 15 presents the comparison of average required bandwidths for SVC tunneling

and MPEG-2 simulcast streaming. Columns labeled SVC tunneling show required

bandwidths for delivering the content which has been transcoded from MPEG-2 to

SVC (i.e., first transcoding step). For the second transcoding step, the content is

transcoded back into the final MPEG-2 encoding. The required bandwidths for

MPEG-2 simulcast (of the initial MPEG-2 encoding, cf. Table 13 for the Hall_Monitor

sequence) with the same quality (in terms of Y-PSNR) as that final MPEG-2

encoding are shown in columns labeled MPEG-2 simulcast.

For the tested configurations, only CBR mode yields lower overall bandwidth

requirements for full SVC tunneling than for equivalent MPEG-2 simulcast, reducing

the required bandwidth by up to 32% (and 26% on average). SVC tunneling with

fixed QP mode performs worse than equivalent MPEG-2 simulcast, even though it

yields less quality degradation. This is attributed to the comparatively high quality of

lower SVC layers in CBR mode (cf. Table 12), which manifests in higher bitrates of

MPEG-2 simulcast in order to match that quality. We argue that the bandwidth

efficiency of SVC tunneling depends more on the configuration of lower SVC layers

than on the encoder implementation. For example, the MainConcept encoder in fixed

QP mode was configured with a deltaQP of 6, while Section 3.4.5 suggests a

deltaQP of 2 for SVC encoding, which would lead to higher qualities of the lower SVC

layers. Furthermore, the number of SVC enhancement layers plays an important role

for the bandwidth efficiency of SVC tunneling. Note that SVC tunneling with fixed QP

mode may still be favorable over MPEG-2 simulcast in scenarios where only one of

the two transcoding steps is needed (e.g., if the client's media player supports SVC),

since every transcoding step has an impact on video quality.

Yang et al. [156] have proposed a logarithmic model for mapping MPEG-2 QPs to

AVC QPs. A simplified version of the model is shown in Equation (2).

 () (2)

Table 15: Comparison of required bandwidths for SVC tunneling vs. MPEG-2 simulcast,
adopted from [5].

Target

Quality

bSoft (fixed QP) MainConcept (fixed QP) MainConcept (CBR)

SVC

tunneling

[kbps]

MPEG-2

simulcast

[kbps]

SVC

tunneling

[kbps]

MPEG-2

simulcast

[kbps]

SVC

tunneling

[kbps]

MPEG-2

simulcast

[kbps]

Q1 5333 3041 3694 3454 3286 4721

Q2 3446 2025 2418 2082 2242 3191

Q3 2201 1452 1650 1277 1687 2093

Q4 1438 1102 1132 900 1109 1287

Average 3105 1905 2224 1928 2081 2823

90 SVC Tunneling

 is the calculated QP for AVC (or SVC in our case), is the MPEG-2 QP,

 and are model parameters. Based on our averaged test results, the model

parameters are and for the MainConcept encoder in fixed QP mode,

and respectively and for the bSoft encoder. Note that this is only a

rough estimate and that the mapping is content-dependent.

From the initial approach of applying the same bitrates for both transcoding steps, we

have improved the configuration to select the quality of the MPEG-2-to-SVC

transcoding based on the RD performance correlation between MPEG-2 and SVC.

With this configuration, the coding performance characteristics of different codecs are

taken into account. We have evaluated SVC tunneling with a focus on comparing the

impact of fixed QP and CBR encoding modes with respect to quality degradation and

bandwidth efficiency. The results indicate smaller quality impact for fixed QP mode

(-1.74 dB and -1.88 dB, depending on the encoder) than for CBR (-2.50 dB), but the

comparison of required bandwidth only yields a reduction for SVC tunneling with

CBR mode (26%). In the following section, we will detail our studies of RD

characteristics of the transcoding process in order to determine the trade-off between

quality loss and bandwidth efficiency.

 Advanced Configuration Options for SVC Tunneling 4.3.3

4.3.3.1 Test-Bed Setup and Configuration Improvements

The configurations for the quality evaluations of SVC tunneling discussed in Section

4.3.2 can be further improved. So far, the rate control for transcoding in fixed QP

mode was configured as follows. For finding a suitable QP for SVC encoding, the

original sequence was encoded at various QPs and we selected the QP yielding a

quality just above that of the MPEG-2 encoded stream. With this QP, the

reconstructed sequence (from MPEG-2) was encoded. (To be precise, we kept the

SVC QP static and selected the MPEG-2 QP accordingly in order to simplify our test-

bed setup.) For transcoding back to MPEG-2, the initial MPEG-2 QP was chosen.

Thus, we assumed that this SVC QP would yield a decent quality at a moderate

bitrate. While this is a reasonable assumption for estimating parameters for the SVC

tunneling setup, we will investigate the effect of the SVC QP in this section.

Furthermore, we will evaluate the effect of the MPEG-2 QP in the SVC-to-MPEG-2

transcoding step. Choosing the same MPEG-2 QP as the initial one is a

straightforward solution. But if we assume no bandwidth constraints in the home

network between the Home-Box and the end-user terminal, the MPEG-2 QP could be

reduced, yielding a higher quality. As an extreme case, the MPEG-2 QP could be set

to 1, causing almost no quantization.

With the same test-bed setup as in Section 4.3.2.1 (i.e., MPEG-2 encoding with the

FFmpeg encoder, SVC encoding of 4 quality layers in fixed QP mode with the bSoft

SVC Tunneling 91

encoder, test sequences Foreman, Container, Hall_Monitor, and Stefan, each at CIF

resolution and 25 fps frame rate), the impact of different SVC QPs was evaluated.

4.3.3.2 Experimental Results

Figure 42 shows the transcoding RD results for the Foreman sequence. The

sequence was first encoded to MPEG-2 with QP=5 (cf. Section 4.3.2.1), then it was

transcoded via pixel-domain transcoding to SVC with QPs ranging from 16 to 28. The

SVC QP of 24 is highlighted as it is the suggested QP from Section 4.3.2. SVC

QP=24 yields a quality loss of 1.12 dB, for QP=28 the quality loss doubles to 2.25

dB. For lower QPs, the quality loss goes down to 0.46 dB for SVC QP=20 and even

0.09 dB for QP=16, but at the expense of very high bitrates (3.75 times the MPEG-2

bitrate for SVC QP=16). Note that the quality for SVC is constrained by the MPEG-2

stream. No matter how much bitrate is used, the quality of the SVC stream can never

surpass that of the reconstructed MPEG-2 sequence it is based on.

The evaluation mostly confirms our initial approach for selecting the SVC QP. But it

also indicates that within a certain QP range (from around 20 to 28), both quality and

bitrates remain within reasonable bounds.

In the next step, we transcode the SVC streams back to MPEG-2 at various QPs. We

selected the SVC streams with QP={20,24,28} as starting points. The highest layer of

each stream was transcoded to MPEG-2 at QPs ranging from 1 to 8. The RD results

for the Foreman sequence are shown in Figure 43. For each transcoded MPEG-2

stream, the initial suggestion from Section 4.3.2 (i.e., MPEG-2 QP=5) is highlighted.

The initial MPEG-2 stream and the SVC streams are shown for reference. Note that

Figure 42: RD results for transcoding MPEG-2 to SVC at various QPs for the Foreman
sequence.

92 SVC Tunneling

QP=1 is the lowest possible quantization, explaining its high bitrates. Again, the

quality of the transcoded MPEG-2 streams is constrained by the corresponding SVC

stream. The Bjontegaard Delta is no longer applicable to this configuration as the

bitrates of the transcoded streams do not correspond to the initial MPEG-2 streams.

From Figure 43 we conclude that the initial suggestion of MPEG-2 QP=5 is

somewhat inefficient in terms of PSNR as it causes unnecessary quality loss (around

1.1 dB compared to SVC). Setting the MPEG-2 QP to 4 yields only 0.7 dB quality

loss compared to SVC at a slight bitrate increase. Assuming an overprovisioned link

between the transcoding Home-Box and the end-user terminal, the video can even

be transcoded to MPEG-2 at a QP of 1, yielding mere 0.12 dB quality loss compared

to SVC. The total quality loss (compared to the initial MPEG-2 stream) at transcoded

MPEG-2 QP=1 is 1.24 dB for SVC QP=24 and as low as 0.59 dB for SVC QP=20, in

contrast to the initial 2.32 dB for the suggestion from Section 4.3.2 (SVC QP=24,

transcoded MPEG-2 QP=5).

In order to compare the performance of SVC streaming to MPEG-2 simulcast,

appropriate QPs for the MPEG-2 streams transcoded from lower SVC layers have to

be devised. The approach followed in Section 4.3.2 was to compare the quality of a

lower SVC layer to the set of initial MPEG-2 streams encoded from the original

sequence at various QPs and to select the MPEG-2 QP with the closest matching

PSNR (i.e., where - is minimal). In the case of the

Foreman sequence at the aforementioned configuration, the MPEG-2 QPs for

transcoding SVC layers are (from lowest to highest layer): 32, 29, 13, and 5.

If we again assume an overprovisioned home network, all lower SVC layers can be

transcoded at MPEG-2 QP=1 as well despite the inevitably high bitrates. For

Figure 43: RD results for transcoding MPEG-2 to SVC and back to MPEG-2 at various QPs for
the Foreman sequence.

SVC Tunneling 93

example, at the previously suggested MPEG-2 QP of 32 for the base layer, the

transcoded Foreman sequences has a PSNR of 22.85 dB at 171 kbps, whereas the

same base layer transcoded at MPEG-2 QP=1 achieves a PSNR of 25.51 dB at 4476

kbps.

Figure 44 shows the impact of the QP for SVC-to-MPEG-2 transcoding on the RD

performance of SVC layers for the Foreman sequence. For the highest layer, RD

results of the initial MPEG-2 streams are included. Since the lower layers are

generated by the SVC encoder, there are no corresponding initial MPEG-2 streams

for these layers. Dotted arrows indicate the transcoding of individual data points. The

previously suggested approach is labeled ref. transcoded MPEG-2.

Especially at lower layers, that approach causes significant quality losses, but also

yields low bitrates. Since we assume an overprovisioned home network, transcoding

with MPEG-2 QP=1 has only marginal quality losses. The rather strange RD

performances of the SVC base layer in Figure 44 (d) are implementation dependent

(a) (b)

(c) (d)

Figure 44: Rate-distortion performance for different QPs for SVC-to-MPEG-2 transcoding for
the Foreman sequence at (a) SVC layer 3, (b) layer 2, (c) layer 1, and (d) layer 0.

94 SVC Tunneling

(i.e., the bSoft encoder assigns more and more bitrate to the base layer to improve

the quality of enhancement layer depending on it, but the base layer quality itself

decreases). Thus, the results of the transcoded MPEG-2 streams at QP=1 follow the

same characteristics.

The SVC QP for the initial transcoding step from MPEG-2 to SVC governs the bitrate

trade-off between SVC tunneling and MPEG-2 simulcast. But it also controls the

overall quality loss. Figure 45 illustrates the test-bed for evaluating the trade-off

between quality loss and bandwidth savings.

With all SVC layers transcoded at MPEG-2 QP=1, Figure 46 illustrates the relation

between the quality loss at the highest layer and the trade-off in bandwidth

requirements for the Foreman sequence. The x-axis shows the bandwidth

Figure 45: Test-bed setup for selection of QPs and evaluation of quality-versus-bandwidth
trade-off.

Figure 46: Trade-off between bandwidth requirements and quality loss of SVC tunneling for the
Foreman sequence, adopted from [9].

SVC Tunneling 95

requirements of SVC tunneling compared to MPEG-2 simulcast at roughly the same

quality, i.e., values below 100% mean that SVC tunneling is more efficient. The

y-axis shows the quality loss at the highest layer compared to the initial MPEG-2

sequence. The bandwidth requirement and quality loss for the initial configuration

from Section 4.3.2 is shown for reference. Note that while the quality loss is

compared to the initial MPEG-2 sequence, the bandwidth comparison already uses

the lower quality versions of the MPEG-2 streams. For example, at SVC QP=28, the

quality drops by 2.35 dB, but the SVC tunneling only requires 89.5% of the bandwidth

needed to stream MPEG-2 simulcast at that lower quality that is actually received by

the end user.

It can be observed that in order for SVC tunneling to be more efficient, we have to

take a quality loss of at least 2.0 dB for this sequence into account. While it is

possible to achieve lower quality loss, SVC tunneling would require more bandwidth

than MPEG-2 simulcast in such configurations. Due to the transcoded MPEG-2 QP

of 1, the SVC QP can be increased from 24 to 28, at the same quality as the initial

(a) (b)

(c)

Figure 47: Trade-off between bandwidth requirements and quality loss of SVC tunneling for (a)
Container, (b) Hall_Monitor, and (c) Stefan sequences, adopted from [9].

96 SVC Tunneling

configuration (labeled ref. transcoded MPEG-2 (SVC QP=24, MPEG-2 QP=5)), but at

far lower bandwidth requirements.

The same trade-off is shown in Figure 47 for test sequences Container, Hall_Monitor,

and Stefan respectively. The Container and Hall_Monitor sequences have a similar

performance as Foreman, whereas the Stefan sequence has stronger quality

degradation and for SVC QP=28 it does not even pass the point where SVC

tunneling would be more bandwidth efficient than MPEG-2 simulcast.

Figure 48 shows the trade-off averaged over all test sequences. The quality is

reduced by around 2.5 dB on average when aiming for bandwidth efficient SVC

tunneling using the bSoft encoder.

4.3.3.3 Partial SVC Tunneling Evaluation

As discussed in Section 4.2.2, two partial variants of SVC tunneling are possible,

omitting either the first or the second transcoding step. One transcoding step less

causes less quality loss and thus better bandwidth efficiency.

For both variants of partial SVC tunneling, Figure 49 shows the trade-off between

bandwidth efficiency and PSNR loss for the Foreman sequence. The results for full

SVC tunneling are shown for reference. For the case of only MPEG-2-to-SVC

transcoding at the server side (i.e., assuming SVC support at the end-user terminal),

the loss characteristics are similar to full SVC tunneling. But since the transcoding

back to MPEG-2 is omitted, PSNR losses are lower. This also slightly increases the

bandwidth efficiency.

Figure 48: Average trade-off between bandwidth requirements and quality loss of SVC
tunneling.

SVC Tunneling 97

But if we assume the content to be available in SVC, thus only requiring transcoding

to MPEG-2 at the client side (i.e., the line labeled partial tunneling: SVC to MPEG-2

(MPEG-2 QP=1)), we observe different characteristics. The configuration with SVC

QP=28 has the lowest PSNR loss at 0.14 dB. This is due to the fact that for

transcoding we always apply a MPEG-2 QP of 1. Stronger quantization in the SVC

stream causes less quality loss in the transcoding step. Note that the figure only

shows quality losses and not the absolute quality which of course decreases with

stronger quantization.

4.3.3.4 JSVM-Based Evaluation

As evaluated in Chapter 3, the bSoft encoder tends to generate streams with quite

high bitrates compared to the SVC reference software JSVM. Therefore, we also

briefly evaluate the performance of SVC tunneling using the JSVM encoder. Using

the same setup as for the bSoft encoder, the Foreman sequence was first encoded

to MPEG-2 at QP=4 (chosen based on the described approach). The MPEG-2

stream was then transcoded to SVC via the JSVM at QPs ranging from 16 to 28 (with

a deltaQP of 2). Following the assumption of an overprovisioned home network, all

SVC layers were transcoded back to MPEG-2 at QP=1. As a reference for our initial

approach, the SVC stream with QP=24 was also transcoded to MPEG-2 with QPs

based on the best matching MPEG-2 quality.

The trade-off between the bandwidth requirements of SVC tunneling compared to

MPEG-2 simulcast of roughly the same qualities and the overall PSNR loss at the

highest layer are shown in Figure 50. It can be observed that SVC tunneling is far

more efficient than MPEG-2 simulcast when using the JSVM. At SVC QP=16, the

Figure 49: Trade-off between bandwidth requirements and quality loss of partial SVC tunneling
for the Foreman sequence.

98 SVC Tunneling

transcoded MPEG-2 stream loses merely 0.33 dB compared to the initial MPEG-2

stream while requiring only 58.2% of the bandwidth a comparable MPEG-2 simulcast

would need. The bandwidth requirements can be further reduced to 23.4% of MPEG-

2 simulcast if a PSNR loss of 2.03 dB compared to the source material is taken into

account.

The figure also reveals that the usage of the initial MPEG-2 QP (set to 4 in our case)

causes significant quality degradation in the final transcoding step, resulting in a

PSNR loss of 2.33 dB, compared to 0.97 dB yielded by an MPEG-2 QP of 1.

But the higher bandwidth efficiency comes at the cost of encoding speed. This makes

the JSVM unsuitable for scenarios with on-the-fly transcoding on the server side. As

evaluated in Section 3.4.6, the bSoft encoder is one order of magnitude faster than

the JSVM. While the content can usually be transcoded to SVC prior to streaming,

current implementations of SVC encoders are often only fully compatible with the

decoder of the same implementation as noted in Section 3.3.2. Thus, deploying the

JSVM decoder at the Home-Box for SVC-to-MPEG-2 transcoding also limits the

transcoding speed. For scenarios with real-time constraints, we suggest the

deployment of an industrial encoder in SVC tunneling solutions.

We conclude that the efficiency of SVC tunneling depends on the implementation

and RD performance of the SVC encoder. With the bSoft encoder, which had the

highest bitrates in our encoding evaluations in Chapter 3, SVC tunneling is more

efficient than MPEG-2 simulcast at a tolerable quality loss (~2.5 dB). With the use of

the JSVM encoder, SVC tunneling becomes even more bandwidth efficient, allowing

for a higher degree of control between reduction of bandwidth requirements and the

confinement of quality loss.

Figure 50: Trade-off between bandwidth requirements and quality loss of SVC tunneling for the
Foreman sequence using the JSVM encoder.

SVC Tunneling 99

4.4 Conclusions

In this chapter, we have presented and evaluated the concept of SVC tunneling for

multicast content delivery. The proposed architecture may require video transcoding

from and to non-scalable legacy video formats, such as MPEG-2, at the ingress and

egress points of the network. The goals of SVC tunneling for content delivery are the

reduction of network load through cumulative layered multicast and the provisioning

of QoS management in content-aware networks. In the ALICANTE architecture, SVC

tunneling is deployed to enable device-independent media access while allowing

dynamic in-network adaptation. The ALICANTE project explores the exploitation of

content-aware networking for SVC tunneling, ranging from in-network adaptation to

intelligent routing mechanisms. In several steps, we have evaluated the trade-off

between quality loss due to transcoding and the bandwidth efficiency of the proposed

approach.

The presented research focuses on MPEG-2 as the source and target formats in

order to support legacy devices. This choice provides a baseline for other formats.

We applied a pixel-domain transcoding approach with full decoding and re-encoding,

for which we measured the corresponding quality degradations. For AVC as source

and target formats, lossless bitstream rewriting can be applied, ideally avoiding

quality losses at all. However, several restrictions, in particular with respect to SVC

scalability options, would apply for AVC-to-SVC rewriting.

Throughout our evaluation, we have investigated various parameters that influence

the efficiency of SVC tunneling. We have tested different SVC encoding

configurations, SVC encoders, rate control modes, and the target qualities (QP,

target bitrate) for transcoding. We have developed guidelines for controlling the

transcoding-induced quality loss and shown the trade-off characteristics between the

total quality loss and the bandwidth efficiency compared to MPEG-2 simulcast of the

same (degraded) quality.

The following list summarizes the research contributions and key findings of this

chapter:

 The performance of SVC tunneling in terms of quality impact, bandwidth

efficiency, and transcoding speed strongly depends on the encoder

implementation.

o Proprietary encoders/decoder, such as bSoft and MainConcept, provide

reasonable transcoding speed.

o Since the JSVM reference software yields better RD performances, it

enables lower quality loss and better bandwidth savings.

 The trade-off between quality loss and bandwidth efficiency is computed as

follows. First, the quality loss of the video in the client's target coding format

(i.e., transcoded from MPEG-2 to SVC and back to MPEG-2) in comparison to

the (MPEG-2-encoded) source content is calculated. Then, the source content

is encoded to MPEG-2 at various bitrates to match each of the qualities of the

100 SVC Tunneling

extraction points of the SVC bitstream. These MPEG-2 encodings form the

MPEG-2 simulcast set used as reference. Finally, the sum of the bitrates of

this reference is compared to the bitrate of the SVC bitstream from SVC

tunneling. Thus, the trade-off between the overall quality loss and the

bandwidth savings over MPEG-2 simulcast of the same quality as the SVC

bitstream is obtained.

 We have evaluated the quality loss of transcoding to and from SVC for

MPEG-2 as the source and target formats. These findings enable advanced

control of the quality impact of SVC tunneling.

o The naïve approach to use the same target bitrates for MPEG-2

encoding, MPEG-2-to-SVC transcoding and SVC-to-MPEG-2

transcoding lacks flexibility and does not take coding efficiency

characteristics of the coding formats into account.

o A selection mechanism of target qualities for transcoding (i.e., target

bitrates or QPs) based on a comparison of PSNR video qualities

between MPEG-2 and SVC allows for better adjustment to coding

format characteristics. However, it still lacks the flexibility to control the

trade-off between quality loss and bandwidth efficiency.

o Assuming an overprovisioned home-network, as it is the case in the

ALICANTE architecture between the Home-Box and the end-user

terminal, the SVC-to-MPEG-2 transcoding step shall use as much

bitrate as possible in order to reduce quality loss. In our evaluations,

the quality loss of that transcoding step was reduced to 0.14 dB for the

bSoft encoder.

o We found that the most efficient mechanism for evaluating the trade-off

between quality loss and bandwidth efficiency is the MPEG-2-to-SVC

transcoding at various target qualities (i.e., SVC QPs). According to our

evaluations, around 2.5 dB PSNR loss has to be taken into account for

full SVC tunneling with the bSoft encoder in order to achieve bandwidth

savings w.r.t MPEG-2 simulcast.

o With the JSVM reference software, the quality loss for full SVC

tunneling can be constrained to 0.33 dB while requiring 41.8% less

bandwidth than a comparable MPEG-2 simulcast.

We have also evaluated scenarios in which only a partial deployment of SVC

tunneling is needed, e.g., if no MPEG-2-to-SVC transcoding is required. Such

scenarios obviously induce less quality degradation. Our results highlight the different

trade-off characteristics with respect to quality loss and bandwidth requirements.

Within the ALICANTE architecture, SVC is deployed not only for multicast streaming,

but also for RTP unicast streaming, P2P streaming, and DASH as discussed in the

following chapter. The investigated quality impact of transcoding applies for those

transport modes as well.

SVC Tunneling 101

The following chapter also comprises an evaluation of SVC tunneling in an integrated

streaming test-bed with in-network adaptation.

Future work should target the evaluation of SVC tunneling with different source and

target formats. While SVC tunneling with AVC can theoretically be achieved without

quality losses thanks to bitstream rewriting, the quality impact for commercially

deployed lossy transcoders would be an interesting topic. In our evaluations, we

have relied on a traditional GOP structure. In order to reduce the transcoding delay,

the GOP structure could be optimized for low-delay encoding [27]. The impact of low-

delay GOP structures on the coding efficiency and, subsequently, on the quality loss

remains to be evaluated. Furthermore, MPEG and the ITU-T/ISO/IEC Joint

Collaborative Team on Video Coding (JCT-VC) are currently developing the

successor of SVC, which will be based on the HEVC technology [57]. With this

Scalable High-efficiency Video Coding (SHVC), further improvements of RD

performance can be expected, which would also improve the bandwidth efficiency of

our proposed scalable media coding tunneling approach.

Distributed Adaptation and Media Transport 103

5 Distributed Adaptation and Media
Transport

5.1 Introduction

With the increasing popularity of multimedia services, it is essential that media

streaming systems provide high QoE to the end users while using network resources

optimally. We argue that media streaming for the FI requires the consideration of the

entire media delivery chain, which includes adaptation at various locations along that

chain. So far, we have discussed encoding considerations for SVC in Chapter 3 as

well as SVC tunneling enabling format-independent transport of scalable media

coding and media access for heterogeneous devices in Chapter 4.

In this chapter, we will investigate various aspects of SVC-based media transport and

the adaptation associated with it. Our goal is to study how entities within or at the

edges of the network can adapt content in order to provide the best QoS/QoE. The

contributions of this chapter mainly comprise implementation and deployment

aspects within the context of the ALICANTE project, which serve as a validation of

the work conducted in the previous chapters. First, we will discuss the prospects and

challenges of deploying scalable media coding in Content-Aware Networks for

several use cases in Section 5.2. The section provides a generic view on scalable

media coding and relevant architectural aspects towards adaptation (or flow

processing in general), caching/buffering, and overall Quality of Service/Experience

management for streaming via RTP, P2P, or HTTP. Note that scalable media coding

refers to a general concept that can be applied to video coding as well as audio

coding (cf. Section 2.2), wheras SVC denotes the H.264/AVC extension. While some

of the techniques covered in this chapter are also applicable to audio coding, we

base our discussions mainly on video coding. Section 5.3 will then describe the

distributed adaptation architecture deployed in ALICANTE. Adaptation techniques for

SVC will be detailed in Section 5.4. In addition to a review of related work on

adaptation strategies and the description of the adaptation logic implemented within

ALICANTE, we will also propose a new approach towards reducing the effects of

adaptation on the viewing experience by performing smooth transitions between

representations. The end-to-end adaptation approach from Section 5.3 will be

validated in Section 5.5. The chapter is concluded in Section 5.6, where we also

answer the research challenges towards a distributed adaptation decision-taking

framework that were identified earlier in Section 2.3.3. Those research challenges

address questions as to where, when, how often, and how to adapt. The section will

also provide an outlook on future work in this area.

The work presented in this chapter is published in [10], [11], [5], and [14].

104 Distributed Adaptation and Media Transport

5.2 Scalable Media Coding Enabling Content-Aware
Networking

The FI development [172] has raised a rich set of research issues given the huge,

global impact of this technology and new societal needs for media services. The term

FI encompasses a broad range of activities to improve the architecture of the current

Internet – an Internet that works on technologies designed decades ago when no one

could have foreseen the way the Internet is used today or tomorrow. While the

current Internet architecture is characterized by many ad-hoc solutions and

technologies that were designed for purposes different from their actual deployment,

future developments have to address long-term goals toward the Internet's full

potential [173]. A significant trend is recognized towards an information-centric

orientation and, consequently, new challenges are emerging. In particular, significant

changes in communications and networking have been proposed, including novel

basic architectural principles. What are the implications of new networking principles

for media streaming? How does the deployment of scalable media formats benefit

from these developments? Before we answer these questions, let us briefly revisit

the approaches towards the FI and the basics of scalable media formats. The new

conceptions are generally divided into revolutionary (i.e., clean-slate) and

evolutionary approaches. The revolutionary approaches are often referred to as

Information-Centric Networking (ICN), which is used as an umbrella term for related

concepts such as Content-Oriented Networking (CON) and Content-Centric

Networking (CCN) [174][175]. On the other hand, evolutionary (or incremental)

approaches, such as Content-Aware Networking, aim at building upon existing

Internet infrastructures. In this section, we will explain the role of CAN for multimedia

services in more detail. We will present four media streaming use cases which

characterize different requirements w.r.t. content-aware processing in the network

and highlight the utility of scalable media formats.

Clean-slate ICN approaches, as surveyed in [172] and [175], are very promising, but

they raise a long list of research challenges like the degree of preservation of the

classic transport (TCP/IP) layering principles, naming and addressing, content-based

routing and forwarding, management and control framework, in-network caching,

energy efficiency, trust, security embedded in the content objects, Quality of Service

and Experience, and media flow adaptation. Additionally, new business models are

needed for users, content producers, consumers, and service/network providers;

deployment issues such as compatibility with existing equipment, scalability, and

privacy become crucial.

In parallel, evolutionary approaches towards the FI such as Content-Aware

Networking are being proposed in [176] and developed within the ALICANTE project,

enabling efficient routing and forwarding of content based on given content and

context characteristics and also to enable content adaptation. ALICANTE deploys

content- and context-aware strategies at the network edges as discussed in [7]. A

Distributed Adaptation and Media Transport 105

main challenge of evolutionary approaches is obviously overcoming the limitations of

the current Internet [172].

The ALICANTE content-aware network environment attempts to optimize network

resource utilization while maintaining the expected QoS and QoE, respectively. For

this purpose:

 It establishes virtual networks on top of the physical infrastructure that feature

inherent content awareness, e.g., by dynamically providing network resources

appropriate for different content types.

 It provides in-network media caching as well as real-time adaptation,

exploiting scalable media coding formats, such as SVC, which are a vital

component towards this objective thanks to their compression efficiency and

flexibility [7].

Both functions are provided by enhanced network nodes, the MANEs, which feature

virtualization support, content-awareness, and media processing, as well as buffering

and caching.

The aim of this section is to describe the role of scalable media coding formats –

such as SVC – in Content-Aware Networks and to propose new solutions for some

use cases. Therefore, we will describe a set of use cases (Section 5.2.1) and provide

an analysis thereof regarding a selection of CAN challenges (Section 5.2.2),

specifically flow processing, caching/buffering, and QoS/QoE management.

 Use Cases 5.2.1

In this section we will illustrate use cases highlighting the benefits of using SVC in

CAN ranging from unicast and multicast to P2P and adaptive HTTP streaming.

A simplified and generic high-level system overview for the use cases in question is

depicted in Figure 51 comprising the following entities: two senders (S1, S2), two

MANEs (MANE1, MANE2), and three receivers (R1, R2, R3) with different terminal

and (potentially) network capabilities, to which three end users (U1, U2, U3) are

connected. Our discussion of the use cases addresses streaming of non-live content

(e.g., Video on Demand), unless noted otherwise. Please note that in more complex

scenarios, more senders, even more receivers, and additional MANEs distributed

over multiple autonomous network domains may be deployed. These use cases are

subsequently analyzed in Section 5.2.2 with respect to content-aware networking

aspects.

106 Distributed Adaptation and Media Transport

5.2.1.1 Unicast Streaming

For the unicast use case we have only one sender (e.g., S1) that streams the

scalable video content to a single receiver (e.g., R3), as in a traditional Video on

Demand application (see Figure 52). This layered media coding approach enables

MANEs along the path to perform content-aware operations such as in-network

content adaptation. For example, a MANE can react to changing network conditions

(based on information provided by a network monitoring system) by dropping

enhancement layers of the SVC stream. In current deployments, RTP is typically

used as the transport protocol and the Real Time Streaming Protocol (RTSP) [177] is

used for session control. Note that in the unicast use case the SVC stream is

typically sent via single-session transmission mode over RTP, i.e., all SVC layers are

packed into one RTP session.

5.2.1.2 Multicast Streaming

The second use case is multicast streaming, which is characterized by a single

sender providing the same content to multiple receivers. In this case, one sender

(e.g., S2 in Figure 51) is streaming the content to heterogeneous trees of MANEs

and subsequently to multiple receivers (e.g., R1, R2, R3). The term heterogeneous

trees denotes a set of trees, allocated for different SVC layers. All trees have the

same root (e.g., S2) but different leaves, depending on the transported SVC layer

(e.g., the SVC base layer is delivered to all receivers, while the highest SVC layer is

only received by R3), as shown in Figure 53.

Scalable media formats enable the realization of this use case via receiver-driven

layered multicast (RDLM) [48] and with SVC this approach is becoming efficient

enough to surpass simulcast [7]. In RDLM, different layers are transmitted over

Figure 51: High-level system overview, adopted from [10].

Distributed Adaptation and Media Transport 107

separate multicast groups. RTP realizes this via the multi-session transmission

mode, where SVC layers are separated into multiple RTP sessions at the sender

side, and rearranged to the proper SVC bitstream at the receiver side. Each receiver

subscribes only to those layers that it supports and that its network link can handle.

Again, a MANE can react to changing network conditions by adjusting the number of

layers to which it is subscribed. Such an approach simplifies the adaptation

operations. MANEs can transparently neglect the video header information, since the

mapping of SVC layers to multicast groups is realized at a lower level, simplifying the

process of content adaptation. In other words, a MANE simply adjusts the number of

subscribed RTP sessions without having to inspect each and every RTP packet

header.

5.2.1.3 Peer-to-Peer Streaming

In a P2P streaming use case, multiple senders exist and every sender provides some

parts of the content called chunks or pieces, while one or possibly more receivers

consume the content. A scalable media format enables each receiver to request only

the layers that are supported by its media player [178].

In contrast to conventional P2P content distribution, P2P streaming has a timing

constraint that every piece must arrive before its playout deadline expires. P2P

streaming systems typically use a sliding window of pieces which are currently

relevant for the receivers. Within this sliding window, a piece-picking algorithm at the

receiver side takes care of downloading those pieces that provide the highest quality

to the end user. The piece-picking algorithm ensures that the base layer is always

received before the deadline, determines enhancement layers that can be

downloaded under the current network conditions, and takes care of the peer

selection for each piece [179].

Figure 52: Unicast streaming in Content-Aware Networks, adopted from [10].

108 Distributed Adaptation and Media Transport

While a P2P system is traditionally organized as an overlay network that is

transparent to the core network, a content-aware network will allow MANEs to

participate in the streaming process in several ways. Figure 54 shows an outline of

this use case, showing senders, receivers, and the supporting MANEs.

A MANE can participate in P2P streaming by caching pieces in a content-aware

manner or by acting as a peer itself as discussed later in Section 5.2.2.1).

5.2.1.4 Adaptive HTTP Streaming

The previous use cases have shown streaming scenarios with various numbers of

senders and receivers. In order to overcome common shortcomings of RTP-based

streaming such as network address translation (NAT) and firewall issues, this use

case introduces adaptive HTTP streaming (e.g., DASH) in the context of CAN. In

HTTP streaming, the content is typically fragmented into segments that are

downloaded by the receiver via individual HTTP (partial) GET requests. This

approach allows for a stateless sender and enables at the same time caching at the

MANEs and dynamic content adaptation at the client. Based on several industry

solutions, MPEG has recently standardized DASH [50][180]. For the sake of

generality, this discussion uses the term Adaptive HTTP Streaming instead of DASH.

HTTP streaming is typically used in unicast mode, but multicast or even P2P

streaming modes are also possible.

In unicast mode, the sender provides a manifest file of the content that describes the

structure of the media segments and the available media representations. A media

representation denotes a particular encoding configuration of the content, e.g., bitrate

or resolution [180]. For layered coding formats such as SVC, those representations

can define either the individual layers or even subsets of bitstream layers. The

receiver selects the appropriate representation based on its processing and

Figure 53: Multicast streaming in Content-Aware Networks, adopted from [10].

Distributed Adaptation and Media Transport 109

rendering capabilities and starts requesting continuous segments of the content from

the sender. MANEs along the network path can act as caches or as content delivery

network (CDN) nodes, as shown in Figure 55.

Although HTTP is a unicast protocol, the concept of HTTP streaming can also be

applied to multicast streaming. If MANEs along the network path between the sender

and receivers cache the content segments for subsequent requests by other

receivers, the result will be a multicast-like tree. The technical considerations of this

approach are discussed later in Section 5.2.2.2.

The concept of HTTP streaming can even be applied to multisource streaming

scenarios similar to P2P streaming. The manifest file can contain multiple sources for

each segment including dynamic updates thereof. The receiver may select any of

them to download the segments, thus, balancing the load among the senders.

 Analysis of Use Cases 5.2.2

We have described different use cases for multimedia streaming and how they can

be applied in content-aware networks. In this section we will provide an analysis

concerning content-aware network operations, such as flow processing, caching and

buffering, and QoS/QoE management for the use cases in question and present

some recent scientific advances.

5.2.2.1 Flow Processing

The term flow processing denotes adaptation operations as well as any forwarding

behaviour that differs from traditional content-unaware forwarding mechanisms. The

goal of flow processing is the reduction of overall traffic in order to serve a maximum

number of users with the best QoE.

Figure 54: P2P streaming in Content-Aware Networks, adopted from [10].

110 Distributed Adaptation and Media Transport

In the unicast use case, the use of scalable media formats such as SVC in a

content-aware network brings three main advantages.

First, the sender can easily adapt the content to the receiver's capabilities by only

sending those layers that are actually supported by the receiver (e.g., in terms of

spatial resolution).

Second, a MANE can perform efficient in-network adaptation of the content in

reaction to network fluctuations. That is, when a MANE detects a decrease in

available downstream bandwidth that prevents the entire content from being

transmitted, it can drop some higher layers of the media stream, assuring continuous

playout of at least the base quality at the receiver. Since the dropping of SVC layers

in a unicast stream requires adjustments of RTP sequence numbers, we refer to this

as explicit adaptation. That is, the MANE has to actively interfere with the RTP

stream. Although the end user receives the content at a lower bitrate, the actual QoE

may increase compared to the alternative which would cause the playout either to

stall or to show too many visual artifacts due to high packet loss rate. As soon as the

network conditions return to normal, the MANE can re-increase the number of

forwarded layers. Each decision about dropping or forwarding SVC layers is triggered

by a distributed network monitoring system, which detects network fluctuations and

raises appropriate alarms.

The choice which SVC layers to drop or to forward is solved by an Adaptation

Decision-Taking Engine (ADTE) as detailed later on in Section 5.3.1. The ADTE is

actually not specific to SVC adaptation but is used for steering any adaptation of

content – be it at the MANE or outside the network at the sender or receiver. Based

on context parameters and the description of possible adaptation options, the ADTE

runs an optimization algorithm that finds the best-suited choice for the current

situation. In the case of in-network SVC adaptation, the set of context parameters is

reduced to the network parameters and possible adaptations are limited to SVC

layers, making this task rather simple and fast to compute.

Figure 55: Adaptive HTTP streaming in Content-Aware Networks, adopted from [10].

Distributed Adaptation and Media Transport 111

Third, a MANE can signal its monitoring information about the network condition

upstream to the sender, allowing for sender-side adaptation. While in-network

adaptation is a good solution for mitigating short-term network fluctuations, it wastes

bandwidth between the sender and the MANE in case of longer periods of decreased

available bandwidth. In other words, if a higher layer packet is to be discarded at a

MANE anyway, it is useless to transmit it to that MANE in the first place. Note,

however, that network-aware adaptation at the sender needs at least one round-trip

time (from MANE to sender) to take effect.

In the multicast use case, MANEs can adapt to changing network conditions by

subscribing to or unsubscribing from multicast groups containing SVC enhancement

layers. Conventional layered multicast is receiver-driven [48], i.e., the receivers

control the subscriptions to multicast groups. Hence, in-network adaptation is

achieved implicitly as the receiver controls it through subscription to appropriate SVC

layers. MANEs aggregate and combine subscriptions from downstream entities –

both receivers and MANEs – using them for subscribing to appropriate SVC layers

upstream. ALICANTE adopts and extends the RDLM approach for the distribution of

video content in multicast-based scenarios.

There are two possible ways for MANEs to assist the network-aware adaptation of

multicast streaming. Either, downstream forwarding of one or more SVC layers can

be temporarily truncated in case of congestion at an outgoing link as discussed in

[181], or a MANE can control multicast group subscriptions by sending prune or graft

messages to upstream neighbors as defined in RFC 3973 [182].

MANEs can also improve multicast functionalities of existing network infrastructures

by enabling a hybrid multicast infrastructure. If native multicast is not supported,

MANEs may perform overlay multicast with adjacent MANEs, so that they become

bridges between native and overlay multicast, as it is done in ALICANTE [41].

Furthermore, ALICANTE supports traffic engineering as well as content and service

classification and differentiation mechanisms (i.e., DiffServ and MPLS) that enable

selective treatment of SVC layers, e.g., increasing priority and robustness of the base

layer.

For the P2P streaming use case, a MANE may act as a peer, autonomously

requesting pieces which it deems relevant for any connected receivers. Running a

P2P engine on a MANE increases the processing requirements for this entity but it

also offers a flexible and powerful way to participate in P2P streaming. The MANEs

thus form a P2P overlay network (at the CAN layer) that may closely cooperate with

the overlay network at the application layer.

The aforementioned flow-processing policies are also applicable to adaptive HTTP

streaming with some noticeable differences. TCP uses reliable transmission that is

unsuitable for in-network adaptation achieved through enhancement layer dropping.

If a MANE simply drops TCP packets of an enhancement layer to avoid network

congestion, it would trigger the sender to retransmit the packets after TCP timeout.

For the streaming session, the retransmission of the packet wastes bandwidth and

even if the packet reached the receiver eventually, it would probably arrive after the

112 Distributed Adaptation and Media Transport

playout deadline. Thus, for HTTP streaming a MANE shall act as a transparent proxy

cache in combination with CDN functionality as will be described in the following

section. As the adaptation logic is entirely located at the receiver side, in-network

adaptation is achieved implicitly – similar to the multicast use case – by means of

HTTP requests for layers that are supported by the receiver. Requests for individual

SVC layers can be answered by different network nodes (or by the sender),

depending on where these layers are buffered. Hence, adaptation occurs within the

network, but without active participation by the MANEs.

The aforementioned in-network adaptation mechanisms – implicit or explicit – provide

a powerful tool for mitigating the effects of network fluctuations. Furthermore, the

adaptation decision-taking (i.e., the selection of which SVC layers to forward) has to

be performed in a distributed manner. That is, each MANE computes its local

adaptation decision and coordinates it with the other nodes in the network. Efficient,

scalable signaling and coordination of adaptation decisions is still an open research

challenge [7].

5.2.2.2 Caching and Buffering

MANEs can buffer previously requested content and may even act as CDN caches,

i.e., proactively moving the content closer to the receivers. Note that the storage

requirements for CDN-enabled MANEs are considerably higher than for mere

buffering support. In this context, we use the term buffering to denote very temporary

storage of data (e.g., within the sliding window of a live streaming scenario), whereas

caching denotes storage for a longer, though limited, duration.

In the unicast use case, a CDN-enabled MANE can proactively perform caching of

popular content. In particular, prefix caching decreases start-up delay while also

reducing network traffic. When a receiver requests the content, the MANE starts

streaming from its cache while requesting the suffix of the content from the sender

[183].

The usage of SVC offers a trade-off between quality and availability to the MANE.

The prefix cache may contain only the base layer for less popular content. Thus, the

end user starts receiving only the base layer, but with a low start-up delay, and later

the enhancement layers from the sender are added.

Proactive caching can also be used in the multicast use case to reduce mainly

start-up delay but also network traffic, e.g., for IPTV-like services. Note that proactive

caching is not applicable to live streaming sessions. Moreover, all receivers are

served simultaneously via multicast RTP streams, abolishing the need for buffering at

MANEs.

In the P2P streaming use case, a MANE can aggregate requests for a piece and

buffer downloaded pieces for subsequent requests. Especially in live scenarios,

almost all receivers share the same time window for the content; thus, each piece will

be highly popular for a short time span. By buffering a piece during this time frame,

Distributed Adaptation and Media Transport 113

the MANE will be able to reduce network utilization and latency even with a limited

buffer size. In most cases, such behavior is transparent to the peers within the

traditional, application layer P2P overlay network.

Additionally, the MANE may also aggregate requests for the same piece to different

senders and only forward one request which we call content-aware buffering as

illustrated in Figure 56. For example, receiver R1 selects sender S1 for downloading

a piece. The request passes through the MANE, which remembers the request and

buffers the piece. Soon afterwards, receiver R2 selects sender S2 for the same

piece. Unlike conventional routers (Figure 56 (a)), the MANE may intercept requests

and transmit a buffered piece instead of forwarding the requests (Figure 56 (b)). This

approach would constitute an evolutionary implementation of the CCN functionality

[174]. However, a small drawback of this approach is that the peer selection of the

first receiver might not always be the optimal selection. But once the MANE has

downloaded and buffered the entire piece, the issue is alleviated.

A MANE might also act as a peer, proactively requesting pieces that may be needed

in the near future by any receivers connected to it. Thus, the MANE increases the

(a)

(b)

Figure 56: Request aggregation for P2P streaming for (a) conventional router and (b) MANE.

114 Distributed Adaptation and Media Transport

replication of the content and moves it closer to the receivers. However, this puts

some additional performance and storage requirements on the MANE.

Caching and buffering are integral parts of the adaptive HTTP streaming use case.

In unicast mode, a MANE can provide CDN functionalities similar to the unicast use

case discussed above. In contrast to RTP-based streaming, HTTP streaming

immediately benefits from existing HTTP caching infrastructures [59][60] that may be

deployed on top of content-aware networks. The multicast mode relies on buffering

and request aggregation at the MANE for bandwidth-efficient streaming. As

mentioned before, intelligent buffering at MANEs along the network path between

sender and receivers constructs a bandwidth-efficient multicast tree. In order for the

buffer size at the MANE to remain inside a reasonable limit, two requirements must

be met. On the one hand, all receivers must share the same time window so that the

popularity of a segment is temporarily limited. This time window can be signaled in

the manifest file, as it is typically the case for live streaming services [50]. On the

other hand, the MANE has to be aware of the streaming session in order to buffer the

segments accordingly. The straightforward solution is for the MANE to parse the

manifest file and to retrieve such information from there. An alternative solution would

be that the MANE learns about the best buffering policy from a statistical analysis of

the stream.

In the multisource mode of HTTP streaming, buffering at MANEs has similar effects

as in P2P streaming. That is, MANEs aggregate requests (even to different senders)

and perform content-aware buffering of downloaded segments for the duration of the

sliding window of the streaming session. An open research challenge is the impact of

the discussed request aggregation on the load balancing strategies between the

senders.

In a recent study, Lederer et al. have proposed a peer-assisted HTTP streaming

architecture compliant with DASH [184]. For each segment, the server lists a

selection of possible peers in the manifest file. Those peers have already

downloaded the segment and provide it through local HTTP servers. Other clients

download segments from those peers if their buffer fill level guarantees smooth

playback. Even under the consideration that clients have asymmetric Internet

connections with significantly lower uplink bandwidth than downlink bandwidth, the

solution reduces server bandwidth by up to 25%. While that work [184] focuses on

conventional client peers, MANEs can act as peers just as well. Since MANEs are

usually not limited by asymmetric connection speeds, server bandwidth can be

further reduced. To validate this assumption we performed simulations with the same

setup as [184], except that MANEs acting as peers had symmetric connection

speeds (15 peers with 16 Mbps and 25 peers with 8 Mbps). Like in the original

evaluation, the maximum bitrate of the content was set to 1,400 kbps. The simulation

results of server bandwidth requirements over time are shown in Figure 57. Original

server bandwidth for asymmetric connection speeds of peers is labeled Peer

Assisted, server bandwidth for symmetric connection speeds is labeled Peer

Assisted (MANE). MANEs acting as peers in this HTTP streaming scenario were able

to reduce server bandwidth by up to 29.5%. It should be noted that the simulation did

Distributed Adaptation and Media Transport 115

not consider frequent updates of the manifest file, which contains the current list of

peers. Updating the manifest file every 60 or 120 seconds would bring further

performance gains.

The deployment of SVC in HTTP streaming also brings benefits to caching and

buffering mechanisms. While HTTP streaming of non-layered media formats requires

switching between different content representations (e.g., frame rate, resolution,

quality) for adaptation, SVC-based adaptation is performed by adding/removing

enhancement layers. Thus, the MANE only has to cache one SVC stream instead of

multiple streams for different representations. This both reduces storage

requirements and increases cache performance. Simulations conducted by Sánchez

et al. compared the combination of SVC-based HTTP streaming and a streaming-

optimized caching strategy to AVC-based streaming under Least Recently Used

(LRU) strategy [59]. Their results show that, thanks to SVC and the optimized

caching strategy, the cache hit ratio can be increased by up to 11.5 percentage

points (from 52.8% to 64.3%) for congestion in the cache feeder link (i.e., the link

between the sender and the cache) and by up to 25.7 percentage points (from 30.9%

to 56.6%) for congestion in the access links.

5.2.2.3 QoS/QoE Management

A primary goal of content-aware networking is to manage and optimize the QoS and

consequently QoE at the application level.

The term QoS describes properties of the network that influence the transport of

media flows. Metrics like delay, packet loss, and jitter are used to measure QoS. The

Figure 57: Simulation of peer-assisted HTTP streaming with MANEs as peers, adopted
from [10].

116 Distributed Adaptation and Media Transport

more recently coined term QoE targets the degree of delight or annoyance of the

user about an application or service. Besides QoS parameters, also user-related

factors (e.g., expectations) as well as terminal capability and performance play a role

in QoE. QoE is typically measured as MOS based on user ratings. More information

on QoS and QoE can be found in [185].

QoS/QoE optimization can be achieved through context-aware mechanisms both at

the end-user side and within the (core) network. At the end-user side, several

aspects of the usage environment (such as terminal capabilities) can be taken into

account during content request and consumption. Other aspects, such as user

preferences and the current status of the end-user terminal, may dynamically affect

the configuration of the requested SVC stream.

Within the (core) network, context-awareness relates to the current condition of the

network. Network monitoring enables MANEs to react to network fluctuations by

performing in-network adaptation of SVC content. Monitoring information is used

locally and is aggregated at the CAN level for managing the network behavior and

establishing long-term adaptation policies [176].

One important aspect is the appropriate media encoding configuration. In the

ALICANTE project, we have developed encoding guidelines for SVC that facilitate

distributed adaptation as discussed in Chapter 3. Those guidelines comprise a

description of typical resolutions, which and how many bitrates to use for each

resolution, appropriate scalability modes (spatial, SNR, etc.), how to combine these

modes, differences among use cases, and more. On the other end of the media

delivery chain, the project investigates the video quality at the client when there have

been packet losses in any of the SVC layers. Evaluations are performed using a no-

reference QoE tool called ALICANTE Pseudo-Subjective Quality Assessment

(A_PSQA) [186], which uses a continuous QoE score ranging from 1 (excellent) to 0

(bad) to estimate video quality based on packet loss characteristics. The SVC

streams used in the experimental setup comprised three layers. Figure 58 shows

how the quality of a video degrades for packet loss at any of these layers.

The QoE scores are subsequently used for triggering the adaptation and enhancing

the granularity by which the system reacts to context variations. Thus, QoE

evaluations are a vital part of advanced adaptive media delivery systems.

As already mentioned, SVC enables a fine-grained control over the QoE at the

network level. A non-scalable media format will suffer from severe QoE degradation if

not all packets of the stream are transmitted. With SVC, lower layers can be

prioritized, maintaining smooth and undistorted playout with controlled QoE

degradation. SVC can also be conveniently combined with error recovery techniques

at the decoding side, in order to further enhance the QoE perceived by the user. It

should be noted that we do not address issues related to wireless transmission of

SVC. For more information on that topic, the interested reader is referred to [187].

Distributed Adaptation and Media Transport 117

As a conclusion, Table 16 summarizes the discussed CAN-related challenges for

each of the described use cases. Note that for QoS/QoE management we make no

explicit distinction between the use cases.

(a)

(b)

Figure 58: QoE scores vs. (a) loss rate at SVC base layer and enhancement layer 1, and (b) loss
rate at enhancement layer 1 and enhancement layer 2 with base layer loss rate of 10%, adopted

from [10].

118 Distributed Adaptation and Media Transport

 Conclusions 5.2.3

Scalable media coding formats (such as SVC) in combination with in-network

adaptation – and, as a consequence, its capabilities in terms of flow processing,

caching/buffering, and QoS/QoE – are becoming promising concepts towards

enabling content-awareness within the (core) network. This concept is referred to as

Content-Aware Networking and provides an elegant, powerful, and flexible tool to

accommodate existing and imminent challenges for a variety of traditional and

emerging use case scenarios in the context of multimedia delivery within the Future

Internet.

We have argued that sender-driven use cases such as unicast and multicast

streaming greatly benefit from content-awareness for routing and forwarding. In P2P

streaming, the combination of enhanced forwarding and buffering techniques may

allow MANEs to collaborate with receivers within the P2P network. Content- and

context-aware caching/buffering are furthermore important aspects in the adaptive

HTTP streaming use case.

Table 16: Summary of CAN-related challenges addressed by the presented use cases, adopted

from [10].

Use case CAN challenge

Flow processing Caching & buffering QoS/QoE

management

Unicast  explicit adaptation

 signaling adaptation

decision to sender

 SVC-based prefix caching

for low start-up delay

 local &

aggregated

monitoring of

network

conditions

 smooth,

undistorted

playout via

SVC

Multicast  implicit adaptation

 multicast bridges for

hybrid multicast

 differentiated

forwarding of SVC

layers

 SVC-based prefix caching

for low start-up delay

 no buffering

P2P

streaming

 explicit adaptation

 peer for CAN P2P

overlay network

 aggregating requests

 content-aware buffering of

pieces within the sliding

window

Adaptive

HTTP

streaming

 implicit adaptation

 transparent proxy

cache

 SVC-based prefix caching

 multicast: buffering within

the sliding window

 multisource streaming:

aggregating requests &

content-aware buffering

within the sliding window

Distributed Adaptation and Media Transport 119

Interesting challenges remain, such as the integration of on-the-fly QoE evaluation of

SVC content for adaptive media streaming or the further improvements to the

involvement of MANEs into P2P streaming. As future trends indicate more advanced

video compression technologies targeting resolutions beyond 1080p, (e.g., a new

scalable extension for HEVC [57][188]), efficient and reliable caching and buffering at

MANEs becomes increasingly important in order to reduce overall network loads.

Furthermore, adaptive HTTP streaming becomes increasingly popular due to its

relatively easy deployment. Therefore, future work will focus on how MANEs can

further improve the existing HTTP infrastructure.

5.3 Distributed Adaptation Framework

 Adaptation Framework Architecture 5.3.1

Existing and future media ecosystems need to cope with the ever-increasing

heterogeneity of networks, devices, and user characteristics collectively referred to

as (usage) context. The key to address this problem is media adaptation to various

and dynamically changing contexts in order to provide a service quality that is

regarded as satisfactory by the end user. The adaptation can be performed in many

ways and at different locations, e.g., at the edge and within the network resulting in a

substantial number of issues to be integrated within a media ecosystem.

An important aspect towards Universal Multimedia Access (UMA) [189] and

Universal Multimedia Experience (UME) [190] is the adoption of scalable media

coding formats such as SVC enabling edge and in-network adaptation. In this

section, we discuss the exploitation of these scalable media formats within the (core)

network – featuring in-network adaptation – in order to optimize the network

resources utilization, and at the edge of the network, for the adaptation from/to

heterogeneous formats, devices, and platforms. This is achieved by means of

overlay networks, where the adaptation is coordinated in a distributed fashion.

The ALICANTE system architecture introduces two new virtual layers, i.e., HB and

CAN layers, on top of the existing network infrastructure (cf. Section 2.3.1). This

approach brings both content-awareness to the network layer and context-awareness

to the user environment. This section focuses on the adaptation framework of that

architecture. Content delivery in the core network relies on scalable media formats

such as SVC. This enables content-aware adaptation according to the network

conditions at the CAN layer, i.e., within the MANEs.

Home-Boxes are enhanced home-gateways with media processing capabilities. They

can serve as home media servers, enable users to act as content providers, and

keep track of the capabilities of connected terminals. Home-Boxes form a virtual HB

layer that enables context-aware adaptation towards end-user terminals and user

preferences. For example, screen resolution and decoding capabilities are taken into

120 Distributed Adaptation and Media Transport

account at content request time. For legacy terminals that do not support SVC,

Home-Boxes are able to transcode content to non-scalable media formats (e.g.,

MPEG-2, MPEG-4 AVC). On the server side, corresponding HB layer entities are

implemented as software modules.

Figure 59 shows the conceptual architecture of the Adaptation Framework (AF) at the

Home-Box. The same conceptual architecture applies to the MANE (with the

exception of transcoding components). The AF comprises the ADTF and the

Processing Engine (PE). Inside the ADTF, the ADTE computes the best-suited

adaptation decision for a stream, while the Adaptation Manager module coordinates

all active streams and collects relevant information (e.g., network monitoring). The

adaptation decision is fed into the PE, which performs adaptation (and transcoding at

the Home-Box). For a detailed description of the ALICANTE adaptation architecture,

the interested reader is referred to [8] and [9].

5.3.1.1 Adaptation Decision-Taking

Local adaptation decisions are taken based on an optimization algorithm,

determining the most suitable adaptation for a given content as described in Section

5.4.2 later on. The various local adaptation decisions have different purposes,

depending on the location they are performed in. For example, adaptation decisions

in the network focus on dynamic adaptation towards network conditions, while

adaptation decisions at the Home-Box mainly target the capabilities of the user

terminal and the QoE. The distribution of adaptation decisions also depends on the

streaming mechanism, as, e.g., RTP multicast streaming is handled differently from

HTTP streaming.

Figure 59: Modules of the Adaptation Framework at the Home-Box, adopted from [9].

Distributed Adaptation and Media Transport 121

5.3.1.2 Coordination of Adaptation Decisions

The adaptation decisions at the aforementioned different locations are taken locally.

Nevertheless, some degree of coordination between those adaptation decisions is

needed in order to assure a stable end-to-end quality. The coordination can be

performed between the adaptation nodes as well as based on a central entity.

Between adaptation nodes, adaptation decisions can be signaled upstream to

optimize network resource utilization. If a MANE decides to adapt to a lower SVC

layer, this information can be signaled to its upstream neighbor (e.g., via layer un-

subscription in multicast scenarios) to avoid unnecessary traffic (cf. Section 5.2.2.1).

Within the ALICANTE architecture, a content-aware network domain is administered

by an entity called CAN Manager. This CAN Manager coordinates the MANEs by

distributing adaptation policies to them [9] that have been negotiated as Service-

Level Agreements (SLAs) [191][176] between network, CAN, and service providers.

The policies describe which classes of media services are allowed to be adapted and

to which extent, the minimum bandwidth that shall be allocated for each media flow,

as well as rules for minimum and maximum aggregated bandwidth for different traffic

classes. The adaptation logic of each MANE is configured based on these policies as

discussed later on in Section 5.4.2. The policies can be updated during operation to

accommodate changes in the network infrastructure.

5.3.1.3 SVC Tunneling

As discussed in Chapter 4, our distributed adaptation framework relies on SVC

(layered-multicast) tunneling, inspired by IPv6-over-IPv4 tunnels. That is, within the

CAN only scalable media resources – such as SVC – are delivered adopting a

layered-multicast approach [48]. This allows the adaptation of scalable media

resources by MANEs [44], implementing the concept of distributed adaptation

[192][193]. At the border to the user (Home-Box), adaptation modules are deployed

enabling device-independent access to the SVC-encoded content by providing X-to-

SVC and SVC-to-X transcoding/rewriting functions with X={MPEG-2, MPEG-4 Part 2,

MPEG-4 Part 10 (AVC) etc.}. An advantage of this approach is the reduction of the

load on the network (i.e., no duplicates), making it free for other data (e.g., more

enhancement layers).

Note that SVC tunneling is also applicable to unicast scenarios due to dynamic SVC-

based adaptation, although multicast scenarios bring higher gains in terms of

network resource utilization.

 Related Work 5.3.2

Similar to ALICANTE, several other research projects target media adaptation and

content-aware networks. The FP7 Project ENVISION [194] proposes a multi-layered

122 Distributed Adaptation and Media Transport

content distribution approach, targeting optimized end-to-end performance and

content adaptation during distribution. However, it does not focus on QoE aspects on

the client side. Dynamic and distributed adaptation of scalable multimedia content

has been proposed by the FP6 Project DANAE [195]. With a focus on the MPEG-21

standard, it pioneered in the area of interoperable adaptation approaches [196]. The

FP7 Project MEDIEVAL [197] aims at evolving the Internet architecture for efficient

video transport. In particular, it targets cross-layer SVC adaptation ranging from the

application layer down to the physical layer [198]. The FP6 Project ENTHRONE [199]

developed a system architecture to cover the entire multimedia distribution chain,

focusing on end-to-end QoS performance and network management. These projects

tackle important aspects of media-aware adaptation along the delivery path. In the

following we discuss several adaptation-related features of the ALICANTE

architecture.

 Adaptation at Network Edges 5.3.3

Home-Boxes are enhanced home-gateways deployed within the ALICANTE

architecture at the end users' premises at the border to the network. They feature

advanced adaptation capabilities and are interconnected to form a virtual HB layer

that facilitates caching and P2P streaming [200]. To the end user, a Home-Box acts

as a multimedia server that adjusts media services to the connected devices. A

similar concept for a home media server has been recently introduced by a major

industry player [201].

In the context of the ALICANTE adaptation framework, the Home-Box establishes

streaming sessions upon the end user's request, receives a scalable media stream,

adapts and transcodes it, and ultimately sends the resulting stream through the home

network to the end user's device. In the following, we briefly explain the technical

realization of the media processing chain on the Home-Box for RTP streaming,

adaptive HTTP streaming, and P2P streaming.

5.3.3.1 RTP Streaming

RTP streaming of SVC supports two different modes [202]. Single-session

transmission (SST) mode transports the entire SVC bitstream in a single RTP

session and is typically used for unicast streaming, whereas multi-session

transmission (MST) mode transports each SVC layer on a different RTP session and

is thus better suited for multicast streaming. For MST mode, the receiving Home-Box

rearranges (or multiplexes) the data from the SVC layers into a single SVC bitstream.

To ensure the synchronization between the packets of the RTP sessions, the

timestamps of RTP packets or special packets signaling the cross-session decoding

order number (CS-DON) can be used. At this stage, any undesired SVC layers that

have not been removed by the server or the MANEs already are discarded. If the

end-user terminal supports SVC, the bitstream is piped into an RTP unicast

Distributed Adaptation and Media Transport 123

streaming module for transmission to the terminal. Otherwise, the received bitstream

is piped into an on-the-fly transcoding module. In order to optimize the processing

performance for AVC support, the SVC bitstream is first fed into a fast SVC-to-AVC

transform-domain transcoder. For support of any other legacy coding format (e.g.,

MPEG-2), the AVC bitstream can be further fed into a general-purpose transcoder

(GPT). The GPT is based on FFmpeg [165] and thus currently supports more than 50

video coding formats [203]. The GPT also readily adjusts resolution and bitrate to the

device's profile [204]. The transcoded bitstream is then streamed to the terminal. The

Home-Box adaptation tool chain for RTP streaming is illustrated in Figure 60.

Dynamic SVC-based adaptation is performed within the SVC-to-AVC transcoder

module, whereas any further adaptation (e.g., adjustment to a specific resolution) is

performed at the General-Purpose Transcoder module.

To manage the adaptation to heterogeneous devices, the Home-Box keeps a

database to store the devices' capabilities (i.e., supported media formats, display

resolution, etc.), associated user preferences, and information on active

sessions [205].

Adaptation at the RTP server is typically performed based on clients' QoS reports via

the RTP Control Protocol (RTCP) [49]. Future work will investigate to which extent in-

network adaptation influences and complements such server-side adaptation.

Figure 60: Home-Box adaptation tool chain for RTP streaming, adopted from [9].

124 Distributed Adaptation and Media Transport

5.3.3.2 Adaptive HTTP Streaming

For DASH, the Home-Box deploys a DASH proxy module to handle adaptation,

transcoding, and re-streaming. The DASH proxy relieves the terminal from its

adaptation logic. Thus, a simple, non-adaptive HTTP streaming client can be used at

the terminal. In preparation of the streaming session, the DASH proxy generates a

local MPD describing the transcoded segments that the client at the terminal will be

able to request from the Home-Box. This local MPD contains a single representation

as all adaptation is already performed on the Home-Box. An example of a local MPD

is provided in Annex E. Upon the client's request for a transcoded segment, the

DASH proxy downloads and transcodes the corresponding SVC layers from the

server. This on-request processing of segments introduces a constant delay

consisting of the round-trip time between the Home-Box and the server, and the

implementation-dependent delay of the transcoder. Thus, we recommend that the

client at the terminal uses HTTP pipelining [206] to request multiple segments

simultaneously.

In SVC-based DASH, the SVC layers are provided in multiple representations (cf.

Section 3.5). A normal SVC bitstream has enhancement layers located at each frame

as shown in Figure 61 (a). For SVC-DASH each temporal segment is split into

multiple chunks, one per layer. Each of the chunks contains several frames for one

layer as depicted in Figure 61 (b).

In order to rearrange the frames and layers into the correct decoding order at the

client, some information is needed concerning the location of the NALUs of the

frames of each layer in the original stream. One possible solution is the integration of

NALU byte ranges in the MPD as proposed by Müller et al. [61]. For each segment,

the NALUs belonging to different frames are described by their byte ranges in the

segment. The DASH client module has to understand those byte range descriptions

and reorder the NALUs into their proper decoding order before passing the stream to

the SVC decoder. However, this approach is a custom extension to the standardized

MPD format and results in large MPDs.

We implemented a small client module that parses the chunks, locates the NALU

boundaries inside them and reorders them in correct decoding order into the

multiplexed SVC output bitstream. This SVC multiplexing module is located between

the DASH client and the SVC decoder and does not require any additional signaling

in the MPD. A corresponding SVC demultiplexing module splits the original SVC

bitstream at the server into chunks. We made the SVC multiplexing and

demultiplexing modules available as open-source software at [12].

The received and multiplexed segments are piped into the transcoding module,

similar to the RTP case. The transcoded segments are provided for HTTP download

by the terminal. For a detailed description of the Home-Box adaptation for DASH, the

interested reader is referred to [9].

Distributed Adaptation and Media Transport 125

5.3.3.3 P2P Streaming

ALICANTE deploys the libswift implementation [207][208] of the Peer-to-Peer

Streaming Peer Protocol (PPSPP) [209] for P2P streaming. For simplicity, the current

implementation of P2P streaming on the Home-Box deploys the HTTP gateway (also

known as swift-to-HTTP proxy) of the libswift implementation [210], which is located

before the DASH proxy [9]. The DASH proxy retains the adaptation logic (in contrast

to more sophisticated native P2P streaming adaptation mechanisms [179]). Figure 62

illustrates the adaptation tool chain for DASH and P2P streaming at the Home-Box.

 In-Network Adaptation 5.3.4

MANEs perform dynamic in-network adaptation to mitigate the effects of network

congestion. Each MANE has a local ADTE that computes whether to adapt a media

stream. The adaptation processes for multicast and unicast streaming have to be

considered separately. Multicast streaming deploys RTP MST mode, where SVC

layers are transmitted over separate RTP sessions and are rearranged by the

receiver. Thus, multicast trees for the different SVC layers are built. MANEs realize

(a)

(b)

Figure 61: Segmentation of SVC bitstream for DASH. SVC layers in (a) original bitstream and
(b) segmentation for DASH.

126 Distributed Adaptation and Media Transport

dynamic adaptation by pruning (or conversely grafting) the multicast tree

corresponding to a specific SVC layer.

RTP-based unicast streaming is typically realized via SST mode, where the entire

SVC stream is packed into a single RTP session. In order to perform adaptation, a

MANE de-packetizes the RTP stream, analyzes the SVC header, and filters SVC

layers accordingly [211]. The RTP re-packetization module updates the sequence

number field of the RTP packet headers if needed. Alternatively, unicast streaming

could also be realized via MST mode, using separate ports for separate layers.

Due to the issues related to in-network adaptation of TCP streams raised in Section

5.2.2.1, the current implementation of the MANE only performs adaptation for

RTP/UDP-based streaming.

 Scalability Considerations 5.3.5

The proposed techniques act on a per-flow basis, thus, some scalability

considerations (in terms of number of concurrent flows) have to be taken into

account. Adaptation decision-taking at a MANE has to handle many different flows in

parallel, requiring a very lean and efficient implementation of the ADTE. The

processing overhead can be controlled by the update frequency of adaptation

decisions. For example, the decision to drop an SVC layer shall be triggered

immediately when network monitoring indicates congestion, but the decision to add a

Figure 62: Adaptation tool chain for DASH and P2P streaming, adopted from [9].

Distributed Adaptation and Media Transport 127

layer back to the stream can be delayed by a scheduler until CPU utilization has

declined to a certain threshold. In contrast to the MANE, adaptation decision-taking

at the Home-Box has to take more parameters into account, including terminal

capabilities and user preferences, but has fewer flows to handle. A Home-Box in a

typical household might have to handle up to five concurrent flows. However, any

adaptation or transcoding operations have much higher computational complexity

and resource demands than the adaptation decision-taking.

Transcoding at the server side and at the Home-Box are computationally expensive

parts of SVC tunneling. Transcoding to SVC on the server-side has only to be

performed once per video and can be performed offline prior to streaming.

Transcoding from SVC to other formats on the Home-Box demands less resources

but the Home-Box has to be dimensioned to support a handful of concurrent flows.

In-network adaptation in MST mode relies on receiver-driven layered multicast, thus,

the usage of SVC does not put any overhead on this approach. In SST mode, RTP

de-packetization and re-packetization limit the number of concurrent flows. A

prototype implementation on an off-the-shelf WiFi router supported concurrent

adaptation of several flows in 2008 [46], dedicated hardware and improved

algorithms may lead to a higher number of possible concurrent flows.

5.4 SVC Adaptation

The layered structure of SVC enables fast and efficient adaptation. For adaptive SVC

streaming, the following research questions arise as discussed in Section 2.3.3.1:

Where to adapt? When to adapt? How often to adapt? How to adapt?

In this section, we discuss related research on SVC adaptation for RTP-based and

HTTP-based streaming, describe the adaptation logic implemented for the

ALICANTE streaming system, and propose a technique for enabling smooth

transitions between representations.

 Related Work 5.4.1

In the recent years, the focus of research on video adaptation has changed from

network-centric strategies towards user-centric approaches with increasing

involvement of QoE considerations. This trend has also gained momentum through

the exploration of adaptive streaming of SVC via DASH. This section provides a

discussion of related work on SVC adaptation strategies, the corresponding

integration of QoE-awareness and special considerations for different transport

modes.

128 Distributed Adaptation and Media Transport

5.4.1.1 Adaptation Strategies

The technical challenges of SVC adaptation are discussed in [212], which also

provides an overview of design principles, standard tools, and methods for

adaptation decision-taking.

The application of SVC for IPTV and corresponding adaptation is discussed in [75],

and an evaluation of bandwidth requirements for SVC in IPTV services was

performed in [76] and [77] (cf. Section 3.2.1). Design options for SVC in-network

adaptation are discussed in [45]. Kofler et al. [46] have demonstrated SVC

adaptation on off-the-shelf routers. For a detailed discussion of in-network SVC

adaptation, the interested reader is referred to [213].

The goal of SVC adaptation techniques comes down to the question of which NALUs

of the SVC bitstream shall be dropped to meet the bandwidth constraints.

Niedermeier et al. [67] have evaluated an optimal extraction path of layers from an

SVC stream based on objective and subjective quality evaluations (cf. Section 3.2.1).

A similar approach for SVC adaptation was used in a recent study by Li et al. [214].

Eichhorn et al. [128] have conducted a study to assess which scalability dimension

(spatial, temporal, or quality) is preferred by viewers on mobile devices. Their results

show that viewers clearly prefer a lower quality version of a video over a spatially

downscaled version.

As mentioned in Section 3.2.1, Nur et al. [70][71] have proposed an SVC adaptation

technique based on a utility function of SVC layers. The utility function ranks SVC

extraction points by weighting spatial, temporal, and quality layers. The weights are

based on a model devised from subjective evaluations for videos classified by motion

intensity and structural features.

A common drawback of those adaptation techniques is that the models for ranking

SVC layers depend on the specific SVC encoding configuration, e.g., number of

quality layers and QPs of each layer, spatial resolutions and so on. Most models are

only validated with the same set of SVC configurations the model was based on.

The study by Nur et al. [70] also explores an adaptation approach with asymmetrical

key/non-key frame adaptation for improved flexibility. The approach exploits the fact

that SVC combines two techniques for drift control. Frames of the lowest temporal

layer are marked as key frames. For these frames, motion compensation is

performed at the base quality layer. All non-key frames use the quality layer for

motion compensation [27]. With the NALU prioritization scheme proposed by Nur et

al., key frames can be adapted to a lower MGS layer than non-key frames without

interfering with motion compensation.

During RTP/UDP-based streaming, packet loss significantly influences the resulting

video quality [215][216][217]. Even with good error concealment at the SVC decoder

[218][219], it is often better to switch to a lower SVC layer to improve the QoE. A

model for mapping QoS parameters such as packet loss and jitter and SVC encoding

configuration parameters onto expected QoE is presented in [211]. The expected

Distributed Adaptation and Media Transport 129

QoE then guides the video adaptation in the proposed streaming system. Note that

unequal error protection can be deployed for improving the robustness of SVC

streaming [40].

Building a QoE model to guide adaptation decisions typically requires a large set of

subjective ratings. To acquire them is very time-consuming. One way to reduce the

number of subjective ratings required for a QoE model is the Pseudo-Subjective

Quality Assessment (PSQA) [220][221]. PSQA deploys a Random Neural Network

(RNN) [222] to learn a QoE model from few subjective test results. The approach can

be used to estimate the quality impairment through packet loss of different types of

frames, as implemented in the A_PSQA tool [186]. The deployment of PSQA for SVC

is evaluated in [223]. Based on the PSQA model for SVC, Ksentini and Hadjadj-Aoul

[224] have developed an adaptation technique. The proposed algorithm measures

the packet loss and computes the expected video quality for each SVC layer and

selects the one with the highest expected quality.

The perceived video quality also depends on temporal variations of the per-frame

quality [225]. This effect is particularly relevant for modeling distortion due to packet

loss as reported in [226]. Furthermore, temporal hysteresis effects can be observed

for quality changes [227]. That is, continuous subjective quality ratings have shown

that viewers react strongly to hard quality decreases (e.g., due to packet loss) by

assigning poor scores. But when the video quality resumes to its previous high state,

their ratings do not follow this increase immediately, but are still affected by the

memory of the period of bad video quality. Based on these observations, Joseph and

De Veciana [228] have devised an adaptation algorithm that strives to reduce

temporal variations in video quality.

When serving multiple clients at the same time, the rate allocation between the

clients has to be considered. Equal rate allocation to all streams is in general

suboptimal due to different RD characteristics of the streams. Typically, videos with

low RD performances (e.g., due to high Spatial and Temporal Information) should be

allocated higher rates than videos with better RD performance. It can be shown that

an optimal allocation is one where the slopes of the rate points on the (concave) RD

curve of all videos are equal (or near-equal in a practical deployment) [229]. If two

slopes were unequal, allocating a higher rate to the video with the higher slope would

increase the quality more than that of the video with the lower slope would decrease

from that reallocation. Based on this approach, Hansen and Hissam [230] have

developed a distributed Quality of Service resource allocation model (D-Q-RAM) for

wireless networks. Another framework for multi-video rate allocation incorporating

multiple agents (e.g., proxies or MANEs) was proposed by Chakareski in [193].

The two approaches [230] and [193] also show how adaptation can be distributed

among multiple network nodes. Given that network nodes know not only the bitrates

but also the quality characteristics (i.e., the RD curves) of all transported video

streams, each node can decide how to adapt the video streams while maintaining

optimal viewing qualities for all end users. In [193], the network nodes are assumed

to know the distortions caused by previous nodes. In [230], the network nodes deploy

130 Distributed Adaptation and Media Transport

a feedback mechanism that informs other nodes of the chosen value of the

aforementioned slope on the utility curves. The study also investigates different

algorithms for handling conflicting slope values. Earlier works on distributed

adaptation, such as [231] or [232], have focused on architecture and infrastructure

challenges for distributed adaptation.

For P2P streaming, a receiving peer must decide which pieces of the various SVC

layers to request from which other peer. Eberhard et al. [179] have evaluated piece-

picking algorithms for SVC-based P2P streaming in three different scenarios. A

comprehensive description of a QoE-aware SVC-based P2P streaming system is

provided in [233].

In addition to the discussed adaptation approaches, more unconventional

approaches comprise adaptation decision-taking based on ambient illumination as

studied in [234][70] and the influence of sensory effects on the QoE [235][236][237].

Sensory effects are enrichments for multimedia content, such as ambient light, wind

effects, vibration effects, or olfactory effects. These effects enable viewers to

immerse into the content so that they become less perceptive of visual artifacts of the

content.

5.4.1.2 Adaptation for HTTP Streaming

While packet loss is a major adaptation concern of RTP/UDP-based streaming, TCP-

based transmission ensures the arrival of packets for HTTP streaming. Thus, the

adaptation in HTTP streaming has to avoid playback stalls due to late arrival of video

segments. Adaptation techniques typically rely on the bandwidth computed from

previously downloaded segments and on the buffer level. An adaptation logic that

relies on the measured bandwidth and current buffer level for AVC and SVC

streaming is presented in [238] and [61].

Several studies have investigated the factors that influence the QoE in (non-

adaptive) HTTP streaming. Hoßfeld et al. [239] have researched the trade-off in

terms of QoE between initial delay of HTTP streaming services and stalling during

playback. Viewers clearly prefer higher initial delay over stalling. For example, a

single 1-second stalling event during playback of a 30-second video was rated worse

than 32 seconds of initial delay. The findings also show that the QoE impact of initial

delays fits a logarithmic model. That is, the QoE impact of an initial delay can be

modeled as () (with model parameters and). On the other hand, the

QoE impact of playback stalling fits an exponential model (see also [240]). That is, a

stalling duration impacts the QoE following an exponential model (with

model parameters , , and).

Similarly, Mok et al. [241] have proposed three application performance metrics that

influence the QoE in HTTP streaming: initial buffering time, mean rebuffering

duration, and rebuffering frequency. They also devise a linear model to estimate the

MOS from these three metrics. But as shown in [239], this linear model is only

partially accurate.

Distributed Adaptation and Media Transport 131

In adaptive HTTP streaming another impact factor comes into play: flickering due to

switches between representations. Ni et al. [242][243] have evaluated the impact of

flickering on the video acceptance by the viewer on mobile devices. They have

investigated the effects of changing video qualities (noise flicker), video resolutions

(blur flicker), and frame rates (motion flickering) for SVC at various configurations

with periodic flickering durations. Periodic flickering means that a switch from the

higher to the lower representation, and vice versa, occurred periodically, e.g., every 2

seconds. Their results show that frequent noise flickering between two SNR

representations with a period below 2 seconds impairs the viewing quality down to a

point where viewers would prefer the lower video representation altogether. For blur

flickering, viewers preferred the constant lower representation (at half the original

resolution) even compared to longer flickering periods.

When no flickering was involved, participants rated the lower representation of videos

with a deltaQP of 8 (i.e., enhancement layer at QP=24, base layer at QP=32) to have

roughly the same viewing quality as the lower representation of dyadically

downscaled videos (i.e., enhancement layer at 480x320, base layer at 240x160).

When flickering was introduced, the viewing quality for blur flickering got rated lower

than for noise flickering. These observations underpin our statement from Section

3.5.1 that adaptive video streaming sessions should maintain the same resolution

and should only switch between quality layers.

Mok et al. [244] have proposed a QoE-aware DASH system based on AVC. As

quality switches of high amplitude (e.g., from highest to lowest representation) are

annoying to viewers, the proposed adaptation algorithm inserts intermediate steps to

avoid abrupt quality changes. Thus, the reduced amplitude of quality switches seems

to outweigh the additional number of quality switches in terms of QoE. This also

confirms an earlier study on quality switches by Zink et al. [245] that has evaluated

viewers' preferences of various quality switching patterns. General trends in those

patterns are that high amplitudes in down-switches should be avoided and that

switching up is preferred to switching down (i.e., it is better to start with a low quality

and switch up than to start with a high quality and switch down).

Furthermore, Ni et al. have proposed the concept of frequent layer switching (FLS)

[246][127]. Their study compares the QoE of a playback that frequently switches

between two representations (with either temporal or quality scalability) to the

playback of only the lower representation. The study was conducted on mobile

devices and HD screens. The motivation of FLS is that the required bandwidth for

adaptive streaming could be strategically reduced through layer switches without

impacting the QoE. The results show that for mobile devices, temporal switching

between 25 and 12 fps (at a quality enhancement layer encoded with QP=28) was

preferred over constant playback at only the quality base layer (encoded with QP=36)

at full frame rate. Viewers had no clear preference between temporal switching and

constant playback at the lower frame rate. For HD screens, the results were less

conclusive. For both scenarios, high switching frequencies induced undesirable

flickering effects.

132 Distributed Adaptation and Media Transport

In a recent study, Sieber et al. [247] have proposed an SVC adaptation logic that

reduces the number of quality switches by striving for a stable buffer level before

increasing the number of consumed SVC layers. Their evaluations show a very high

and stable overall playback quality of the proposed algorithm compared to other

state-of-the-art SVC-DASH adaptation techniques. However, the comparison does

not take the amplitude of quality switches into account.

5.4.1.3 Standardization

In the context of the MPEG-21 standards family towards a holistic multimedia

framework, MPEG has standardized a multimedia adaptation framework, called

MPEG-21 Digital Item Adaptation (DIA) [248]. It specifies a general architecture for

adaptation systems and a representation format for adaptation parameters and

adaptation logics. The architecture of the MPEG-21 ADTF is depicted in Figure 63.

MPEG-21 DIA specifies XML-based formats for the Usage Environment Description

(UED), Universal Constraints Description (UCD), and Adaptation QoS (AQoS). The

UED describes the current conditions of the system and comprises user

characteristics, terminal capabilities, network characteristics, and natural

environment characteristics. The UCD allows for the expression of limitation

constraints (e.g., a lower bound for the resolution) and optimization constraints (e.g.,

to maximize the frame rate) for the adaptation. Feasible types of adaptation, their

associated utilities, and relationships between constraints are described by the AQoS

[8]. In other words, the adaptation parameters are represented by the UED, while the

adaptation logic is represented in the UCD and AQoS. For further details, the

interested reader is referred to [249].

Recently, MPEG has standardized DASH, formally known as ISO/IEC 23009-1 [250].

Within DASH, multiple representations of the same content (e.g., different bitrates or

resolutions) are split into temporal segments that the client can request (cf. Section

3.5.1). Representations and segments are listed in an MPD that is retrieved prior to

streaming. The adaptation logic is thus shifted into the client that decides on the

representation to be downloaded for a given segment. Note that DASH does not

specify the adaptation decision-taking process. It rather provides the means for

arbitrary client implementations to retrieve and adapt content from a conventional

Figure 63: MPEG-21 Digital Item Adaptation architecture, adopted from [248].

Distributed Adaptation and Media Transport 133

HTTP server. Thus, it does not make MPEG-21 DIA obsolete; on the contrary, DIA

can be integrated into a DASH client for performing adaptation decisions.

5.4.1.4 Conclusions

Based on the surveyed related work, a holistic adaptation framework should:

 properly encode the content to SVC according to layer configuration

recommendations devised in Chapter 3,

 prioritize NALUs (i.e., set NALU priority IDs) to allow high flexibility in

adaptation [70],

 allocate rates for multi-video streaming [229][230][193],

 adapt either at the client (for HTTP/TCP-based streaming [61]) or in a

distributed manner at the network edges and inside the network (for

RTP/UDP-based streaming),

 dynamically adapt content, taking network status monitoring, expected QoE

based on video quality indications of SVC layers [70][71][67][214], buffer level,

influence of quality switches (considering switching amplitude and frequency

as well as switching patterns) [242][247][245] or temporal quality variations in

general [226][227][228], quality impact of initial playback delay [239], risk and

impact of playback stalling (or packet loss for RTP/UDP-based streaming

[211][223][224]), and user context (e.g., device type, ambient illumination

[234], use of sensory effects [235], etc.) into account, while being aware of

caching strategies at the network layer [59][60],

 constantly monitor (or at least estimate) the QoE of the adapted stream to

readjust configuration parameters of the ADTE [211].

A QoE model enabling such holistic adaptation logic would come with a plethora of

intertwined configuration options. Incorporating all these aspects into the adaptation

logic would clearly exceed the scope of this thesis. Rather, we focus on integrating

our SVC encoding guidelines with an end-to-end distributed adaptation chain in a

real-life streaming prototype setup. From the points listed above, our adaptation

chain considers proper SVC encoding, adaptation at client side and in the network,

and dynamic content adaptation based on the monitored network status.

 Adaptation Logic 5.4.2

This section describes the adaptation logic deployed for RTP streaming in the end-to-

end distributed adaptation chain test-bed setup of the ALICANTE architecture. It has

to be noted that this adaptation logic itself is not intended to extend the state of the

art of SVC adaptation discussed in Section 5.4.1. It rather demonstrates the

134 Distributed Adaptation and Media Transport

integration of adaptation within the network (at MANEs) and on the network edges (at

Home-Boxes) using an MPEG-21 DIA standard-conforming ADTE.

The ADTE depicted in Figure 64 is the core engine of the ADTF and is typically

divided into four building blocks: Problem Extractor, Reference Manager, Reference

Resolver, and Optimizer. The Problem Extractor processes AQoS descriptions and

several UCDs and generates an internal mathematical representation of the problem.

The Reference Manager handles the references in the problem description by

completing them with values from the Reference Resolver. The Reference Resolver

extracts those values from the UED. The Reference Resolver also checks whether all

references can be resolved and modifies the problem description accordingly. Finally,

the Optimizer computes a solution for the modified optimization problem and yields

the parameters for adaptation [251][3].

In the following, we document the limitation and optimization constraints of the

deployed adaptation logic.

The limitation constraints related to the spatial resolution are given in Equations (3)

and (4).

 (3)

 (4)

Variables and represent the horizontal and vertical

resolution of the selected SVC layer, respectively. The horizontal display resolution

Figure 64: Architecture of the ADTE, adopted from [251].

Distributed Adaptation and Media Transport 135

 and vertical display resolution form the upper bounds for the

content resolution. The minimum guarantees for the horizontal resolution

and the vertical resolution specified in the SLA form the lower bounds for the

content resolution.

Without loss of generality, we assume that the content is encoded into a single SVC

bitstream. Therefore, we speak of SVC layers in this section, even though the

adaptation logic can be applied to encodings with multiple SVC bitstreams (cf.

Chapter 3) or other coding formats (e.g., AVC) as well.

The limitation constraint related to media bitrate is given in Equation (5).

 (5)

The variable represents the bitrate of the selected SVC layer. The link

capacity is denoted as . Multiplied with the maximum bandwidth share of the

stream, it forms the upper bound for the content bitrate. The minimum guaranteed

bandwidth specified in the SLA forms the lower bound for the content bitrate.

The bandwidth shares are divided equally between all streams currently being

handled by the Home-Box (including cross traffic). The weighting of bandwidth

shares can be refined by traffic classification, with each class having a different

priority. Within the ALICANTE framework, the Service Priority can be signaled in the

Content-Aware Transport Information (CATI) as discussed in [252], the distribution of

bandwidth among those classes is described in the SLA. Let be the number of

streams in traffic class . The calculation of bandwidth share for a stream in traffic

class is given in Equation (6).

∑ ()
 (6)

Let be the weight assigned to traffic class based on its Service Priority, such that

∑ .

Since each traffic class may comprise a different number of streams, the equation

compensates for by the sum of all weights of all streams in all traffic classes.

Thus, every stream gets a fair share of the overall bandwidth based on the weight of

its traffic class and the number of streams. Note that the rate allocation could be

further improved by taking the RD performances of different streams into account as

discussed in Section 5.3.3.1.

In order to enable adaptation decisions based on the measured packet loss, the

adaptation logic performs the following estimation. The monitored bitrate and packet

loss are used to estimate the upper bound for the bitrate of the stream according to

136 Distributed Adaptation and Media Transport

the packet loss requirements of the SLA. Let be the packet dropping

probability as a function of the bandwidth utilization. This mapping can be specified

by the configuration of the congestion avoidance algorithm, e.g., Generalized

Random Early Detection (GRED). A more accurate mapping is obtained by

monitoring the packet dropping characteristics of the network. The monitored bitrate

 of the stream is used to estimate the packet loss as () . This

estimated packet loss is adjusted by the actual monitored packet loss and the

adjusted mapping

 is used to determine the highest bitrate that will not violate

the maximum packet loss stated in the SLA. The estimation process is

illustrated in Figure 65. The resulting limitation constraint is shown in Equation (7).

 () () (7)

The goal of this limitation constraint is to prevent higher packet dropping rates from

the congestion avoidance algorithm by proactively switching to a lower layer.

The adaptation logic could be further refined by taking the quality degradation

introduced by packet loss into account as described in Section 5.2.2.3. Note that

such an approach also requires the initial quality of each layer to be signaled,

typically in the media stream itself. For SVC, this information could be signaled in a

SEI message by using a user data unregistered SEI message [23]. With the initial

quality information and the quality degradation characteristics, the layer with the

highest estimated QoE could be selected based on a PSQA model [223][224].

Figure 65: Illustration of estimation of maximum bitrate based on packet loss characteristics.

Distributed Adaptation and Media Transport 137

The optimization constraints of the adaptation logic are given in Equations (8), (9),

and (10).

 () (8)

 () (9)

 () (10)

The variable represents the layer number of the selected SVC layer. The

optimization constraints are subject to the limitation constraints of Equations (3),

(4), (5), and (7). The deployed implementation of the MPEG-21 ADTE uses a

simple generate&test approach with priority sorting of optimization constraints as

discussed in [251]. Due to the priority sorting, the maximization of the horizontal

resolution has precedence over the vertical resolution and the SVC layer number.

The described adaptation logic prefers quality switches over resolution switches due

to this priority sorting. That is, the maximization constraints for mainting a high

resolution have precedence over the maximization of the layer number. Note that it

does not consider temporal layers, except implicitly through the assignment of SVC

layer numbers. A quality model for the best extraction path as described in [67] could

be used to refine the adaptation logic for temporal adaptation. However, Section

3.2.2 has shown that industrial streaming solutions typically recommend only a single

frame rate (24-30 fps). Thus, we argue that temporal scalability can be neglected in

our test-bed setup.

The adaptation logic does currently also not take the impact of layer switches on the

QoE into account. As shown in [242] and [243], frequent quality switches impair the

QoE. Thus, we configured the ADTE to update its adaptation decision at most every

2 seconds. The integration of a QoE estimation technique that considers the impact

of quality switches would require the quality of each layer to be signaled in SEI

messages as described above, which is subject to future work.

The implementation of the adaptation logic for the MPEG-21 ADTE of [251] is

provided in Annex G.

For DASH adaptation, we deploy the adaptation logic by Müller et al. [238][61]. The

algorithm uses the bandwidth measured from the previous downloaded segment to

estimate the maximum available bandwidth for the current segment. If the buffer level

gets below 35% or above 50%, the bandwidth estimate is adjusted accordingly. This

adaptation logic is built into the libdash [253] client implementation of the DASH

standard.

138 Distributed Adaptation and Media Transport

Section 5.5 will present and validate the discussed adaptation logic. Before that, we

introduce the concept of smoothing the transition between representations to reduce

the flicker that is caused by switching between representations.

 Smooth Transition between Representations 5.4.3

5.4.3.1 Introduction and Concept

Frequent quality switches with high amplitudes during adaptive HTTP streaming

sessions – e.g., switching from (very) high to (very) low bitrates – have been shown

to annoy viewers and, thus, reduce the QoE [242]. The disturbance can be reduced

through intermediate quality levels [244] but in practice only very few levels (3-5) are

deployed. Previous work focused only on quality switches at segment boundaries

and viewers may still notice abrupt quality changes.

We propose an even more fine-grained approach, a smooth transition between

representations, which we subsequently call representation switch smoothing. The

goal of representation switch smoothing is to reduce the annoyance of quality

switches. When the receiver is aware of an imminent switch to a lower

representation, it can already reduce the playout quality of the current or the

subsequent representation, enabling a smooth transition between the two

representations. Frame by frame, the playout quality is slightly reduced. Vice versa,

the playout quality can be smoothly increased when a higher representation is

received. The concept is illustrated in Figure 66.

In client-driven streaming scenarios such as DASH, the adaptation decision is

typically known at least one segment duration ahead of playout time. While the

current segment is played, the next segment has to be requested to ensure timely

arrival. For SVC-DASH, the time frame might be shorter, depending on whether

enhancement layers of the segment are downloaded using HTTP pipelining

[206][61]. Typical DASH clients already decide to adapt to a lower representation

when still three or more 2-second segments are buffered [61]. If the adaptation logic

pursues a conservative buffer management (e.g., [247]), the adaptation decision is

taken even further ahead. In any case, the receiver is aware of pending

representation switches ahead of playout time and can thus react by smoothing the

quality transition.

Representation switch smoothing can be realized by an additional component in the

decoding chain. This component is notified by the client's adaptation logic whenever

the adaptation decision is changed. The amplitude of the switch has to be signaled

as well. For SVC with MGS layers, this can be represented as the difference in MGS

layers. In a more general system, the bitrates or the video qualities (e.g., PSNR) of

the higher and lower representation may be signaled. If the first frame of the lower

representation can already be decoded, its quality could be used by the

representation switch smoothing component as reference to adjust the amount of

Distributed Adaptation and Media Transport 139

noise it adds to frames of the higher representation. Depending on the amplitude of

the representation switch, the smoothing component chooses the duration of the

transition; higher amplitudes require longer durations.

In case of down-switching, the component adds increasing noise to the frames of the

higher representation as detailed in Section 5.4.3.2 until it matches the quality of the

lower representation just before the switching. In case of up-switching, the

component adds noise with temporally decreasing intensity to the frames of the

higher representation, such that the transition between representations becomes

seamless.

5.4.3.2 Implementation Options

There are three options for implementing the smooth reduction of quality: either

before, within, or after the decoder. As smoothing for up-switching is performed

analogously to down-switching, we only consider down-switching in the following

discussion.

The first option, denoted pre-decoder implementation, is to add a filter component

before the decoder. This component alters the encoded bitstream by removing

certain picture fidelity data. For SVC with MGS enhancement layers, a straight-

forward implementation is to remove transform coefficients (i.e., set them to 0) from

the enhancement layer. For the th frame in the smooth transition, transform

coefficients are removed as calculated in Equation (11).

(a)

(b)

Figure 66: Adaptation with (a) traditional representation switching and (b) representation
switch smoothing [14].

140 Distributed Adaptation and Media Transport

 ⌊

⌋ (11)

Let be the duration of the smooth transition in frames and be the total difference

of the number of transform coefficients between the higher and the lower

representation.

This approach is easy to implement and independent of the decoder. However, a

drawback is that changes from one frame are propagated within the GOP due to

motion compensation drift [27], causing unwanted artifacts.

The second option is an implementation inside the decoder (i.e., in-decoder

implementation). Again, some picture fidelity data is removed from the coded frames,

but without affecting the motion compensation of other frames. For SVC, this implies

that the inverse transform of the residual data has to be performed twice. The

number of transform coefficients to be removed per frame is the same as in the first

implementation option. A simplified block diagram of the decoding process is given in

Figure 67.

Figure 67 (a) shows the original SVC decoder structure adopted from [158] with

handling of base layer and enhancement layer residual data. Figure 67 (b) highlights

the additional steps necessary for maintaining the original decoded picture buffer

when performing representation switch smoothing. In contrast to the first

implementation option, representation switch smoothing is performed after the

inverse quantization. The operations are commutative; setting a transform coefficient

to 0 has the same result before and after inverse quantization.

Since motion compensation is still based on the original, unimpaired coded video

data, we expect the reconstructed frame to be slightly different from the case where

the respective transform coefficients had been set to 0 in the encoding process. The

assessment of the resulting video quality is subject to future work.

Nevertheless, an implementation within the decoder is more accurate and robust

than the first implementation option since it avoids error propagation. Of course, it

requires a specialized decoder, which might limit interoperability (cf. Section 3.3.2).

Note that the first two implementation options will have to consider that SVC allows

for custom scaling matrices, which even may change between frames. The scaling

matrix provides the values by which the transform coefficients of a macroblock are

inversely quantized. Full support for custom scaling matrices might increase the

computational complexity of the implementation.

The third implementation option is to add a video filter component after the decoder

for inserting additional noise into the decoded frames. We denote this as post-

decoder implementation. This noise mimics the degrading quality to enable a smooth

transition to the lower representation. As AVC (and SVC) deploys a low-complexity

integer transform [24], this can be achieved with low computational overhead.

Distributed Adaptation and Media Transport 141

Nevertheless, the computational complexity is still slightly higher than for the first two

implementation options. That is, in the pre-decoder implementation option, the

transform coefficients can be altered directly in the bitstream (after reverting the

entropy coding); in the in-decoder implementation option, the inverse transformation

has to be duplicated; in the post-decoder implementation option, transformation into

the frequency domain also has to be added.

This third implementation option is independent of the decoder and the video coding

format and also avoids drift.

(a)

(b)

Figure 67: Simplified block diagram of the SVC decoding process for (a) traditional decoding,
adopted from [158] and (b) decoding with representation switch smoothing [14].

142 Distributed Adaptation and Media Transport

While the third implementation option is video coding format independent, it has to

know the extent to which the quality changes with the representation switch, and,

subsequently, how the new quality can be approximated by the synthetic distortion.

Such a general model for video quality approximation remains an open research

challenge.

The properties of the three implementation options are summarized in Table 17.

5.4.3.3 Evaluation

We have performed an initial evaluation of the representation switch smoothing

approach for down-switching scenarios through subjective tests. As up-switching

might be perceived differently from down-switching, e.g., viewers might experience a

sudden increase in video quality as a positive event, the combination of both up- and

down-switching in a single test sequence could bias the results. Thus, we only

considered down-switching in our first evaluation in order to decide whether the

approach is worth pursuing.

We used two test sequences, both extracted from the open-content short film Tears

of Steel [254]. Both sequences have durations of 15 seconds at resolution 1280x720

and 24 fps frame rate. Sequence 1 has high-motion content and was extracted

starting at time point 7:43; Sequence 2, with low-motion content, was extracted

starting at 1:57. The sequences were selected such as to avoid confusing scene

changes, although both contain cuts.

The 15-second sequences were split into 5-second segments. We simulated a

quality switch from a high bitrate (2,000 kbps) to a low bitrate (400 kbps for

Sequence 1 and 250 kbps for Sequence 2) after 10 seconds. As Sequence 1 has

higher temporal information, it was harder to compress for the encoder, causing

already strong visible artifacts at 400 kbps. Screenshots of the high and low bitrate

encodings of the sequences are shown in Figure 68.

Each sequence was encoded once with a quality switch (after 10 seconds), and once

with a smooth downward transition (between seconds 5 and 10). For the purpose of

this test, the sequences were encoded to AVC at constant target bitrates with the

FFmpeg encoder.

Table 17: Characteristics of representation switch smoothing component implementation
options.

 Implementation Option

Pre-decoder Option In-decoder Option Post-decoder Option

Decoder dependent no yes no

Coding format dependent yes yes no

Drift yes no no

Computational complexity very low very low low

Distributed Adaptation and Media Transport 143

We observed that the encoder badly allocates bitrates for the first few frames,

especially at low target bitrates. In per-segment encoding, this caused unwanted

distortion at segment boundaries. We thus decided to always encode the entire

sequences and to split them into segments after encoding. In the absence of a

working implementation of any of the aforementioned options, the smooth transition

was realized by encoding the sequences at predetermined target bitrates (one per

frame in the transition segment) and stitching the respective frames to a continuous

segment. Thus, 120 encodings were used to obtain the 5-second transition.

The bitrates for the smooth transition were determined as follows. The sequence was

first encoded at 5 sample bitrates (from 2,000 kbps to the lowest bitrate). The PSNR

for the transition segment was calculated to obtain the rate-distortion performance.

As the RD performance typically follows a logarithmic curve, a logarithmic curve

fitting () was computed as shown in Equation (12) in order to approximate the

video quality () for bitrate and model parameters and .

 () () (12)

(a) (b)

(c) (d)

Figure 68: Snapshots of test sequences; (a) Sequence 1 at 2,000 kbps, (b) Sequence 1 at
400 kbps, (c) Sequence 2 at 2,000 kbps, and (d) Sequence 2 at 250 kbps [14].

144 Distributed Adaptation and Media Transport

The inverse function () of this curve fitting is shown in Equation (13).

 () (

) (

)
 (13)

Based on this inverse function, the 120 bitrates were calculated that predicted a

linear decrease of PSNR over the entire transition duration. The per-frame PSNR

results for both versions are shown in Figure 69 for the two test sequences.

One drawback of the applied solution is that the encoder uses different blocks for

motion (and intra-) prediction at each bitrate. With low bitrates, blocking artifacts

become increasingly visible. Due to the different predictions, the positions of the

blocking artifacts change randomly for the extracted frame of each respective bitrate.

When stitching the frames from these encodings, this causes some temporal noise.

This noise is particularly visible in low-motion areas of the picture. In contrast, the

low-bitrate segment at the end of a sequence has blocking artifacts that continuously

move through the scene. So, even though the blocking artifacts are clearly visible,

their movements correlate with the actual motions in the scene. Due to the temporal

noise in the transition, the actual visual quality might be lower than what is reported

by PSNR. As this effect was only recognized after time-consuming encoding of the

transition segments, and due to the lack of a more accurate short-term solution, the

subjective tests were performed with the described transition segments. This means

that representation switch smoothing based on one of the implementation options

discussed in Section 5.4.3.2 may even provide better results than our evaluation.

The subjective tests were performed with 18 participants (13 male, 5 female) of age

23 to 45. The participants were told that the test concerned changes in video quality.

No further indication as to the nature of the quality changes was given. The

participants were presented with the two versions of each sequence (labeled

(a) (b)

Figure 69: Per-frame PSNR results for quality switching and representation switch smoothing
for (a) Sequence 1 and (b) Sequence 2 [14].

Distributed Adaptation and Media Transport 145

Version a and Version b). One version contained the quality switch, the other the

smooth transition. The attribution to Version a and Version b was changed between

the two sequences (i.e., representation switch smoothing was shown in Version b of

Sequence 1 and in Version a of Sequence 2). The participants were instructed that

they may start with either version and may watch each version as often as they

wanted. The videos were shown in full-screen mode on a Dell 1907FPc LCD monitor

having a native display resolution of 1280x1024. The videos were shown without

audio. The participants were asked to rate whether they preferred Version a, Version

b, or saw no difference. The questionnaire is given in Annex F.

The results of the subjective tests are provided in Table 18. We performed the

Kruskal Wallis test [255] for both sequences to test for signifance of our results. The

Kruskal Wallis test is the non-parametric counterpart of the one-way analysis of

variance. For Sequence 1, the -value is (), which means that the

null hypothesis (i.e., viewers voting equally often for each of the three samples, thus

being generally indifferent towards the transition technique) cannot be rejected. For

Sequence 2, the -value is (), which means that the null hypothesis

has to be rejected for .

Representation switch smoothing performed significantly better for Sequence 2 than

for Sequence 1. Several participants reported that the high motion of Sequence 1

made the two versions look indifferent. Many participants viewed each version at

least two or three times before making a decision. There were no significant

differences in the test results between male and female participants, although male

participants tended to prefer representation switch smoothing slightly more than

female participants. While the overall results show only a slight preference towards

representation switch smoothing, we argue that further tests should be conducted,

investigating the effects of smooth transitions on various configurations. Note also

that the aforementioned temporal noise in the smooth transitions may have affected

the test results.

For future subjective tests, the following evaluations should be performed. Main

influence factors to test are the amplitude of the quality switch (e.g., measured as the

bitrate difference), the duration of the smooth transition, as well as the amount of

Spatial and Temporal Information. Based on our experiences and feedback from test

participants, we assume representation switch smoothing to achieve the highest gain

for scenes with high Spatial and low Temporal Information. Furthermore, we

speculate that longer transition durations (e.g., 10 seconds) will better mask the

quality changes.

Table 18: Subjective test results for evaluation of representation switch smoothing [14].

Preferred

 Version

Sequence

Quality

Switching

Representation

Switch Smoothing
No Difference

Sequence 1 5 7 6

Sequence 2 3 12 3

146 Distributed Adaptation and Media Transport

Other possible influence factors that we identified in our evaluations are the base

quality (in contrast to just the bitrate differences), the presence of cuts, the resolution,

and the duration for which only low quality segments are available (e.g., only 2

seconds of low quality might not justify two 10-second transitions). It has also to be

investigated whether smooth transitions are also useful for up-switching scenarios.

As evaluated in [245], viewers prefer to watch low-quality segments followed by high-

quality segments rather than the other way around. Thus, we infer that up-switching

is perceived to be less annoying than down-switching. Furthermore, Seshadrinathan

and Bovik [227] have reported that viewers give poor quality ratings to sharp video

quality drops but do not increase ratings as eagerly when the video quality resumes

to its previous high state. From those results, we reason that up-switching is noticed

less than down-switching. These two effects may diminish the benefits of a smooth

transition for up-switching.

For test content generation, the aforementioned temporal noise should be avoided by

implementing one of the suggested implementation options from Section 5.4.3.2.

Instead of allowing participants to watch versions as often as they like, the test

material could contain around 3-5 quality switches and be shown only once to create

the same conditions for all participants. Additionally, a 5-point Likert scale could be

used to better distinguish preferences between the tested versions.

5.4.3.4 Conclusions

In this section, we have introduced the concept of representation switch smoothing.

The approach avoids abrupt quality switches by smoothly reducing the video quality

on a per-frame basis. This avoids unnecessary viewer distraction in adaptive HTTP

streaming. We have discussed three implementation options for the smoothing

component in an SVC-based DASH system.

While down-switching is generally considered annoying, abrupt up-switching might

even increase the QoE as viewers might be happy to notice visual improvements in

the video quality. It has to be evaluated whether representation switch smoothing is

beneficial for up-switching at all.

Our initial evaluations indicate a tendency towards the benefit of representation

switch smoothing compared to hard quality switches. So far, we have only evaluated

down-switching scenarios with very few configurations. Based on these evaluations,

we have identified parameters and test methods for future subjective tests on the

impact of representation switch smoothing on the QoE. Future work shall derive a

model from these evaluations for configuring the duration of a quality transition

against the amplitude of the representation switch.

Distributed Adaptation and Media Transport 147

5.5 Validation of End-to-End Adaptation System

This section documents the setup of the integrated end-to-end adaptation system

that we used for functional and quantitative validation, and it provides performance

evaluations of selected streaming scenarios.

 Test-Bed Setup 5.5.1

In order to demonstrate and validate the adaptation capabilities of the ALICANTE

streaming system, we created an integrated end-to-end streaming system setup. The

setup supports SVC streaming via HTTP and RTP with distributed adaptation and

SVC tunneling.

Figure 70 depicts the test-bed setup for SVC streaming via RTP multicast. The

source content is encoded to SVC at the server side (denoted HB1, as Home-Boxes

can also act as content servers) and then streamed via multicast. MANEs only

forward SVC layers that are actually used by at least one connected terminal.

Additionally, the ADTFs at the MANEs monitor the network conditions and react to

congestion by reducing the number of forwarded SVC layers.

At the Home-Boxes, the received streams are handled by the ADTF. Figure 70

shows three different scenarios that demonstrate the adaptation/transcoding features

of the Home-Boxes. The first terminal, connected to HB2, understands SVC and no

transcoding or adaptation is necessary. Hence, the stream is forwarded to the SVC-

capable player. The second terminal, a mobile device connected to HB3, does not

support SVC but AVC. Hence, the SVC stream is transcoded to AVC with necessary

adaptations (e.g., reduction of the resolution, bitrate) and then forwarded to the

player. The third terminal player, connected to HB4, only supports MPEG-2. Hence,

the SVC stream needs to be transcoded to AVC and afterwards, an additional

transcoding to the supported codec (i.e., MPEG-2) via the General-Purpose

Transcoder is necessary. The transcoded and adapted stream is then provided to the

player.

For SVC streaming, we developed command line tools for the RTP server and client.

The tools perform RTP multicast streaming of SVC in MST mode compliant to [202].

Streaming is performed in non-interleaved single-NALU packetization mode; the

decoding order of NALUs is restored via CS-DON (cf. Section 5.3.3.1) at the client.

When a packet of a fragmented NALU is lost, the client outputs all fragments of the

NALU up to the lost packet. Any further packets of that NALU are discarded. The

RTP streaming command line tools are made available as open-source software

at [13].

As depicted earlier in Figure 60, the output of the RTP client module is piped into the

SVC-to-AVC transcoder. A naïve first-in-first-out (FIFO) pipe can cause the RTP

client to block due to a full pipe buffer. That is, if the transcoder cannot process the

video fast enough, the buffer of the pipe is filled faster by the RTP client than it is

148 Distributed Adaptation and Media Transport

consumed by the transcoder. This causes the output of the RTP client to block until

the transcoder has consumed more data. During this time, the RTP client would not

be able to receive and process any RTP packets, resulting in high packet loss. To

alleviate this problem, the RTP client module writes its output into a temporary file,

from which the transcoder continuously consumes the video data.

For this prototype, Home-Boxes and MANEs are realized as virtual machines. The

ADTFs at the Home-Boxes and MANEs deploy the adaptation logic described in

Section 5.4.2. The SVC-to-AVC transform-domain transcoder was kindly provided by

bSoft [103]. Consequently, we also used SVC bitstreams generated by the bSoft

encoder to avoid compatibility issues between codecs (cf. Section 3.3.2). The SVC

bitstreams were encoded following the encoding guidelines developed in Chapter 3.

The GPT is based on FFmpeg (cf. Section 5.3.3.1). The transcoded bitstreams were

streamed via the LIVE555 Media Server [256] to the terminals. On the terminals, the

VLC media player [257] was used for video retrieval and playback.

The demonstrator also supports SVC-DASH with a DASH proxy at the receiving

Home-Box (cf. Section 5.3.3.2). As we reuse the adaptation logic implemented in

libdash, we did not conduct performance evaluations of DASH. Note that due to time

constraints, the representation switch smoothing approach described in Section 5.4.3

was not integrated in the test-bed setup.

A video of an early installation of the demonstrator (based on manual adaptation

triggering) is provided at [258]. As of the time of writing, the updated video of the

integrated demonstrator was still pending. The updated video will be provided on the

ALICANTE blog [259] within the period of the project.

Figure 70: Test-bed setup for adaptive SVC multicast streaming, adopted from [9].

Distributed Adaptation and Media Transport 149

 Evaluation 5.5.2

In addition to the functional validation of the end-to-end system, we also evaluated its

performance in terms of end-to-end delay for streaming and quality impact of packet

loss, distributed adaptation, and transcoding.

Due to time constraints, only few rudimentary tests are reported here. Further

evaluations of the streaming system will be reported in the upcoming ALICANTE

Deliverable D8.3 [260].

5.5.2.1 End-to-end Delay

For an evaluation of the end-to-end delay, the RTP streaming server was located on

the same machine as the receiving Home-Box (HB4) in order to allow accurate timing

measurements. The Wireshark [261] packet analyzer tool was used to capture the

timing information of incoming and outgoing RTP packets.

Note that the LIVE555 Media Server used for streaming to the terminal uses RTSP

for session control. This means that the VLC media player at the terminal will poll

every few seconds for available content via RTSP DESCRIBE requests. As long as

no content is available, LIVE555 simply acknowledges the request. Only after

LIVE555 has received enough video data to parse the media parameters from the

stream, it replies with a Session Description Protocol (SDP) [262] message. After

receiving the session description, VLC sends RTSP SETUP and RTSP PLAY

requests, whereupon LIVE555 starts the actual RTP session. These steps introduce

additional delay, in particular the repeated polling via RTSP DESCRIBE requests

from the client causes uncontrollable delay between polling operations. To alleviate

this factor in our measurements, we implemented a rudimentary RTP unicast sender

that simple sends the video data received from the input pipe.

Figure 71 sketches the adjusted test-bed with timekeeping with two MANEs along the

network path. We measured the duration from sending an RTP packet of the SVC

stream at the server to the reception of that packet at the Home-Box (denoted

time_network) and the duration from that reception to the sending of the

corresponding packet of the transcoded bitstream towards the terminal (denoted

time_adapt_*). While the entire video was streamed, timestamps were only

measured for the first RTP packet conveying video content. For all other packets, the

association between incoming and outgoing traffic would be much harder to establish

due to the transcoding steps. In order to also measure the delay overhead introduced

by the SVC-to-AVC transcoder and the GPT, we tested the Home-Box adaptation

with mere restreaming (denoted time_adapt_svc), with just SVC-to-AVC transcoding

(denoted time_adapt_avc), as well as with SVC-to-AVC transcoding plus GPT

(denoted time_adapat_mp2).

Table 19 shows the delay measurement results. The results are average values from

three runs. As the measurements from all three runs were consistent, they were

considered sufficient to provide an overall picture of the introduced delays.

150 Distributed Adaptation and Media Transport

The network delay (time_network) amounts to 0.17 seconds. This is attributed to the

processing at the MANE prototypes. The MANEs perform several content-aware

processing steps for RTP packets, such as deep packet inspection (DPI) to retrieve

SVC layer information (cf. [263]). For mere ping requests, which are simply

forwarded without any processing, the delay is as low as 0.0007 seconds.

For mere restreaming (time_adapt_svc), 0.07 seconds of delay are introduced. This

is due to the fact that RTP packets are not simply forwarded, but instead handled by

the RTP receiver, written into a FIFO pipe, read from the pipe by the RTP unicast

sender and finally sent to the terminal.

The SVC-to-AVC transcoder introduces 9.88 seconds of delay, amounting to a total

of 9.95 seconds (time_adapt_avc). At a 32-frames GOP size and a 25 fps frame rate

of the test sequence, this cannot be explained by the structural delay of the video

stream alone. Rather, we suspect that the SVC-to-AVC transcoder buffers the video

either at the input or the ouput. We are in contact with the software developers and

will report any improvements of this latency in the upcoming ALICANTE Deliverable

D8.3 [260].

Figure 71: Illustration of delay measurement in the end-to-end streaming system.

Distributed Adaptation and Media Transport 151

If the FFmpeg-based GPT is appended, the delay (time_adapt_mp2) increases by

0.36 seconds to a total 10.31 seconds. Note that we had to reduce the probesize

configuration option of FFmpeg, which controls how far FFmpeg peeks into the

stream for obtaining media parameters before the start of transcoding. The delay

introduced by FFmpeg is far below the GOP size of 32 frames (or conversely 1.28

seconds). Individual tests with frame-by-frame input confirmed the high latency of the

bSoft SVC-to-AVC transcoder as compared to FFmpeg.

The end-to-end delay of the streaming system amounts to 10.48 seconds, 94% of

which are attributed to the SVC-to-AVC transcoder implementation. If we assume

that the latency of the SVC-to-AVC transcoder can be reduced to the same level as

the FFmpeg AVC-to-MPEG-2 transcoder, the end-to-end delay could be reduced to

below one second.

Note that the GOP structure of SVC bitstreams could be optimized to reduce the

delay of the transcoding steps [27]. We deployed the bSoft encoder due to its support

of fast SVC-to-AVC transcoding, which is necessary for an actual SVC streaming

demonstrator. However, the bSoft encoder does not offer such low-latency encoding.

5.5.2.2 Video Quality Impact

Three factors influence the video quality in the end-to-end streaming system:

 packet loss may cause truncated or lost NALUs;

 in-network adaptation can help to reduce packet loss by discarding higher

SVC layers;

 transcoding from SVC to other video coding formats degrades the video

quality (cf. Chapter 3).

Extensive evaluations of the impact of packet loss on the video quality of SVC are

provided in [215], [216], and [217]. We focus on a small set of tests to assess the

impact of packet loss on SVC for the bSoft encoder/decoder. Note that we did not

apply error protection schemes for the transmission.

We used the following test sequences: Foreman, Container, Hall_Monitor, Stefan. In

order to enable reliable streaming measurements, each test sequence was repeated

multiple times before encoding, to obtain 900 frames per test sequence. The test

sequences were encoded with the bSoft encoder at resolution 352x288 with four

Table 19: End-to-end delay measurements.

Description Average Timing [seconds]

time_network 0.17

time_adapt_svc 0.07

time_adapt_avc 9.95

time_adapt_mp2 10.31

152 Distributed Adaptation and Media Transport

MGS layers with QPs to match the bitrate recommendations from Table 3 (i.e.,

QP=24 for the Foreman sequence, QP=19 for the Container sequence, QP=21 for

the Hall_Monitor sequence, and QP=30 for the Stefan sequence). The frame rate

was set to 25 fps; the I-frame period was set to 32 frames.

Due to fact that the Home-Box was deployed in a virtual machine, real-time

transcoding was only supported up to a resolution of 352x288 (cf. Annex D). Thus,

we did not include higher resolutions in our tests. The test scenarios for video quality

evaluations in the end-to-end streaming system are illustrated in Figure 72.

During pre-assessment for the evaluation, the bSoft transcoder showed some

discrepancies as compared to the bSoft decoder for the handling of packet loss. In

particular, the bSoft transcoder introduced additional distortion in case of packet loss

and also produced incorrect AVC bitstreams under high packet loss. Therefore, the

following evaluations were performed based on the decoder. Note that the bSoft

SVC-to-AVC transcoder also has a significant impact on the video quality as detailed

in Annex H.

Packet loss can cause NALUs to be distorted to a degree at which the decoder has

to discard the frame, or even entire frames can be lost. Thus, special care has to be

taken to re-establish the temporal alignment with the original sequence for PSNR

calculation. We collaborated with the software developers from bSoft in order to

obtain logging information about discarded frames. Temporal adjustment was

performed on the decoded YUV sequences. For each lost frame, we repeated the

prior frame based on this information. Note that frames that are lost during

transmission are never seen by the decoder. Therefore, we also used logging

information from our RTP receiver module to identify frames lost in the network.

However, strong distortion in several consecutive frames caused the decoder to

produce logging information of discarded frames that were inconsistent with the

actual output. In such cases, the output was often completely mangled below any

watchable quality. Typically the decoder was not able to recover from such states

even after packet loss had decreased. In cases where the output had fewer frames

than the original sequence even after our temporal adjustment, we repeated the last

frame of the output until obtaining the full sequence length (i.e., 900 frames).

For all streaming tests, three test runs were performed for each test sequence. To

account for possible errors in the temporal readjustment, the test run yielding the

lowest PSNR was discarded for each sequence.

In an initial test, we streamed the sequences without any artificially induced packet

loss. We disabled all adaptation tools, and captured the streamed SVC bitstreams on

our test-bed setup. The scenario is depicted in Figure 72 (a). Even without any traffic

limitations, small packet loss (typically around 0.2% - 0.9%) was observed in this

scenario. Possible sources of error are losses due to packet processing at the MANE

(cf. Section 5.5.2.1), the bridging of packets into the virtual machine on which the

Home-Box was deployed, or our implementation of the RTP receiver module. As of

the time of writing, we are still investigating this issue.

Distributed Adaptation and Media Transport 153

In a second step, we limited the available bandwidth of the MANEs via the Linux

traffic control tool tc, again with all adaptation tools disabled, and captured the

streamed SVC bitstreams on our test-bed setup. The scenario is depicted in Figure

72 (b). The traffic control tool was configured to limit the available bandwidth to 1,900

kbps, 1,700 kbps, and 1,000 kbps, respectively.

(a)

(b)

(c)

(d)

Figure 72: Testing scenarios for video quality evaluations in the end-to-end streaming system.

154 Distributed Adaptation and Media Transport

In the next step, we compared the impact of packet loss without adaptation to the

impact on a transmission with enabled adaptation at MANEs and Home-Boxes. The

test scenario is shown in Figure 72 (c). Again, the available bandwidth was limited to

1,900 kbps, 1,700 kbps, and 1,000 kbps, respectively. For adaptation decision-

taking, we applied the MPEG-21 ADTE adaptation logic provided in Annex G.

Finally, transcoding to MPEG-2 was added to the adaptive streaming as shown in

Figure 72 (d). This configuration corresponds to a typical end-to-end streaming

session under limited bandwidth due to cross-traffic.

PSNR results for the above scenarios are provided for all four test sequences in

Figure 73. As stated above, the results are the average values from the two better

test runs per sequence and scenario. The PSNR was calculated against the original

raw YUV sequence. The quality of the SVC bitstream before streaming is shown for

reference. The average results across all test sequences are given in Figure 74.

(a) (b)

(c) (d)

Figure 73: PSNR results for end-to-end streaming under bandwidth limitations for (a) Foreman,
(b) Container, (c) Hall_Monitor, and (d) Stefan sequences.

Distributed Adaptation and Media Transport 155

It can be observed that adaptation significantly improves the video quality, especially

for moderate packet loss. At 1,900 kbps, adaptation improves the quality by 5.97 dB

on average, at 1,700 kbps by 2.63 dB, and at 1,000 kbps by only 0.85 dB.

Note that at 1,000 kbps nearly 50% of the packets are lost. The bSoft decoder

usually does not handle such high packet loss well. Even after adaptation reduces

the stream to a lower MGS layer, the bSoft encoder was often incapable of stabilizing

the video quality.

Transcoding to MPEG-2 only reduces the video quality by around 0.17 dB. This is in

line with our findings in Section 4.3.3.3. Compared to the distortion due to packet

loss, this degradation is negligible.

Per-frame PSNR results for the Foreman sequence are exemplarily shown in Figure

75. Streaming without adaptation is shown in Figure 75 (a). It can be observed that

for higher packet loss, the decoder becomes and remains unstable. Already for a

bandwidth limitation to 1,900 kbps, frequent and strong disruptions in quality have to

be taken into account. When enabling adaptation, the disruptions are reduced due to

down-switching to a lower bitrate as shown in Figure 75 (b). PSNR results for

streaming without adaptation are shown in dotted lines for reference. However, for

strong packet loss, we again observe instable behavior of the decoder.

From the test runs in Figure 75 (b), we provide two snapshots in Figure 76 to

illustrate the distortion around frame 375 for bandwidth limitations of (a) 1,900 kbps

and (b) 1,000 kbps.

Throughout these tests, we identified several possibilities for improving the

performance of our adaptation logic. For example, the MANE should react faster to

high packet loss in order to avoid unstable behavior at the decoder. The adaptation

logic is stateless, i.e., it is not aware of previous adaptation decisions. By

remembering its previous decision, frequent switches between layers could be

Figure 74: Averaged PSNR results for end-to-end streaming under bandwidth limitations.

156 Distributed Adaptation and Media Transport

reduced. Furthermore, the estimation of the bandwidth-vs.-packet-loss characteristics

discussed in Section 5.4.2 should be fine-tuned based on our results.

5.6 Conclusions

In this chapter, we have shown how distributed adaptation can be integrated into an

SVC streaming system. Starting from a discussion of use cases for SVC streaming in

content-aware networks, we have shown how adaptation is performed on Media-

Aware Network Elements and Home-Boxes in the ALICANTE architecture. We have

investigated adaptation strategies for SVC and have validated our distributed

adaptation approach in an integrated end-to-end test-bed setup.

As this chapter has touched various aspects of adaptation, the following list

summarizes the key results:

 RTP-based unicast and multicast streaming of SVC can benefit greatly from

content-awareness for routing and forwarding. But also P2P and HTTP

streaming scenarios will be able to use MANEs to their advantage for

caching/buffering purposes.

(a)

(b)

Figure 75: Per-frame PSNR results for end-to-end streaming with traffic limitation (a) without
adaptation and (b) with adaptation.

Distributed Adaptation and Media Transport 157

 The research questions towards a distributed adaptation decision-taking

framework identified in Section 2.3.3.1 can now be answered (cf. [9]):

o Where to adapt?

In the media ecosystem architecture proposed by the ALICANTE

project, distributed adaptation of SVC streams is realized by adaptation

at network edges and in-network adaptation at MANEs. Adaptation

shall always be performed as early as possible on the delivery path to

avoid superfluous transmission of content. On the other hand, terminal

capabilities or user preferences should not be propagated to the

content-aware network environment.

o When to adapt?

At the content request phase, the combination of SVC layers has to be

decided based on terminal capabilities and user preferences. Whether

the decision is performed at the client or server depends on the

intended infrastructure scalability, the business model, and deployment

scenario rather than on the supported adaptation operations. During

streaming, dynamic bitrate adaptation towards network conditions is

best performed within the network. At the client side, support of

heterogeneous terminals is achieved through SVC tunneling, relying on

a smart home-gateway such as the Home-Box.

o How often to adapt?

Based on available literature, we suggest that the interval between two

representation switches should be at least 2 seconds [242][243].

Nevertheless, viewers prefer multiple small quality changes over a

single, large switch [244]. In case of network congestion, the adaptation

should always be performed immediately; only up-switching to a higher

representation should be scheduled accordingly to avoid flickering. We

(a) (b)

Figure 76: Snapshots for (a) moderate distortion for 1,900 kbps bandwidth limitation and
(b) high distortion for 1,000 kbps bandwidth limitation.

158 Distributed Adaptation and Media Transport

have proposed a new concept, called representation switch smoothing,

for further reducing the annoyance of quality switches. For RTP

streaming, in-network adaptation avoids packet loss – a lost RTP

packet can cause one or more SVC NALUs to be discarded, resulting in

distortion and error propagation. For HTTP streaming, the goal of

adaptation is to prevent playback stalling – initial delay to fill the client's

buffer is generally better tolerated by viewers than any stalling event,

no matter how small [239].

o How to adapt?

Within the network, bitrate-based adaptation shall be deployed. While

this is a simple and efficient strategy, some studies also have proposed

in-network adaptation based on an on-the-fly QoE estimation [224].

However, this will require a careful configuration of input parameters to

the QoE estimation algorithm. Client-side adaptation best focuses on

resolution and video coding format of the terminal's media player. As no

industry streaming solution documents frame rate adaptation (cf.

Section 3.2.2), we are skeptic towards its acceptance in real-life

streaming systems. In general, we consider quality scalability the most

suitable scalability dimension of SVC in adaptive streaming scenarios

(cf. also Section 3.5.2.2).

We have created an integrated test-bed setup to demonstrate the

adaptation capabilities of an end-to-end SVC streaming system. Based

on this test-bed, we have tested the delay of typical streaming sessions

and evaluated the video quality under various conditions. With SVC-to-

AVC transcoding at the Home-Box, around 10.1 seconds of delay have

to be taken into account, 98% of which are due to the deployed

implementation of the SVC-to-AVC transcoder. The high latency was

presumably caused by the transcoder's poorly implemented handling of

real-time data. Additional AVC-to-MPEG-2 transcoding via our general-

purpose transcoding module increases the delay by around 0.36

seconds, which is a more reasonable transcoder latency. We have

evaluated the video quality for end-to-end streaming under various

bandwidth limitations. Our results show that adaptation at the MANE

can increase the video quality by up to 6 dB for moderate packet loss

rates. For extreme packet loss scenarios of nearly 50%, the decoder

becomes and remains unstable, even if the MANE manages to reduce

the packet loss through adaptation. In an SVC tunneling scenario, the

transcoding to MPEG-2 reduces the video quality by 0.17 dB on

average. Based on our findings, we will continue to improve our

streaming setup in the ALICANTE project.

Distributed Adaptation and Media Transport 159

Future work should provide a clearer picture of the coordination for distributed

adaptation. While in the ALICANTE architecture, the coordination between MANEs is

limited to mere configuration of adaptation policies, further research will be required

to understand how multiple points of congestion along the network path can be

handled. In our tests, we deployed a simple and straight-forward adaptation logic.

More sophisticated adaptation strategies are available in the literature as discussed

in Section 5.4.1. However, the proper configuration of adaptation logics at the

MANEs needs further study in the context of distributed adaptation. Other research

challenges such as efficient on-the-fly QoE estimation and subsequent QoE-based

adaptation or the evaluation of representation switch smoothing remain open as well.

Conclusions and Future Work 161

6 Conclusions and Future Work

6.1 Summary

The goal of this thesis has been to research and develop mechanisms for streaming

and distributed adaptation of scalable media resources. This final chapter will

summarize challenges and contributions towards this goal, complemented by an

outlook on future work. In the previous chapters, we have covered a framework for

SVC encoding, including encoding guidelines and performance evaluations,

introduced and evaluated the concept of SVC tunneling, discussed challenges for

distributed adaptation in content-aware network environments, and demonstrated our

developments in an integrated end-to-end streaming system setup.

The first key aspect to adaptive media streaming of SVC is a proper encoding of the

source content. As existing literature in this field often pays little attention to realistic

encoding configurations, we developed guidelines for SVC encoding in Chapter 3

that are aligned with the recommendations of industry solutions. Chapter 3 has also

introduced the hybrid SVC-DASH approach. This approach targets adaptive

streaming to different device classes by providing a separate SVC bitstream

(consisting of a base layer and several enhancement layers) per device class. In a

series of performance evaluations, we have validated our encoding guidelines and

the hybrid SVC-DASH approach. The performance evaluations have comprised

various configurations for high-definition test content. We have tested the most

prominent SVC encoder implementations and highlighted their characteristics under

those test conditions. The test results show how scalability configurations can be

deployed for efficient SVC streaming.

Traditionally, SVC streaming requires the content to be available in SVC as well as

SVC decoding support at the client terminal. In order to enable SVC streaming on

legacy systems, we have developed the concept of SVC tunneling in Chapter 4.

Media resources are transcoded to SVC at the server side and back to a non-

scalable target format at the client side. The goal of this approach is to allow efficient

in-network adaptation and to enable bandwidth savings in multicast scenarios. The

concept is supported by the system architecture of the FP7 ALICANTE project, which

places enhanced home-gateways (Home-Boxes) at the edges of the network in order

to provide an overlay network for media processing and adaptation. However, the

transcoding to and from SVC reduces the video quality. Thus, there is a trade-off

between achievable bandwidth efficiency and incurred quality loss. In our tests, we

have investigated this trade-off for the example of MPEG-2 as the source and target

format. In this course, we have also documented the steps taken to improve the test-

bed setup throughout our tests. We have performed our evaluations for a proprietary

SVC encoder/decoder and for the JSVM reference software. The proprietary SVC

decoder provides real-time capabilities at least to some extent. On the other hand,

162 Conclusions and Future Work

the slower reference software exhibits better rate-distortion performance, resulting in

a better trade-off between bandwidth savings and quality impact.

The adaptation of scalable media resources in a content-aware network and the

distribution of adaptation actions were discussed in Chapter 5. We have investigated

the potential impacts of content-aware in-network adaptation of scalable media

resources on transport mechanisms, such as RTP-, HTTP-, or P2P-based streaming.

Even though many challenges remain open in this context, we argue that scalable

media coding in content-aware networks will play a major role in the Future (media)

Internet for improving the QoS/QoE management of adaptive media streaming in the

long run. Towards a more short-term adoption of distributed adaptation, we have

surveyed existing adaptation logics and described the distributed adaptation system

and associated adaptation logics that we developed in the course of the ALICANTE

project. Furthermore, we have identified a possible issue of the viewing experience in

adaptive HTTP streaming. That is, the switch between two (quality) representations

may unnecessarily distract the end user. We have thus introduced the concept of

representation switch smoothing, allowing a gradual transition between the

representations. We have realized an end-to-end streaming system prototype of the

ALICANTE distributed adaptation framework. We have also documented the

performance tests of this streaming system. So, Chapter 5 has combined the

research contributions of the previous chapters into an integrated system of a

scalable media delivery chain featuring distributed adaptation.

6.2 Findings

The initial research objectives stated in Section 1.2 have been addressed as follows.

(1) to evaluate the performance of SVC encoding configurations and

scalability features:

We have performed extensive evaluations of SVC encoding configurations,

focusing on spatial and quality scalability. We have tested the JSVM

reference software and three major proprietary SVC encoders. We carefully

selected full HD (1080p) test sequences for our evaluations, considering

their amounts of Spatial and Temporal Information. The tests have

addressed SVC streaming in general as well as configurations that are

particularly interesting for HTTP-based streaming. The video quality has

been evaluated via the commonly used PSNR metric as well as VQM,

which correlates better with the human visual system. We have found

several differences in the reported quality between the metrics.

The general part comprises rate-distortion evaluations of rate control

modes, the combination of spatial and quality scalability, the number of

SVC quality layers, and requantization of SVC quality layers. The results

show that the JSVM reference software is about two orders of magnitude

slower than fast proprietary SVC encoders but clearly outperforms all

Conclusions and Future Work 163

proprietary encoders in terms of coding efficiency. For the number of SVC

quality enhancement layers, each enhancement layer increases the coding

overhead by slightly more than the 10% that is often claimed in related

literature, with some variations among different encoders.

With a focus on DASH, we extended our evaluations of rate control modes

from 2 to 4 SVC quality layers. Based on our evaluations of the combination

of spatial and quality scalability, we developed the hybrid SVC-DASH

approach. This separation of SVC bitstreams per spatial resolution enables

better video qualities (around 2.2 dB higher PSNR at the highest resolution)

at a moderate increase in storage requirements. Our tests have also shown

that the combination of the coarse-grain and medium-grain scalability

modes is not useful for increasing the number of SVC quality layers

because it is inefficient in terms of supported extraction points for

adaptation. In summary, our evaluations have provided a thorough model of

the coding efficiencies and characteristics of major SVC encoders.

(2) to develop guidelines for SVC encoding in the context of adaptive

media streaming:

We have found that existing research literature on SVC performance rarely

considers encoding configurations used by industry streaming solutions. We

have surveyed AVC encoding recommendations of major streaming

solutions. From the multitude of recommendations, we have devised

common encoding guidelines for adaptive media streaming of AVC – and

subsequently SVC. The investigated seven industry streaming solutions list

26 different resolutions, which often differ from the resolutions commonly

used in research literature. The 7 most relevant resolutions have been

selected for our devised recommendations. For each resolution, we have

formulated bitrate recommendations for two and four bitrates. We have

provided those bitrate recommendations for AVC and for SVC. A streaming

system would typically use 6 to 12 extraction points (i.e., resolution-bitrate

tuples) from that list. Out of the 7 resolutions, 4 have been highlighted in the

context of DASH. We have also briefly discussed challenges of

segmentation, container formats, and other streaming-related aspects. The

devised encoding recommendations provide a common ground for

advanced SVC performance studies in the context of adaptive media

streaming.

(3) to investigate the feasibility of SVC tunneling for device-independent

access:

With the availability of an advanced home-gateway (such as the Home-Box

in the ALICANTE architecture), universal multimedia experience with

heterogeneous devices even becomes possible in combination with the

deployment of SVC in the network. We have presented the concept of SVC

tunneling that allows for efficient in-network adaptation and even bandwidth

savings in multicast scenarios by relying on transcoding at network edges.

164 Conclusions and Future Work

We have evaluated the trade-off between bandwidth savings and the quality

loss due to transcoding for the example of MPEG-2 as the source and

target format. In the course of our evaluations, we have developed a model

for the selection of quantization parameters for pixel-domain transcoding to

and from SVC. SVC-to-MPEG-2 transcoding at the client side can typically

assume overprovisioned home-network links, allowing for transcoding to the

highest supported bitrates. On the other hand, the QP for MPEG-2-to-SVC

transcoding at the server side is the main factor for controlling the quality-

versus-bandwidth trade-off. We have evaluated this trade-off for the

proprietary bSoft SVC encoder in order to be able to support real-time

deployments and for the JSVM reference software in order to optimize rate-

distortion performance. For full SVC tunneling with transcoding at the server

and client sides with the bSoft encoder, around 2.5 dB PSNR loss has to be

considered for SVC tunneling to be more bandwidth efficient than MPEG-2

simulcast. The results for the JSVM significantly improve the trade-off (at

the expense of transcoding speed). For example, at a quality loss of 0.33

dB, SVC tunneling requires 41.8% less bandwidth than a comparable

MPEG-2 simulcast. We have also evaluated the trade-off for partial SVC

tunneling, i.e., if one of the two transcoding steps can be avoided, and have

shown that quality loss is further reduced.

(4) to analyze the effects of scalability features and adaptation

configurations on content- and context-aware media delivery:

We have surveyed research literature on adaptation of SVC. The survey

addresses the evolution of SVC adaptation, which traditionally has been

located at the server side, e.g., for IPTV or RTP-based VoD services, was

later extended onto routers performing in-network adaptation, and is now

increasingly located at the client side as well due to the advance of HTTP-

based media streaming. The overall objective of SVC adaptation is the

selection of packets (i.e., NALUs) from the SVC bitstream so that the

Quality of Experience for the end user(s) is maximized under constraints of

transmission resources while also minimizing the utilization of transmission

resources. However, the QoE for video consumption is influenced by a

huge number of factors, making it hard to model. It is not only affected by

spatial resolution, frame rate, and video SNR, but also by the timing,

duration, and pattern of adaptation between representations with different

scalability features, the frequency and amplitudes of adaptations, distortion

due to packet loss, initial playout delay, playback stalling due to rebuffering

and many other factors. Ongoing research in this field strives to understand

the impact of these factors. As one contribution, we have researched the

perception of switches between representations of a video. We have

introduced the approach of smooth transitions between representations,

called representation switch smoothing, that avoids abrupt changes in video

quality through a smooth transition between segments of different bitrates.

We have also presented several implementation options of the proposed

Conclusions and Future Work 165

approach. First evaluation results indicate that viewers prefer such a

smooth transition over a traditional hard switch.

Another factor that influences the adaptation options, and subsequently the

achievable QoE, is the choice of encoding configurations. In particular, the

number of layers and the bitrates of these layers have to be selected

carefully to allow flexible adaptation on the one hand and to avoid excessive

coding overhead on the other hand. We have designed our encoding

recommendations accordingly as discussed above.

We have also documented and validated the adaptation logic deployed

within the ALICANTE adaptation framework. The adaptation logic has been

implemented as a standard-compliant MPEG-21 DIA description, enabling

interoperability and extensibility.

(5) to investigate the applicability of distributed adaptation in content-

aware networks for different transport mechanisms:

We have discussed the challenges and potentials of advanced SVC

adaptation at multiple nodes within a content-aware network. In our

discussion, we have investigated how different transport mechanisms, such

as RTP-, HTTP-, or P2P-based streaming, can benefit from content-aware

features of advanced network nodes. We have found that content-aware

caching/buffering strategies at those network nodes will play a major role for

realizing advanced adaptive streaming in a Future (media) Internet; so will

the in-network adaptation of scalable media resources. Among others, we

have proposed that advanced network nodes may even collaborate in P2P

streaming scenarios by acting as streaming peers themselves. Our analysis

has considered several aspects of in-network processing of scalable media

resources for improving the QoS/QoE management of adaptive media

streaming.

Within the context of the ALICANTE architecture, we have developed an

adaptation framework that allows for dynamic adaptation at the network

edges (i.e., the Home-Boxes) as well as in the network.

(6) to evaluate the performance of distributed media adaptation in an end-

to-end streaming system:

Although the integration in an end-to-end streaming system has proven to

be quite hard due to many implementation issues, we have managed to

demonstrate and validate the adaptation capabilities of our system. This

end-to-end streaming system integrates the findings of our SVC encoding

recommendations, the deployment of SVC tunneling, and distributed

adaptation features. In the course of our evaluations, the end-to-end delay

for streaming with (partial) SVC tunneling was measured. Our results show

that an end-to-end delay below one second for SVC tunneling should be

possible, given an improved SVC-to-AVC transcoder. The PSNR for

adaptive streaming with SVC tunneling is up to 6 dB higher than for non-

166 Conclusions and Future Work

adaptive streaming in our test-bed setup. Nevertheless, several challenges

remain for the configuration and coordination of distributed adaptation in an

end-to-end media streaming system.

6.3 Future Work

In the adaptive streaming system presented in Section 5.5, we have so far only

tested a small set of the encoding configurations devised in Chapter 3. Future work in

this area will test additional configurations for realistic streaming scenarios. The

proper deployment of container formats for the integration with audio and other

multimedia data (e.g., sensory effects metadata) has to be researched. It also

remains to be evaluated how our encoding recommendations for HTTP streaming, in

particular the hybrid SVC-DASH approach, affect caching performance. Since a

scalable extension to the recently ratified HEVC standard is currently under

development, extensive performance evaluations will be important for its adoption.

In the context of SVC tunneling, future work should target high-definition content,

source and target coding formats other than MPEG-2 (or AVC), as well as subjective

tests. While we have evaluated SVC tunneling based on pixel-domain transcoding,

the evaluation of fast transform-domain transcoders would be an interesting

opportunity to improve transcoding speed for higher resolutions.

Our discussion of scalable media coding in content-aware networks has given a

broad outlook on the opportunities, but also on the issues of such approaches. The

identified challenges will have to be addressed and researched. A key aspect for the

deployment will be how well such infrastructures will scale. Thus, efficient algorithms

for in-network (and potentially cross-layer) adaptation and advanced caching

mechanisms will be needed. But future work should also address security and

privacy aspects of the proposed approaches.

We have seen in Section 5.4.1 that various adaptation logics try to solve specific

issues in media streaming scenarios. Adaptation no longer just targets the

optimization of network resource utilization, but also increasingly addresses the

subtle psychological aspects of video perception. One factor is the sensibility to

changes in quality. Representation switch smoothing tries to reduce our perception of

quality changes. Further evaluations will be required to assess the benefits of this

approach. As our understanding of QoE and its influence factors grows, different

adaptation approaches will have to be combined.

The efficient distribution of adaptation steps for SVC streaming (and for the delivery

of scalable video resources in general) promises further improvements in terms of

network resource utilization and QoE management. While we have demonstrated a

prototype of an end-to-end streaming system with distributed cross-layer adaptation,

there are still many open challenges in this area. Future work shall improve the

coordination of adaptation configurations at the involved nodes. For the adaptation

framework of the ALICANTE system architecture, the coordination of in-network

Conclusions and Future Work 167

adaptation is performed by a domain-management entity (the CAN Manager) that

provides adaptation policies to the network nodes. It will have to be evaluated

whether these adaptation policies enable optimal adaptation decisions and how

different network domains can communicate with each other. There is also research

being performed on multi-video rate allocation at the network edges and within the

network. Eventually, these aspects will result in a clear overall picture of the

coordination and signaling required for efficient distributed adaptation. Another key

aspect for future work is the standardization of protocols and interfaces to ensure

interoperability of advanced media delivery systems.

Annex A – Abbreviations and Acronyms 169

Annex A – Abbreviations and
Acronyms

4CIF 4x CIF

A_PSQA ALICANTE PSQA

ABR Average Bitrate

ACR Absolute Category Rating

ADTE Adaptation Decision-Taking Engine

ADTF Adaptation Decision-Taking Framework

AF Adaptation Framework

ALICANTE Media Ecosystem Deployment through Ubiquitous Content-Aware

Network Environments

API Application Programming Interface

AQoS Adaptation QoS

AVC Advanced Video Coding

AVI Audio Video Interleave

B frame Bi-Predicted frame

BD Bjontegaard Delta

BL Base Layer

CABAC Context-Adaptive Binary Arithmetic Coding

CAN Content-Aware Network

CATI Content-Aware Transport Information

CAVLC Context-Adaptive Variable Length Coding

CBR Constant Bitrate

CCN Content-Centric Networking

CDN Content Delivery Network

CGS Coarse-Grain Scalability

CIF Common Intermediate Format

CON Content-Oriented Networking

CP Content Provider

CPU Central Processing Unit

CS-DON Cross-Session Decoding Order Number

170 Annex A – Abbreviations and Acronyms

DANAE Dynamic and Distributed Adaptation of Scalable Multimedia

Content in a Context-Aware Environment

dB decibel

DASH Dynamic Adaptive Streaming over HTTP

DCT Discrete Cosine Transform

DIA Digital Item Adaptation

DID Dependency Identifier

DiffServ Differentiated Services

DMOS Differential MOS

DPI Deep Packet Inspection

dQP deltaQP

D-Q-RAM Distributed Quality of Service Resource Allocation Model

DVD Digital Versatile Disk or Digital Video Disk

DWT Discrete Wavelet Transform

EC European Commision

EL Enhancement Layer

ENTHRONE End-to-End QoS through Integrated Management of Content,

Networks and Terminals

ES Elementary Stream

ESS Extended Spatial Scalability

EU European Union

FI Future Internet

FIFO First-In-First-Out

FLS Frequent Layer Switching

FP6 Sixth Framework Programme

FP7 Seventh Framework Programme

fps frames per second

GB Gigabyte

GHz Gigahertz

GOP Group of Pictures

GPT General-Purpose Transcoder

GRED Generalized Random Early Detection

H.264/AVC (see AVC)

Annex A – Abbreviations and Acronyms 171

HB Home-Box

HD High-Definition

HEVC High Efficiency Video Coding

HLS HTTP Live Streaming

HT Hadamard Transform

HTTP Hypertext Transfer Protocol

I frame Intra-predicted frame

ICN Information-Centric Networking

IDR Instantaneous Decoding Refresh

IEC International Electrotechnical Commission

IP Internet Protocol

IPTV Internet Protocol Television

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISO International Organization for Standardization

ITU-T International Telecommunication Standardization Sector

JCT-VC Joint Collaborative Team on Video Coding

JSVM Joint Scalable Video Model

JVT Joint Video Team

kbps kilobit per second

LCD Liquid-Crystal Display

LRU Least Recently Used

MANE Media-Aware Network Element

Mbps Megabit per second

MDC Multiple Description Coding

MDS Multimedia Description Schemes

MEDIEVAL MultiMEDia transport for mobIlE Video AppLications

MGS Media-Grain Scalability

MKV Matroska Multimedia Container

MOS Mean Opinion Score

MP4 MPEG-4 Part 14

MPD Media Presentation Description

MPEG Moving Picture Experts Group

172 Annex A – Abbreviations and Acronyms

MPEG-4 Visual MPEG-4 Part 2

MPLS Multiprotocol Label Switching

MSE Mean Squared Error

MSPT Multimedia Service Platform Technologies

MST Multi-Session Transmision

NAL Network Abstraction Layer

NALU NAL Unit

NAT Network Address Translation

NTIA National Telecommunications and Information Administration

P frame Predicted frame

P2P Peer-to-Peer

PC Personal Computer

PDT Pixel Domain Transcoding

PE Processing Engine

PPSPP Peer-to-Peer Streaming Peer Protocol

PSNR Peak Signal-to-Noise Ratio

PSQA Pseudo-Subjective Quality Assessment

QCIF Quarter CIF

QID Quality Identifier

QoE Quality of Experience

QoS Quality of Service

QP Quantization Parameter

QVGA Quarter Video Graphics Array

RAM Random-Access Memory

RD Rate-Distortion

RDLM Receiver-Driven Layered Multicast

RNN Random Neural Network

ROI Region of Interest

RTCP RTP Control Protocol

RTMP Real-Time Messaging Protocol

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

SDP Session-Description Protocol

Annex A – Abbreviations and Acronyms 173

SEI Supplemental Enhancement Information

SHVC Scalable High Efficiency Video Coding

SI Spatial Information

SLA Service-Level Agreement

SNR Signal-to-Noise Ratio

SP Service Provider

SST Single-Session Transmision

SVC Scalable Video Coding

TCP Transmission Control Protocol

TDT Transform Domain Transcoding

TI Temporal Information

TID Temporal Identifier

TS Transport Stream

TV Television

UCD Universal Constraints Description

UDP User Datagram Protocol

UED Usage Environment Description

UMA Universal Multimedia Access

UME Universal Multimedia Experience

US United States

VBR Variable Bitrate

VCL Video Coding Layer

VoD Video on Demand

VQM Video Quality Metric

VSS Vanguard Software Solutions

WSVC Wavelet-based Scalable Video Coding

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformation

Annex B – Configurations of Tested Encoders 175

Annex B – Configurations of Tested
Encoders

This Annex provides configurations of all tested encoders for the test described in

Section 3.4.1.

JSVM encoder:

File main.cfg:

JSVM Main Configuration File

#============================== GENERAL

==

OutputFile $(OUTPUT_FILE) # Bitstream file

FrameRate 25.0 # Maximum frame rate [Hz]

FramesToBeEncoded 1000 # Number of frames (at

input frame rate)

CgsSnrRefinement 1 # SNR refinement as 1: MGS;

0: CGS

EncodeKeyPictures 1 # Key pics at T=0 (0:none,

1:MGS, 2:all)

MGSControl 2 # ME/MC for non-key

pictures in MGS layers

 # (0:std, 1:ME with EL,

2:ME+MC with EL)

#============================== CODING STRUCTURE

===============================

GOPSize 4 # GOP Size (at maximum

frame rate)

IntraPeriod 32 # Intra Period

#============================== LAYER DEFINITION

===============================

NumLayers 2 # Number of layers

LayerCfg layer0.cfg # Layer configuration file

LayerCfg layer1.cfg # Layer configuration file

#============================== MOTION SEARCH

==================================

SearchMode 4 # Search mode

(0:BlockSearch, 4:FastSearch)

176 Annex B – Configurations of Tested Encoders

SearchFuncFullPel 0 # Search function full pel

 # (0:SAD, 1:SSE,

2:HADAMARD, 3:SAD-YUV)

SearchFuncSubPel 2 # Search function sub pel

 # (0:SAD, 1:SSE,

2:HADAMARD)

SearchRange 32 # Search range (Full Pel)

ELSearchRange 8 # Enh. layer search range

FastBiSearch 1 # Fast bi-directional

search (0:off, 1:on)

BiPredIter 2 # Max iterations for bi-

pred search

IterSearchRange 4 # Search range for

iterations (0: normal)

File layer0.cfg:

JSVM Layer 0 Configuration File

#====================== INPUT / OUTPUT

===

SourceWidth 1920 # Input frame width

SourceHeight 1080 # Input frame height

FrameRateIn 25 # Input frame rate [Hz]

FrameRateOut 25 # Output frame rate [Hz]

InputFile $(INPUT_FILE) # Input file

ReconFile rec_layer0.yuv # Reconstructed file

SymbolMode 1 # 0=CAVLC, 1=CABAC

#====================== CODING

===

QP 26.0 # Quantization parameters

Important: MeQPx should be set to QP - 2.

#====================== CONTROL

==

MeQP0 24.00 # QP for mot. est. / mode

decision (stage 0)

MeQP1 24.00 # QP for mot. est. / mode

decision (stage 1)

MeQP2 24.00 # QP for mot. est. / mode

decision (stage 2)

MeQP3 24.00 # QP for mot. est. / mode

decision (stage 3)

Annex B – Configurations of Tested Encoders 177

MeQP4 24.00 # QP for mot. est. / mode

decision (stage 4)

MeQP5 24.00 # QP for mot. est. / mode

decision (stage 5)

File layer1.cfg:

JSVM Layer 1 Configuration File

#====================== INPUT / OUTPUT

===

SourceWidth 1920 # Input frame width

SourceHeight 1080 # Input frame height

FrameRateIn 25 # Input frame rate [Hz]

FrameRateOut 25 # Output frame rate [Hz]

InputFile $(INPUT_FILE) # Input file

ReconFile rec_layer1.yuv # Reconstructed file

SymbolMode 1 # 0=CAVLC, 1=CABAC

#====================== CODING

===

QP 24.0 # Quantization parameters

Important: MeQPx should be set to QP - 2.

#====================== CONTROL

==

MeQP0 22.00 # QP for mot. est. / mode

decision (stage 0)

MeQP1 22.00 # QP for mot. est. / mode

decision (stage 1)

MeQP2 22.00 # QP for mot. est. / mode

decision (stage 2)

MeQP3 22.00 # QP for mot. est. / mode

decision (stage 3)

MeQP4 22.00 # QP for mot. est. / mode

decision (stage 4)

MeQP5 22.00 # QP for mot. est. / mode

decision (stage 5)

InterLayerPred 2 # Inter-layer Pred. (0:no,

1:yes, 2:adap.)

178 Annex B – Configurations of Tested Encoders

MainConcept encoder:

#################################

AVC encoder configuration file#

#################################

[SVC Settings]

num_layers = 2

mgs = 1

inter_layer_deblocking = 1

[SVC Layer 0000]

profile_id = 3

level_id = 51

idr_interval = 32

reordering_delay = 4

use_b_slices = 1

interlace_mode = 0

def_horizontal_size = 1920

def_vertical_size = 1080

frame_rate = 25.0000000000

num_reference_frames = 4

search_range = 144

rd_optimization = 1

max_l0_active = 0

max_l1_active = 0

quant_pI = 26

quant_pP = 26

quant_pB = 26

bit_rate_mode = 1

bit_rate_buffer_size = 12000000

bit_rate = 0

max_bit_rate = 0

inter_search_shape = 1

entropy_coding_mode = 1

use_hadamard_transform = 0

sar_width = 1

sar_height = 1

video_format = 1

video_full_range = 0

num_units_in_tick = 1080000

time_scale = 27000000

vbv_buffer_fullness = 0

vbv_buffer_fullness_trg = 12000000

vbv_buffer_units = 1

cpb_removal_delay = 0

Annex B – Configurations of Tested Encoders 179

bit_rate_scale = 0

cpb_size_scale = 0

max_frame_size = {0,0,0,0}

hrd_maintain = 1

use_deblocking_filter = 1

deblocking_alphaC0_offset = -1

deblocking_beta_offset = -1

adaptive_deblocking = 0

video_type = 0

video_pulldown_flag = 0

stream_type = 2

frame_mbs_mode = 0

bit_depth_luma = 8

bit_depth_chroma = 8

chroma_format = 2

vui_presentation = 0

write_au_delimiters = 0

write_seq_end_code = 1

write_timestamps = 1

timestamp_offset = 0

drop_frame_timecode = 0

write_single_sei_per_nalu = 0

write_seq_par_set = 1

write_pic_par_set = 1

log2_max_poc = 8

log2_max_frame_num = 16

pic_order_cnt_type = 0

pic_order_present_flag = 0

fixed_frame_rate = 1

frame_based_timing = 0

vcsd_mode = 1

vcsd_sensibility = 50

slice_mode = 1

slice_arg = 1

b_slice_reference = 1

b_slice_pyramid = 1

cb_offset = 1

cr_offset = 1

me_subpel_mode = 2

me_weighted_p_mode = 1

me_weighted_b_mode = 0

enable_fast_intra_decisions = 1

enable_fast_inter_decisions = 1

pic_ar_x = -1

pic_ar_y = -1

180 Annex B – Configurations of Tested Encoders

calc_quality = 0

cpu_opt = 0

num_threads = 0

live_mode = 0

buffering = 0

min_quant = 0

max_quant = 51

max_slice_size = 0

encoding_buffering = 0

low_delay = 0

air_mode = 0

detach_thread = 1

min_idr_interval = 1

adaptive_b_frames = 0

idr_frequency = 1

field_order = 0

fixed_i_position = 0

isolated_gops = 0

fast_multi_ref_me = 1

fast_sub_block_me = 1

allow_out_of_pic_mvs = 1

constrained_ref_list = 1

enable_intra_big = 1

enable_intra_8x8 = 1

enable_intra_4x4 = 1

enable_intra_pcm = 0

enable_inter_big = 1

enable_inter_8x8 = 1

enable_inter_4x4 = 1

enable_inter_pcm = 0

fast_rd_optimization = 1

quant_mode = 2

grain_mode = 0

grain_opt_strength = 0

adaptive_quant_strength = {0,0,0,0,0,0,0,0}

denoise_strength_y = 0

denoise_strength_c = 0

black_norm_level = 0

seq_scaling_matrix_present_flag = 0

seq_scaling_list_present_flag = {0,0,0,0,0,0,0,0}

intra_y_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

intra_cb_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

Annex B – Configurations of Tested Encoders 181

intra_cr_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_y_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_cb_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_cr_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

intra_y_8x8_scaling_list[16] =

{0,0

,0

,0,0}

inter_y_8x8_scaling_list[16] =

{0,0

,0

,0,0}

constrained_intra_pred = 0

air_split_frequency = 0

hierar_p_frames = 0

aux_format_idc = 0

bit_depth_aux = 0

alpha_incr_flag = 0

alpha_opaque_value = 0

alpha_transparent_value = 0

[SVC Layer 0001]

profile_id = 3

level_id = 51

idr_interval = 32

reordering_delay = 4

use_b_slices = 1

interlace_mode = 0

def_horizontal_size = 1920

def_vertical_size = 1080

frame_rate = 25.0000000000

num_reference_frames = 4

search_range = 144

rd_optimization = 1

max_l0_active = 0

max_l1_active = 0

quant_pI = 24

quant_pP = 24

quant_pB = 24

bit_rate_mode = 1

bit_rate_buffer_size = 16000000

182 Annex B – Configurations of Tested Encoders

bit_rate = 0

max_bit_rate = 0

inter_search_shape = 1

entropy_coding_mode = 1

use_hadamard_transform = 0

sar_width = 1

sar_height = 1

video_format = 1

video_full_range = 0

num_units_in_tick = 1080000

time_scale = 27000000

vbv_buffer_fullness = 0

vbv_buffer_fullness_trg = 16000000

vbv_buffer_units = 1

cpb_removal_delay = 0

bit_rate_scale = 0

cpb_size_scale = 0

max_frame_size = {0,0,0,0}

hrd_maintain = 1

use_deblocking_filter = 1

deblocking_alphaC0_offset = -1

deblocking_beta_offset = -1

adaptive_deblocking = 0

video_type = 0

video_pulldown_flag = 0

stream_type = 2

frame_mbs_mode = 0

bit_depth_luma = 8

bit_depth_chroma = 8

chroma_format = 2

vui_presentation = 0

write_au_delimiters = 0

write_seq_end_code = 1

write_timestamps = 1

timestamp_offset = 0

drop_frame_timecode = 0

write_single_sei_per_nalu = 0

write_seq_par_set = 1

write_pic_par_set = 1

log2_max_poc = 8

log2_max_frame_num = 16

pic_order_cnt_type = 0

pic_order_present_flag = 0

fixed_frame_rate = 1

frame_based_timing = 0

Annex B – Configurations of Tested Encoders 183

vcsd_mode = 1

vcsd_sensibility = 50

slice_mode = 1

slice_arg = 1

b_slice_reference = 1

b_slice_pyramid = 1

cb_offset = 1

cr_offset = 1

me_subpel_mode = 2

me_weighted_p_mode = 1

me_weighted_b_mode = 0

enable_fast_intra_decisions = 1

enable_fast_inter_decisions = 1

pic_ar_x = -1

pic_ar_y = -1

calc_quality = 0

cpu_opt = 0

num_threads = 0

live_mode = 0

buffering = 0

min_quant = 0

max_quant = 51

max_slice_size = 0

encoding_buffering = 0

low_delay = 0

air_mode = 0

detach_thread = 1

min_idr_interval = 1

adaptive_b_frames = 0

idr_frequency = 1

field_order = 0

fixed_i_position = 0

isolated_gops = 0

fast_multi_ref_me = 1

fast_sub_block_me = 1

allow_out_of_pic_mvs = 1

constrained_ref_list = 1

enable_intra_big = 1

enable_intra_8x8 = 1

enable_intra_4x4 = 1

enable_intra_pcm = 0

enable_inter_big = 1

enable_inter_8x8 = 1

enable_inter_4x4 = 1

enable_inter_pcm = 0

184 Annex B – Configurations of Tested Encoders

fast_rd_optimization = 1

quant_mode = 2

grain_mode = 0

grain_opt_strength = 0

adaptive_quant_strength = {0,0,0,0,0,0,0,0}

denoise_strength_y = 0

denoise_strength_c = 0

black_norm_level = 0

seq_scaling_matrix_present_flag = 0

seq_scaling_list_present_flag = {0,0,0,0,0,0,0,0}

intra_y_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

intra_cb_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

intra_cr_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_y_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_cb_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

inter_cr_4x4_scaling_list[16] =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

intra_y_8x8_scaling_list[16] =

{0,0

,0

,0,0}

inter_y_8x8_scaling_list[16] =

{0,0

,0

,0,0}

constrained_intra_pred = 0

air_split_frequency = 0

hierar_p_frames = 0

aux_format_idc = 0

bit_depth_aux = 0

alpha_incr_flag = 0

alpha_opaque_value = 0

alpha_transparent_value = 0

VSS encoder:

##

##############

VSofts H.264 Encoder 4.6

Annex B – Configurations of Tested Encoders 185

Copyright (C) 2002-2012 Vanguard Software Solutions, Inc.

All Rights Reserved.

Syntax tips:

a) ';' and '#' symbols at the start of line mean whole line

comment;

b) "//" is a comment till end of line like in "C";

##

##############

Here I am, configuration file the size of a planet and they

ask me to encode SVC. Call that job satisfaction? 'Cos I

don't.

##

##############

svc.num_layers = 1

rc.qp_intra = 26 // quant parameter for I-frames (0-51);

svc.layer[0].qp_intra = 24 //qp for intra-frames coding

(qp_delta_p and qp_delta_b is used from main settings)(used

for rc.type = 0)

gop.time_scale = 50000 // fps = time_scale/(2*num_units)

#----------------------- input description, to be set by

application level

input.width = 1920 //Input frames width in pixels

input.height = 1080 //Input frame height in pixels

input.colorspace = 0 // 0=IYUV,I420; 1=YV12; 2=YUYV,YUY2;

3=YVYU; 4=UYVY; 5=RGB555; 6=RGB565; 7=RGB24; 8=RGB32

 // 9 = YUV 4:0:0 planar, 10 = YUV

4:2:2 planar

 // if input frames are RGB upside down frames then

input.height must be negative

input.sample_size = 1 // bytes per sample (1)

input.significant_bits = 8 // significant bits per sample (8);

#----------------------- preprocessing

preproc.intra_precision = 2 // 0, 1, 2, 3, 4

#--

chroma format idc valuse:

0 = YUV_400, 1 = YUV_420, 2 = YUV_422, 3 = YUV_444

default value 1

186 Annex B – Configurations of Tested Encoders

acceptable values 0, 1, 2

preproc.chroma_format_idc = 1

#-----------------------

preproc.crop.enable = 0

preproc.crop.left = 0

preproc.crop.top = 0

preproc.crop.right = 0

preproc.crop.bottom = 0

#--

0 = none, 1 = weak, 2 = moderate, 3 = middle, 4 = strong, 5

= very strong, 6 = maximum

preproc.me_denoise.level = 0

preproc.me_denoise.skip_luma = 0

preproc.me_denoise.skip_chroma = 0

#--

0 = none, 1 = copy top feild, 2 = copy bottom field, 3 =

blend fields

preproc.deinterlace = 0

#--

steps set (step0, step1, ... step6)

step parameters set (param0, param1, param2, param3)

type values

0x00 = none, parameters will be set to zero

filter luma - accepable values 0 or 1 (1 means apply filter)

filter chroma - acceptable values 0 or 1 (1 means apply

filter)

0x10 = BLUR_3x3 (param0=filter luma, param1=filter

chroma),

0x11 = BLUR_5x5 (param0=filter luma, param1=filter

chroma),

0x20 = SHARPEN_3x3 (param0=filter luma, param1=filter

chroma),

0x21 = SHARPEN_5x5 (param0=filter luma, param1=filter

chroma),

0x30 = MEDIAN_3x3 (param0=filter luma, param1=filter

chroma),

0x31 = MEDIAN_5x3 (param0=filter luma, param1=filter

chroma),

several resize steps can be used at the same time (using

different slots e.g. step0 and step1)

Annex B – Configurations of Tested Encoders 187

if is used several steps output step0 will be input step1

but size must be in range (concrete dimension restriction

see in sdk documentation)

0x40 = RESIZE (param0=new picture width, param1=new picture

height)

#strength [0..10] 0 - no filter applied, 1..10 filter

strength, 10 - moved objects and scene change cause artifacts

#buffer length [2..7] color planes counter which will be used

while filtration

0x50 = TEMPORAL_DENOISE (param0=luma strength, param1=luma

buffer length, param2=crhoma strength, param3=chroma buffer

length)

preproc.step[0].type = 0

preproc.step[0].param0 = 0

preproc.step[0].param1 = 0

preproc.step[0].param2 = 0

preproc.step[0].param3 = 0

##

##############

svc layers settings

there are layer0, layer1, layer2 and layer3

number of layers 0..15

0 means no SVC

otherwice count layers counter

#svc.num_layers = 1

svc.key_picture_period = 0 // SVC and AVC key picture period

svc.temporal_mode = 0 // temporal scalability: 0=disabled,

1=enabled;

svc.multistream_mode = 0 // 0=SVC, 1=AVC, 2=MVC

Bitwise svc/mvc/multistream flags:

1=Put MVC prefix-nal units into stream;

2=Put MVC picture delimiter into stream;

4=Use fast version of ParallelStream

8=Generate MVC SEI according to Blu Ray spec

svc.flags = 0

#layer0 description --

188 Annex B – Configurations of Tested Encoders

------------------------- similar descriptions can present

for each layer

layer extend - spatial extend, comparing to prev layer

acceptable values

SVC_EXTEND_2X2 = 0 - extend twice in both direction

SVC_EXTEND_1X1 = 1 - no spatial extend

SVC_MGS_EXTEND = 2 - no spatial extend MGS coding

SVC_EXTEND_1_5 = 15 - 1.5 extend in both direction

SVC_EXTEND_CUSTOM = 100 - custom spatial extend

(dimensions must be set explicitly)

svc.layer[0].extend = 2

#SVC Encoding tools is bitwise combination of the values

below:

SVC_ADAPTIVE_BASEMODE_FLAG = 0x01,

SVC_ADAPTIVE_RES_PRED_FLAG = 0x02,

SVC_ADAPTIVE_MV_PRED_FLAG = 0x04,

SVC_DEFAULT_BASEMODE_FLAG = 0x10,

SVC_DEFAULT_RES_PRED_FLAG = 0x20,

SVC_DEFAULT_MV_PRED_FLAG = 0x40

svc.layer[0].flags_i = 0x7 //adaptive usage of all tools for

I-slice

svc.layer[0].flags_p = 0x7 //adaptive usage of all tools for

P-slice

svc.layer[0].flags_b = 0x7 //adaptive usage of all tools for

B-slice

svc.layer[0].sym_mode = 1 // select symbol mode: 0=UVLC;

1=CABAC;

svc.layer[0].kbps = 0 // desided bitrate (for this and

below level) Must be greater then kbps for previous level (for

multistream_mode!=1)

svc.layer[0].max_kbps = 0 // max allowed bitrate in vbr mode

for this layer; default - 0 (means not set)

#svc.layer[0].qp_intra = 42 //qp for intra-frames coding

(qp_delta_p and qp_delta_b is used from main settings)(used

for rc.type = 0)

svc.layer[0].speed.i = 4 // speed for I-frames (0..7):

0==slowest... 7 =fastest;

svc.layer[0].speed.p = 4 // speed for P-frames (0..7):

svc.layer[0].speed.b = 4 // speed for B-frames (0..7):

Annex B – Configurations of Tested Encoders 189

svc.layer[0].profile_idc = 86 // SVC: 83= Scalable Baseline,

86= Scalable High; AVC: see profile_idc below; MVC: 118=

Multiview High, 128= Stereo High

svc.layer[0].level_idc = 41 //level_idc; 0 - means, that it

will be calculated from settings

SVC layer specific VUI parameters. See Standard Annex E

section E.2 for details

Valid with vui.aspect_ratio_info_present_flag = 1 (see VUI

section description below)

svc.layer[0].vui_aspect_ratio_idc = 0 // 0-auto, 1-16-manual

set from Table E-1, 255-Extended_SAR

svc.layer[0].vui_sar_width = 0 // Extended_SAR width

svc.layer[0].vui_sar_height = 0 // Extended_SAR height

#slicing params

svc.layer[0].slice.mode = 0

svc.layer[0].slice.param = 0

svc.layer[0].slice.i_param = 0

svc.layer[0].slice.b_param = 0

svc.layer[0].num_mgs_slices = 1 //number of slices to split

coefs (valid only for MGS extend)

svc.layer[0].mgs_coeffs = 0 //How to split coeffs; 0

automatic. example: 0xB73 - means coefs [0-3] into slice0; [4-

7] - slice1; [8-11] - slice2; [12-15] slice3

svc.layer[0].frame_width = 0 // SVC layer frame width. Must be

set only if custom extend is in use

svc.layer[0].frame_height = 0 //SVC layer frame height. Must

be set only if custom extend is in user

#The same default parameters for all other layers

end svc layers

Life! Don't talk to me about life.

##

##############

#----------------------- general settings

profile_idc = 77 // H264 profile selection (66=baseline,

77=main, 100=high, 110=high 10, 122 - High422);

level_idc = 32 // H264 level selection (12=1.2, 32=3.2,

40=4.0); 0 - means, that it will be calculated from settings

190 Annex B – Configurations of Tested Encoders

sym_mode = 1 // symbol mode (0=UVLC, 1=CABAC);

#--- bit depth parametrers are valid for High-bits enabled

build

bit_depth_luma = 8 //bit depth when encoding luma samples (8-

14)

bit_depth_chroma = 8 //bit depth when encoding luma samples

(8-14)

---- Bitwise special encoding flags:

#ENC_DISABLE_VUI = 1, ///< don't put vui infromation in sps

#ENC_SLICE_TYPE_012 = 2, ///< encode slice types as 0,1 or 2

(default is 5,6,7)

#ENC_SPS_ONLY_ONCE = 4, ///< put SPS only for the first frame

of stream

#ENC_REC_POINT_IDR = 8, ///< put recovery point SEI for IDR

picture too

#ENC_FRAME_PACKING = 0x10, ///< used together with

sei.frame_packing flags. Force encoder to perform actual

packing

#ENC_MBS_DATA = 0x20 ///< encode macroblocks data (used

together with v4e_get_picture_nal_list_and_mbs_data()

function)

enc_flags = 0

#----------------------- SEI flags

sei.pic_timing_flag = 0 // Picture timing and buffering

period SEIs control (0/1/2); 0 - disable; 1 - put all picture

SEIs in one NAL unit; 2 - Put each SEI in separate NAL unit

sei.film_grain_flag = 0 //Calculate parameters and add film-

grain SEI (0/1/2)

sei.post_filter_flag = 0 //Calculate parameters and add

postfiltering SEI (0/1/2)

sei.rec_point_flag = 0 //add recovery point SEI (0/1/2)

sei.frame_packing_flag = 0 //Add frame packing arrangement SEI

(0/1/2)

#----------------------- Film-grain SEI settings

sei.film_grain_mode = 0 // 0 - automatic; 4 -manual, 1,2,3 -

reserved

#next settings are used in manual mode only

sei.film_grain_luma_noise_level = 0

sei.film_grain_luma_max_frequency = 0

sei.film_grain_chroma_noise_level = 0

Annex B – Configurations of Tested Encoders 191

sei.film_grain_chroma_max_frequency = 0

#----------------------- Post filter SEI settings

sei.post_filter_mode = 0 //(0/1/2) 0 - 2D filter, 1 -1D

filters, 2 - cross-correlation matrix

sei.post_filter_size = 0 //(0,1,2,3) Actual size is odd and

calculated as (1+2*post_filter_size)

#----------------------- Frame Packing SEI settings

sei.frame_packing_type = 3 //(3/4/5) 3 - side-by-side, 4 -

top-bottom, 5 - temporal-interleaving arrangement

frame_width = 0 // Base layer frame width. Must be set only if

custom extend is in use

frame_height = 0 //Base layer frame height. Must be set only

if custom extend is in use

////////////////////// interlace coding mode, will be disabled

for baseline profile

// 0 = disabled;

// 1 = all fields, top field first;

// 2 = all fields, bottom field first;

// 3 = MBAFF (mb-level adaptive frame/field coding)

interlace_mode = 0

////////////////////// interlace flags

// 0x01 = disable motion estimation from bottom field to top

one;

// 0x02 = encode both fields as intra (only top field is intra

by default);

// 0x04 = show bottom field first when mbaff of frame coding

// 0x08 = force decoder to play frame-encoded stream as

interlaced

// 0x10 = put zero POC offsets for both top & bottom fields

(for mbaff coding)

// 0x20 = RD-opt MBAFF decision

// 0x40 = disable preprocessing for bottom field

// 0x80 = add telecine picture structure for frame-encoded

video

// 0x100 = "3-2" start with 3. Together with INT_BOTTOM_FIRST

defines start position of telecine

interlace_flags = 0 //

192 Annex B – Configurations of Tested Encoders

direct_mode = 0 // direct mode for B frames (0=temporal,

1=spatial)

constrained_intra_pred = 0 //constrained intra prediction flag

(0/1)

chroma_qp_offset = 0 //offset for chroma QP (-26, +26)

weighted_pred_flag = 0 // use weighted prediciton (0/1)

poc_type = 0 //poc_type (see standard). Encoder support only 0

or 2 for Baseline profile

gpu_acceleration = 0 // Use Nvideo GPU : 0 -off; 1 - On

avc_intra_class = 0 // AVC-Intra class encoding 0 - off; 50 -

class 50; 100 - class 100

Bitwise combination of avc-intra encoding flags:

AVC_I_FORCE_PANASONIC = 1 // force all features for

Panasonic compatibility

avc_intra_flags = 1 // bitwise combination of avc coding

flags; @see avc_intra_flags_e

#----------------------- Group of pictures (GOP) settings

gop.idr_period = 1 // period of IDR frames (0=only first,

N=on every N-th I-frame);

gop.keyframes = 32 // period of I-frames in number of

frames (0=only first, 1=all);

gop.bframes = 2 // number of B-frames between P (0=no B-

frames);

gop.min_bframes = 0 // minimum number of B-frames for adaptive

mode (if equal to gop.bframes adaptive mode is disable)

gop.emulate_b = 0 // put non-reference P frames instead of B,

requires non-zero "gop.bframes" value; (0=not used; 1=B-frames

order; 2=natural order);

gop.aud = 0 // enable Access Unit Delimiters (0=disable,

1=enable AUD+PPS, 2=enable AUD only);

gop.num_units = 1000 //together with time_scale define Frame

per Seconds (fps)

#gop.time_scale = 50000 // fps = time_scale/(2*num_units)

gop.min_intra_period = 4 // minimal distance between intra

frames during continuous scene changes (number of frames).

gop.sps_period = 0 ///< How often SPS/PPS is included (used

for coding with keyframes = 0)

Bitwise gop flag:

Annex B – Configurations of Tested Encoders 193

1 - encode Hierarchical B-frames (if 3 or more B frames

specified)

2 - don't set IDR-slice on schene changes

4 - force B frames in odd positions

gop.flags = 0

#----------------------- High-profile settings

frext.transform_8x8 = 0 //using 8x8 transform (0 - off; 1

- adaptive; 2 - 8x8 only; 3 - 8x8 only without Intra16x16)

frext.second_qp_offset = 0 //offset for V-chroma QP (-26,

+26)

frext.scaling_matrix = 0 //Switch on using alternative scaling

matrix

#Use default alternative scaling matrix or custom matrix, if

it is set explicitly.

#----------------------- Rate Control settings

rc.type = 0 // type of rate control (0=fixed QP, 1=VBR,

2=CBR, 3=CBR+filler);

rc.kbps = 0 // desired bitrate, kbps;

rc.auto_qp = 0 // 1=automatic first qp and range

selection, 0=use manual settings;

#rc.qp_intra = 44 // quant parameter for I-frames (0-51);

rc.qp_delta_p = 0 // base qp delta between I and P (0-51);

rc.qp_delta_b = 0 // base qp delta between P and B (0-51);

rc.qp_min = 1 // minimum allowed QP for rate control (1-

51);

rc.qp_max = 51 // maximum allowed QP for rate control (1-

51);

rc.scene_detect = 0 // scene change detection threshold (0-

100);

rc.vbv_length = 0 // rate control buffer length in msec; will

be set to default depending on type if 0

rc.qp_modulation = 0 // enable QP variation between

macroblocks (0/1);

rc.mb_update = 0 // enable mb-level rate-control (0/1);

rc.look_ahead = 1 // number of look-ahead frames (0-8)

//Currently only 0 or 1 are used

rc.max_kbps = 0 // max allowed bitrate in vbr mode;

default - 0 (means not set)

rc.initial_cpb_removal_delay = -1 // Initial fullness of CBR

buffer in 1/90000 sec; default: -1 (means calculated as

90*vbv_length/2)

rc.dual_pass_param = 256 // dual-pass behavior parameter /< 0

- 256; 0 - CBR-like; 256 - "fixed qp"-like

194 Annex B – Configurations of Tested Encoders

rc.max_intra_frame_bytes = 0 ///< maximum size of intra frames

in bytes (0 means no restriction)

rc.min_intra_frame_bytes = 0 ///< minimum size of intra frames

in bytes (0 means no restriction)

rc.gop_bytes = 0 ///< size of GOP in bytes (used with

RC_FIXED_GOP_SIZE flag; 0 means will be calulated from kbps or

max_kbps)

Bitwise rc flag:

1 - ignore buffer overflow for VBR coding

2 - use qp_delta_b as max for automatically calulated

delta_b

4 - use qp_delta_b as min for automatically calulated

delta_b

0x10 - add filler NALs (can be set in vbr mode if

max_kbps is specified)

0x20 - put cbr_flag into sps (effective only with flag

above)

0x40 - support fixed number of bytes in GOP

rc.flags = 0

#----------------------- Motion estimation settings

me.subdiv = 7 // macroblock subdivision mask (1=16x16,

2=16x8, 4=8x16,8=8x8, 16=8x4, 32=4x8, 64=4x4); small subdivs

currently not used

me.search_range = -1 // maximum search range in full pels (1-

64); -1 means, that it will be calculated from picture size

me.max_refs = 1 // number of pictures (frames or fields) used

for ``motion search (1-5);

Bitwise gop flags:

0x10 = Set num_refs for B-frames to (1,1) even if max_refs >

1

0x20 = disable preproc motion estimation by reduced picture

(experimental, not recomended)

0x40 = Disable preproc complexity calculation

(experimental, not recomended)

0x1000 = Use more detailed motion estimation for P frames

0x2000 = Use more detailed motion estimation for B frames

me.flags = 0

#----------------------- speed mode selection

speed.i = 4 // speed for I-frames (0..8): 0==slowest... 8

=fastest;

speed.p = 4 // speed for P-frames (0..8):

Annex B – Configurations of Tested Encoders 195

speed.b = 4 // speed for B-frames (0..8):

speed.automatic = 0 // enables automatic real time control (for

capture) (0/1)

#----------------------- Slicing settings

slice.mode = 0 // select slice mode (0=none, 1=#mbs per

slice, 2=#bytes per slice; 3=#slices)

slice.param = 0 // provide appropriate number for

slice.mode;

slice.i_param = 0 // provide appropriate number for

slice.mode for I-slices. If 0 slice.param is used;

slice.b_param = 0 // provide appropriate number for

slice.mode for B-slices. If 0 slice.param is used;

#----------------------- Deblocking filter settings

deblock.flag = 0 // Configure loop filter (0=parameter

below ingored, 1=parameters sent)

deblock.disable = 0 // Disable loop filter in slice header

(0=Filter, 1=No Filter)

deblock.alpha_c0 = 0 // Alpha & C0 offset div. 2, {-6, -5,

... 0, +1, .. +6}

deblock.beta_c0 = 0 // Beta offset div. 2, {-6, -5, ... 0,

+1, .. +6}

#----------------------- multi-threading settings

mt.disable = 0 // flag to disable multithreading

mt.num_threads = 0 // select a number of worker threads to

run, 0 means autoconfigure;

//params below will be calculated automatcally if set to -1

mt.max_pict_tasks = -1 // max number of simultaneously coded

picture [0,5]; <= 0 measn that it will be set automatically

----- Max value of frames to hold in async-feed encoding

mt.max_raw_frames = 0 //0 - calulate automaticaly; >0 force

this value

// ERROR RESILIENCE

//

 // Enable error resilience.

 // (If zero, then no special error resilience features

will be enabled and

 // there will be no possibility to enable error resilience

on-the-fly.)

196 Annex B – Configurations of Tested Encoders

//

er.enable = 0

//

 // The initial expected loss rate in percents (no special

error resilience if 0)

//

er.initial_expected_loss_percent = 15

//

 // Intra update method:

 //

 // 0 - don't use intra update

 // 1 - adaptive intra update by distinguishing the motion

areas on picture (recommended)

 // 2 - update by one or more horizontal circular intra

macroblock lines

 // 3 - update by inserting intra mb in random positions

(the closer to the center, the more)

 //

 // Sensative to the value of loss rate - the more is this

value,

 // the more intensively the intra update is performed.

//

er.intra_update_method = 1

//

 // Short temporal period for intra updating the

macroblocks with relatively high motion

 //

 // Parameter for adaptive intra update method based on

distinguishing motion areas.

 // (Ignored if intra_update_method != 1)

 //

 // 0 - don't use short update

 // Recommended (nonzero) values - {1,2,3}.

//

er.fast_motion_update_period = 1

Annex B – Configurations of Tested Encoders 197

//

 // Long temporal period for intra updating the macroblocks

with both high and slow motion

 //

 // Parameter for adaptive intra update method based on

distinguishing motion areas.

 // (Ignored if intra_update_method != 1)

 //

 // 0 - don't use long update

 // Recommended (nonzero) values - from 5 to the half of

keyframe interval.

//

er.full_motion_update_period = 6

//

 // The temporal period for picture full intra update

 // (Works only if "er.enable = 1" and

"er.initial_expected_loss_percent > 0"

//

er.total_intra_update_period = 60

#----------------------- Video usability information (VUI) ---

VUI parameters are placed into SPS.

See Standard Annex E section E.2 for details

#---

vui.aspect_ratio_info_present_flag = 0

vui.aspect_ratio_idc = 0

vui.sar_width = 0

vui.sar_height = 0

vui.overscan_info_present_flag = 0

vui.overscan_appropriate_flag = 0

vui.video_signal_type_present_flag = 0

vui.video_format = 0

vui.video_full_range_flag = 0

vui.colour_description_present_flag = 0

vui.colour_primaries = 0

vui.transfer_characteristics = 0

vui.matrix_coefficients = 0

vui.chroma_loc_info_present_flag = 0

vui.chroma_sample_loc_type_top_field = 0

198 Annex B – Configurations of Tested Encoders

vui.chroma_sample_loc_type_bottom_field = 0

vui.timing_info_present_flag = 0

vui.fixed_frame_rate_flag = 0

vui.nal_hrd_parameters_present_flag = 0

vui.vcl_hrd_parameters_present_flag = 0

vui.low_delay_hrd_flag = 0

vui.pic_struct_present_flag = 0

vui.bitstream_restriction_flag = 0

vui.motion_vectors_over_pic_boundaries_flag = 255

vui.max_bytes_per_pic_denom = 255

vui.max_bits_per_mb_denom = 255

vui.log2_max_mv_length_vertical = 255

vui.log2_max_mv_length_horizontal = 255

vui.num_reorder_frames = 255

vui.max_dec_frame_buffering = 255

bSoft encoder:

Vx0Enc.exe H264 MOTION ON OFF OFF 1 2 1080P 1080P 1080P

1080P 25 1 250 32 1 ON 29 29 29 29 0 0 0 0 HIGH HIGH

"file.yuv" "file.yuv" "file.yuv" "file.yuv" "file.vh4" 0 0

0 0 "rec_L0.yuv" "rec_L1.yuv" "rec_L2.yuv" "rec_L3.yuv" OFF

The command line parameters are to be interpreted as:

Vx0Enc Standard CodingMode SVC Bidir Slice

SpatialLayersNumber MgsLayersNumber FramesizeDid0

FramesizeDid1 FramesizeDid2 FramesizeDid3 Framerate

Frameskip Pictures Intrarate GOPSize

ResidualUpsampling QuantCgsLayer0 QuantCgsLayer1

QuantCgsLayer2 QuantCgsLayer3 BitrateCgsLayer0

BitrateCgsLayer1 BitrateCgsLayer2 BitrateCgsLayer3

FullPixel HalfPixel FilePicOrigDid0 FilePicOrigDid1

FilePicOrigDid2 FilePicOrigDid3 FileBit FilterFlag

FilterIdc AlfaC0Offset BetaOffset FilePicEncDid0

FilePicEncDid1 FilePicEncDid2 FilePicEncDid3 Dash

Annex C – Additional SVC Rate-Distortion Performance Results 199

Annex C – Additional SVC Rate-
Distortion Performance Results

This Annex provides additional RD performance results for various SVC

configurations discussed in Sections 3.4 and 3.5.

(a) (b)

(c) (d)

(e) (f)

Figure 77: PSNR results of rate control modes for different encoders for the PedestrianArea
sequence at (a) 1280x720, (b) 704x576, (c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144

resolutions.

200 Annex C – Additional SVC Rate-Distortion Performance Results

(a) (b)

(c) (d)

(e) (f)

Figure 78: PSNR results of rate control modes for different encoders for the CrowdRun
sequence at (a) 1280x720, (b) 704x576, (c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144

resolutions.

Annex C – Additional SVC Rate-Distortion Performance Results 201

(a) (b)

(c) (d)

(e) (f)

Figure 79: VQM results of rate control modes for different encoders for the CrowdRun
sequence at (a) 1280x720, (b) 704x576, (c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144

resolutions.

Annex D – SVC Decoding and Transcoding Speeds 203

Annex D – SVC Decoding and
Transcoding Speeds

This Annex provides test results for decoding and transcoding speeds. The tests

were performed on a ThinkPad T510 notebook with an Intel Core i7-620M 2.67 GHz

dual core processor and 4 GB RAM running Ubuntu 11.04. SVC decoding and SVC-

to-AVC transcoding for the bSoft decoder/transcoder was tested. Additionally, the

decoder output was piped into FFmpeg for encoding to MPEG-2. (Due to software

issues, the combination of the SVC-to-AVC transcoding with FFmpeg-based AVC-to-

MPEG-2 transcoding is not included in the test results.) The PedestrianArea

sequence at a frame rate of 25 fps with 4 MGS quality layers was used at several

resolutions ranging from 1920x1080 to 176x144.

Test results are shown in Figure 80. Note that the y-axis is in log-scale. Resolutions

4CIF, CIF and QCIF are shown as coupled due to their dyadic spatial relation.

Decoding speeds above 37.5 fps (i.e., 150% of the native 25 fps frame rate) are

expected to provide robust real-time decoding/transcoding (indicated by green

background). The range between 25 and 37.5 fps is considered unstable (indicated

by yellow background) as fluctuations in coding complexity or interfering processes

can easily cause disruptions.

Figure 80: Decoding speeds for the bSoft decoder/transcoder in combination with the FFmpeg
encoder.

Annex E – Generation of Local MPD 205

Annex E – Generation of Local MPD

This Annex describes the generation of a local MPD by the DASH proxy on an

ALICANTE Home-Box. For further details, the interested reader is referred to [9].

The session initialization for DASH is performed as follows:

1. The end-user terminal sends an HTTP request for the local MPD to the Home-

Box.

2. The DASH proxy at the Home-Box downloads the remote MPD (shown in

Listing 3) from the server.

3. The DASH proxy transforms the remote MPD into a local MPD via XSLT. An

example of a local MPD is shown in Listing 4. The BaseUrl element of the

local MPD points to the Home-Box ("192.168.0.2" in the example) and

contains an identifier of the streaming session ("42" in the example).

4. The DASH proxy responds to the initial HTTP request by sending the local

MPD to the end-user terminal.

The local MPD comprises only one representation. The DASH proxy performs SNR

adaptation transparent for terminal.

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-

DASH_schema_files/DASH-MPD.xsd" minBufferTime="PT10.00S"

mediaPresentationDuration="PT3256S" type="static"

profiles="urn:mpeg:dash:profile:isoff-main:2011">

 <BaseURL>http://example.com/</BaseURL>

 <Period>

 <AdaptationSet>

 <Representation mimeType="video/H264-SVC"

codecs="avc1.644028, svc1" width="352" height="288"

frameRate="25" id="0" bandwidth="128000">

 <SegmentList duration="10">

 <Initialization sourceURL="seg-L0-init.svc"/>

 <SegmentURL media="seg-L0-1.svc"/>

 <SegmentURL media="seg-L0-2.svc"/>

 <SegmentURL media="seg-L0-3.svc"/>

 </SegmentList>

 </Representation>

 <Representation mimeType="video/H264-SVC"

codecs="avc1.644028, svc1" width="352" height="288"

frameRate="25" id="1" dependencyId="0" bandwidth="256000">

206 Annex E – Generation of Local MPD

 <SegmentList duration="10">

 <Initialization sourceURL="seg-L1-init.svc"/>

 <SegmentURL media="seg-L1-1.svc"/>

 <SegmentURL media="seg-L1-2.svc"/>

 <SegmentURL media="seg-L1-3.svc"/>

 </SegmentList>

 </Representation>

 <Representation mimeType="video/H264-SVC"

codecs="avc1.644028, svc1" width="352" height="288"

frameRate="25" id="2" dependencyId="0 1" bandwidth="512000">

 <SegmentList duration="10">

 <Initialization sourceURL="seg-L2-init.svc"/>

 <SegmentURL media="seg-L2-1.svc"/>

 <SegmentURL media="seg-L2-2.svc"/>

 <SegmentURL media="seg-L2-3.svc"/>

 </SegmentList>

 </Representation>

 </AdaptationSet>

 </Period>

</MPD>

Listing 3: Example of remote MPD with 3 SVC layers, adopted from [9].

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-

DASH_schema_files/DASH-MPD.xsd" minBufferTime="PT10.00S"

mediaPresentationDuration="PT3256S" type="static"

profiles="urn:mpeg:dash:profile:isoff-main:2011">

 <BaseURL>http://192.168.0.2/session/42/</BaseURL>

 <Period>

 <AdaptationSet>

 <Representation mimeType="video/H264" codecs="avc1"

id="0" bandwidth="512000">

 <SegmentList duration="10">

 <Initialization sourceURL="seg-init.264"/>

 <SegmentURL media="seg-1.264"/>

 <SegmentURL media="seg-2.264"/>

 <SegmentURL media="seg-3.264"/>

 </SegmentList>

 </Representation>

 </AdaptationSet>

 </Period>

</MPD>

Listing 4: Example of generated local MPD with AVC segments, adopted from [9].

Annex F – Questionnaire for the Subjective Evaluation of Representation Switch Smoothing 207

Annex F – Questionnaire for the
Subjective Evaluation of
Representation Switch Smoothing

The following questionnaire was given to the participants of the subjective tests on

representation switch smoothing described in Section 5.4.3.3.

Questionnaire

Date: ___________

Participant Id: ____ Sex: male female Age: ____

Thank you for participating in this study on the perception of quality changes in
videos.

You will be shown two different video sequences. Each sequence is given in
two versions (denoted a and b).

For each video sequence, please state below which version you prefer.

You may start with either version. You may watch each version as often as
you wish.

Sequence 1:

Preferred version:

 Version a Version b No difference

Sequence 2:

Preferred version:

 Version a Version b No difference

Thank you for your participation!

Annex G – Adaptation Logic Implementation for MPEG-21 ADTE 209

Annex G – Adaptation Logic
Implementation for MPEG-21 ADTE

This Annex provides the MPEG-21 DIA standard-conforming implementation of the

adaptation logic discussed in Section 5.4.2. The adaptation logic is implemented via

MPEG-21 AQoS and UCD XML documents and has been adjusted to work with the

MPEG-21 ADTE implementation of [251]. The AQoS and UCD files are shown in

Listing 5 and Listing 6 respectively. An example of the UED is shown in Listing 7.

<?xml version="1.0" encoding="UTF-8"?>

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-DIA-NS

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-

21_schema_files/dia-2nd/AQoS-2nd.xsd">

 <DescriptionMetadata>

 <ClassificationSchemeAlias alias="AQoS"

href="urn:mpeg:mpeg21:2003:01-DIA-AdaptationQoSCS-NS"/>

 <ClassificationSchemeAlias alias="MEI"

href="urn:mpeg:mpeg21:2003:01-DIA-MediaInformationCS-NS"/>

 </DescriptionMetadata>

 <Description xsi:type="AdaptationQoSType">

 <!-- SVC adaptation parameters -->

 <Module xsi:type="UtilityFunctionType">

 <Constraint iOPinRef="Bandwidth">

 <Values xsi:type="IntegerVectorType">

 <Vector>270000 500000 1080000 1950000</Vector>

 </Values>

 </Constraint>

 <AdaptationOperator iOPinRef="QualityLayer">

 <Values xsi:type="IntegerVectorType">

 <Vector>0 1 2 3</Vector>

 </Values>

 </AdaptationOperator>

 <AdaptationOperator iOPinRef="SpatialLayer">

 <Values xsi:type="IntegerVectorType">

 <Vector>0 0 0 0</Vector>

 </Values>

 </AdaptationOperator>

 <AdaptationOperator iOPinRef="TemporalLayer">

 <Values xsi:type="IntegerVectorType">

 <Vector>0 0 0 0</Vector>

 </Values>

 </AdaptationOperator>

 <AdaptationOperator iOPinRef="PriorityID">

 <Values xsi:type="IntegerVectorType">

210 Annex G – Adaptation Logic Implementation for MPEG-21 ADTE

 <Vector>0 0 0 0</Vector>

 </Values>

 </AdaptationOperator>

 <AdaptationOperator iOPinRef="ResWidth">

 <Values xsi:type="IntegerVectorType">

 <Vector>352 352 352 352</Vector>

 </Values>

 </AdaptationOperator>

 <AdaptationOperator iOPinRef="ResHeight">

 <Values xsi:type="IntegerVectorType">

 <Vector>288 288 288 288</Vector>

 </Values>

 </AdaptationOperator>

 <Utility iOPinRef="Layer">

 <Values xsi:type="IntegerVectorType">

 <Vector>0 1 2 3</Vector>

 </Values>

 </Utility>

 </Module>

 <Module xsi:type="LookUpTableType">

 <Axis iOPinRef="PacketLoss">

 <AxisValues xsi:type="FloatVectorType">

 <!-- Note: Lowest value must be 0.0! -->

 <Vector>0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

1.0</Vector>

 </AxisValues>

 </Axis>

 <Content iOPinRef="PacketLossBasedBandwidthEstimate">

 <ContentValues xsi:type="IntegerMatrixType"

mpeg7:dim="27">

 <Matrix>1000000 1050000 1100000 1150000 1200000

1250000 1300000 1350000 1400000 1450000 1500000 1550000

1600000 1650000 1700000 1750000 1800000 1850000 1900000

1950000 2000000</Matrix>

 </ContentValues>

 </Content>

 </Module>

 <!-- Copy of the above LookUpTable, only for max packet

loss. -->

 <Module xsi:type="LookUpTableType">

 <Axis iOPinRef="MaxPacketLoss">

 <AxisValues xsi:type="FloatVectorType">

 <Vector>0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

1.0</Vector>

 </AxisValues>

 </Axis>

 <Content iOPinRef="PacketLossBasedMaxBandwidth">

 <ContentValues xsi:type="FloatMatrixType"

mpeg7:dim="27">

Annex G – Adaptation Logic Implementation for MPEG-21 ADTE 211

 <!-- Workaround: Needs to be Float, otherwise the

ADTE fails -->

 <Matrix>1000000 1050000 1100000 1150000 1200000

1250000 1300000 1350000 1400000 1450000 1500000 1550000

1600000 1650000 1700000 1750000 1800000 1850000 1900000

1950000 2000000</Matrix>

 </ContentValues>

 </Content>

 </Module>

 <IOPin id="Layer"/>

 <IOPin id="SpatialLayer" discrete="true"

semantics=":AQoS:1.3.9.1"/>

 <IOPin id="TemporalLayer" discrete="true"

semantics=":AQoS:1.3.9.2"/>

 <IOPin id="QualityLayer" discrete="true"

semantics=":AQoS:1.3.9.4"/>

 <IOPin id="PriorityID" discrete="true"

semantics=":AQoS:1.3.9.5"/>

 <IOPin id="Bandwidth" discrete="true" semantics=":MEI:6"/>

 <IOPin id="ResWidth" discrete="true" semantics=":MEI:17"/>

 <IOPin id="ResHeight" discrete="true"

semantics=":MEI:18"/>

 <IOPin id="MaxPacketLoss"/>

 <IOPin id="PacketLossBasedMaxBandwidth"/>

 <IOPin id="PacketLoss" discrete="false">

 <GetValue xsi:type="SemanticalDataRefType"

semantics=":AQoS:6.6.5.7"/>

 </IOPin>

 <IOPin id="PacketLossBasedBandwidthEstimate"/>

 </Description>

</DIA>

Listing 5: Example of AQoS.xml.

<?xml version="1.0" encoding="UTF-8"?>

 <DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-DIA-NS

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-

21_schema_files/dia-2nd/UCD-2nd.xsd">

 <DescriptionMetadata>

 <ClassificationSchemeAlias alias="SFO"

href="urn:mpeg:mpeg21:2003:01-DIA-StackFunctionOperatorCS-

NS"/>

 <ClassificationSchemeAlias alias="AQoS"

href="urn:mpeg:mpeg21:2003:01-DIA-AdaptationQoSCS-NS"/>

 <ClassificationSchemeAlias alias="MEI"

href="urn:mpeg:mpeg21:2003:01-DIA-MediaInformationCS-NS"/>

 </DescriptionMetadata>

 <Description xsi:type="UCDType">

 <AdaptationUnitConstraints>

212 Annex G – Adaptation Logic Implementation for MPEG-21 ADTE

 <!-- AQoS selected bandwidth >= min bandwidth

-->

 <LimitConstraint>

 <!-- AQoS selected bandwidth -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:6"/>

 <!-- min bandwidth -->

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="IntegerType">

 <Value>

 0

 </Value><!-- Minimum guaranteed bandwidth

from the SLA -->

 </Constant>

 </Argument>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <!-- max bandwidth capacity >= AQoS selected

bandwidth -->

 <LimitConstraint>

 <!-- max bandwidth capacity -->

 <Argument xsi:type="SemanticalDataRefType"

semantics=":AQoS:6.6.4.1"/>

 <!-- AQoS selected bandwidth -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:6"/>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <!-- MaxPacketLoss == fixed Value -->

 <LimitConstraint>

 <Argument xsi:type="ExternalIOPinRefType"

iOPinRef="#MaxPacketLoss"/>

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="FloatType">

 <Value>

 0.15

 </Value><!-- The highest value from

document('AQoS.xml')//dia:Axis[@iOPinRef='MaxPacketLoss']//dia

:Vector that is less than or equal maxPacketLoss from the SLA

-->

 <!-- Max packet loss must be rounded down

to the next tested value -->

 </Constant>

 </Argument>

 <!-- == -->

 <Operation operator=":SFO:11"/>

 </LimitConstraint>

Annex G – Adaptation Logic Implementation for MPEG-21 ADTE 213

 <!-- Packet Loss-based Bandwidth estimation -->

 <!-- f:=(UED measured bandwidth * packet loss

based max bandwidth) / packet loss based bandwidth estimate;

Constraint: max(f, min bandwidth) >= AQoS selected

bandwidth -->

 <LimitConstraint>

 <!-- UED measured bandwidth -->

 <Argument xsi:type="SemanticalDataRefType"

semantics=":AQoS:6.6.5.2"/>

 <!-- avoid edge case where UED measured

bandwidth is 0 -->

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="IntegerType">

 <Value>

 1

 </Value><!-- Assumption: 1 bps is close

enough to nothing. -->

 </Constant>

 </Argument>

 <!-- max(a,b) -->

 <Operation operator=":SFO:20"/>

 <!--packet loss based max bandwidth -->

 <Argument xsi:type="ExternalIOPinRefType"

iOPinRef="#PacketLossBasedMaxBandwidth"/>

 <!-- * -->

 <Operation operator=":SFO:18"/>

 <!-- packet loss based bandwidth estimate -->

 <Argument xsi:type="ExternalIOPinRefType"

iOPinRef="#PacketLossBasedBandwidthEstimate"/>

 <!-- / -->

 <Operation operator=":SFO:19"/>

 <!-- min bandwidth -->

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="IntegerType">

 <Value>

 270000

 </Value><!-- The lowest value from

document('AQoS.xml')//dia:Constraint[@iOPinRef='Bandwidth']//d

ia:Vector that is greater than or equal min bandwidth from the

SLA -->

 <!-- Min bandwidth must be rounded up to

the next SVC layer bitrate -->

 </Constant>

 </Argument>

 <!-- max(a,b) -->

 <Operation operator=":SFO:20"/>

 <!-- AQoS selected bandwidth -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:6"/>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

214 Annex G – Adaptation Logic Implementation for MPEG-21 ADTE

 <!-- Resolution Horizontal -->

 <!-- media horizontal resolution >= ucd

display resolution-->

 <LimitConstraint>

 <!-- AQoS - media h-res -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:17"/>

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="IntegerType">

 <Value>

 352

 </Value><!-- Resolution requirements from

the SLA -->

 </Constant>

 </Argument>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <!-- UED resolution >= media resolution -->

 <LimitConstraint>

 <!-- UED: available h-res -->

 <Argument xsi:type="SemanticalDataRefType"

semantics=":AQoS:6.5.9.1"/>

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:17"/>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <!-- Resolution Vertical -->

 <!-- media vertical resolution >= ucd

display resolution-->

 <LimitConstraint>

 <!-- AQoS - media v-res -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:18"/>

 <Argument xsi:type="ConstantDataType">

 <Constant xsi:type="IntegerType">

 <Value>

 288

 </Value><!-- Resolution requirements from

the SLA -->

 </Constant>

 </Argument>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <!-- UED resolution >= media resolution -->

 <LimitConstraint>

Annex G – Adaptation Logic Implementation for MPEG-21 ADTE 215

 <!-- UED: available v-res -->

 <Argument xsi:type="SemanticalDataRefType"

semantics=":AQoS:6.5.9.2"/>

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:18"/>

 <!-- >= -->

 <Operation operator=":SFO:39"/>

 </LimitConstraint>

 <OptimizationConstraint optimize="maximize">

 <!-- AQoS selected layer -->

 <Argument xsi:type="ExternalIOPinRefType"

iOPinRef="#Layer"/>

 </OptimizationConstraint>

 <OptimizationConstraint optimize="maximize">

 <!-- AQoS - media h-res -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:17"/>

 </OptimizationConstraint>

 <OptimizationConstraint optimize="maximize">

 <!-- AQoS - media v-res -->

 <Argument xsi:type="SemanticalRefType"

semantics=":MEI:18"/>

 </OptimizationConstraint>

 </AdaptationUnitConstraints>

 </Description>

 </DIA>

Listing 6: Example of UCD.xml.

<?xml version="1.0" encoding="UTF-8"?>

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-DIA-NS

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-

21_schema_files/dia-2nd/UED-2nd.xsd">

 <Description xsi:type="UsageEnvironmentType">

 <UsageEnvironmentProperty xsi:type="TerminalsType">

 <Terminal>

 <TerminalCapability xsi:type="CodecCapabilitiesType">

 <Decoding xsi:type="VideoCapabilitiesType">

 <Format href="urn-x:alicante:codec:avc">

 <mpeg7:Name>AVC</mpeg7:Name>

 </Format>

 <!-- AVC -->

 </Decoding>

 </TerminalCapability>

 <TerminalCapability xsi:type="DisplaysType">

 <Display xsi:type="DisplayType">

216 Annex G – Adaptation Logic Implementation for MPEG-21 ADTE

 <DisplayCapability

xsi:type="DisplayCapabilityType" colorCapable="true">

 <Mode>

 <Resolution horizontal="352" vertical="288"

activeResolution="true"/>

 </Mode>

 </DisplayCapability>

 </Display>

 </TerminalCapability>

 </Terminal>

 </UsageEnvironmentProperty>

 <UsageEnvironmentProperty xsi:type="NetworksType">

 <Network xsi:type="NetworkType">

 <NetworkCharacteristic

xsi:type="NetworkCapabilityType" maxCapacity="100000000"/>

 <NetworkCharacteristic

xsi:type="NetworkConditionType">

 <AvailableBandwidth maximum="NETWORK_CURMAX"/>

 <!-- updated by monitoring -->

 <Error packetLossRate="NETWORK_CURPLOSS"/>

 <!-- updated by monitoring -->

 </NetworkCharacteristic>

 </Network>

 </UsageEnvironmentProperty>

 </Description>

</DIA>

Listing 7: Example of UED.xml.

Annex H – SVC-to-AVC Transcoder Rate-Distortion Performance Results 217

Annex H – SVC-to-AVC Transcoder
Rate-Distortion Performance
Results

This Annex provides RD performance results for the bSoft fast SVC-to-AVC

transcoder deployed in test-bed setup described in Section 5.5.

The RD performance was evaluated for the Foreman, Container, Hall_Monitor, and

Stefan test sequences (resolution: 352x288, frame rate: 25 fps). Each sequence was

encoded to SVC with the bSoft encoder with 4 MGS layers, fixed-QP rate control,

and an I-frame period of 32. The RD results for fast SVC-to-AVC transcoding are

shown in Figure 81. For reference, the RD results for the SVC bitstream and the

pixel-domain transcoding (i.e., full decoding, full re-encoding to AVC) are also shown.

(a) (b)

(c) (d)

Figure 81: Rate-distortion results for fast SVC-to-AVC transcoding for (a) Foreman,
(b) Container, (c) Hall_Monitor, and (d) Stefan sequences.

List of Figures 219

List of Figures

Figure 1: Generalized block diagram of an example video encoder, adopted

from [25]. ... 9

Figure 2: ALICANTE concept and system architecture, adopted from [7]. 14

Figure 3: Multicast/broadcast use case with SVC adaptation, adopted from [7]. 17

Figure 4: Home-Box sharing use case, adopted from [7]. .. 17

Figure 5: Video conferencing use case, adopted from [7]. 18

Figure 6: P2P media streaming use case, adopted from [7]. 19

Figure 7: Bitrate recommendations of AVC-based streaming solutions and

deduced suggestions. .. 33

Figure 8: Spatial-Temporal plot for test sequences. ... 35

Figure 9: Snapshots of (a) PedestrianArea, (b) Dinner, (c) DucksTakeOff, and

(d) CrowdRun sequences. ... 37

Figure 10: PSNR results of rate control modes for different encoders for

(a) PedestrianArea, (b) Dinner, (c) DucksTakeOff, and (d) CrowdRun

sequences [1]. ... 39

Figure 11: VQM results of rate control modes for different encoders for

(a) PedestrianArea, (b) Dinner, (c) DucksTakeOff, and (d) CrowdRun

sequences [1]. ... 40

Figure 12: Encoding durations of rate control modes for different encoders for

the PedestrianArea sequence. .. 41

Figure 13: VQM results of rate control modes for different encoders for

PedestrianArea sequence at (a) 1280x720, (b) 704x576,

(c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144

resolutions [1]. ... 42

Figure 14: PSNR results for spatial scalability of the bSoft encoder for the

PedestrianArea sequence. The line labeled spatial scalability

represents a single bitstream ranging over both resolutions

(a) 960x528 and (b) 1920x1056 [1]. ... 44

Figure 15: PSNR results for spatial scalability of the bSoft encoder for the

CrowdRun sequence. The line labeled spatial scalability represents a

single bitstream ranging over both resolutions (a) 960x528 and

(b) 1920x1056.. 45

Figure 16: PSNR results for varying number of MGS layers for different

encoders, for (a) PedestrianArea and (b) CrowdRun sequences [1]. 45

220 List of Figures

Figure 17: bSoft PSNR results for MGS vs. CGS for (a) PedestrianArea,

(b) Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences. 47

Figure 18: bSoft VQM results for MGS vs. CGS for (a) PedestrianArea,

(b) Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences. 48

Figure 19: Varying dQP between MGS layers for different encoders for

PedestrianArea sequence, (a) PSNR results and (b) VQM results. 49

Figure 20: Varying dQP between MGS layers for different encoders for Dinner

sequence, (a) PSNR results and (b) VQM results. 49

Figure 21: Varying dQP between MGS layers for different encoders for

DucksTakeOff sequence, (a) PSNR results and (b) VQM results. 50

Figure 22: Varying dQP between MGS layers for different encoders for

CrowdRun sequence, (a) PSNR results and (b) VQM results [1]. 50

Figure 23: Correlation between PSNR and VQM for varying dQP of MGS layers

for different encoders for (a) PedestrianArea, (b) Dinner,

(c) DucksTakeOff, and (d) CrowdRun sequences [1]. 51

Figure 24: VQM results for varying dQP between MGS layers for JSVM encoder

for (a) PedestrianArea, (b) Dinner, (b) DucksTakeOff, and

(d) CrowdRun sequences. ... 52

Figure 25: VQM results for dQP=2 between MGS layers for different encoders

for (a) PedestrianArea, (b) Dinner, (b) DucksTakeOff, and

(d) CrowdRun sequences. ... 53

Figure 26: Encoding durations for varying dQP between MGS layers for

different encoders. ... 54

Figure 27: Hybrid SVC-DASH. .. 57

Figure 28: VQM results of AVC and SVC with 4 bitrates for (a) PedestrianArea,

(b) Dinner, (c) DucksTakeOff, and (d) CrowdRun sequences [2]. 58

Figure 29: PSNR results of AVC and SVC encoders with 4 bitrates for (a)

PedestrianArea, (b) Dinner, (c) DucksTakeOff, and (d) CrowdRun

sequences [2]. ... 61

Figure 30: VQM results of AVC and SVC encoders with 4 bitrates at (a)

1280x720, (b) 960x540, and (c) 640x360 resolutions [2]. 62

Figure 31: Adaptation for (a) partial extraction path and (b) full extraction path. 65

Figure 32: VQM results of spatial scalability for the VSS encoder. The lines

labeled VSS CBR 2 res represent single bitstreams ranging over

both resolutions (a) 640x360 and (b) 1280x720 [2]. 66

Figure 33: VQM results of spatial scalability for the VSS encoder. The lines

labeled VSS CBR 2 res represent single bitstreams ranging over

both resolutions (a) 960x540 and (b) 1920x1080 [2]. 67

List of Figures 221

Figure 34: PSNR results for combination of CGS and MGS for the bSoft

encoder [2]. .. 68

Figure 35: Adaptation Framework Overview [5]. ... 73

Figure 36: Multicast streaming scenarios for (a) reference MPEG-2 simulcast,

(b) full SVC tunneling, (c) partial SVC tunneling with SVC-encoded

source content, and (d) partial SVC tunneling with SVC-capable end-

user terminals. ... 75

Figure 37: Test-bed setup for same-bitrate evaluation of SVC tunneling. 79

Figure 38: Y-PSNR for repeated transcoding of Foreman sequence [3]. 80

Figure 39: Y-PSNR for repeated transcoding of Mobile sequence [3]. 81

Figure 40: Estimated bandwidth requirements at the core network and

corresponding quality degradation for multicast streaming [3]. 83

Figure 41: Test-bed setup for QP selection and SVC tunneling evaluation. 86

Figure 42: RD results for transcoding MPEG-2 to SVC at various QPs for the

Foreman sequence. ... 91

Figure 43: RD results for transcoding MPEG-2 to SVC and back to MPEG-2 at

various QPs for the Foreman sequence. ... 92

Figure 44: Rate-distortion performance for different QPs for SVC-to-MPEG-2

transcoding for the Foreman sequence at (a) SVC layer 3, (b) layer

2, (c) layer 1, and (d) layer 0. ... 93

Figure 45: Test-bed setup for selection of QPs and evaluation of quality-versus-

bandwidth trade-off. ... 94

Figure 46: Trade-off between bandwidth requirements and quality loss of SVC

tunneling for the Foreman sequence, adopted from [9]. 94

Figure 47: Trade-off between bandwidth requirements and quality loss of SVC

tunneling for (a) Container, (b) Hall_Monitor, and (c) Stefan

sequences, adopted from [9]. .. 95

Figure 48: Average trade-off between bandwidth requirements and quality loss

of SVC tunneling. ... 96

Figure 49: Trade-off between bandwidth requirements and quality loss of partial

SVC tunneling for the Foreman sequence. .. 97

Figure 50: Trade-off between bandwidth requirements and quality loss of SVC

tunneling for the Foreman sequence using the JSVM encoder. 98

Figure 51: High-level system overview, adopted from [10]. 106

Figure 52: Unicast streaming in Content-Aware Networks, adopted from [10]. 107

Figure 53: Multicast streaming in Content-Aware Networks, adopted from [10]. 108

Figure 54: P2P streaming in Content-Aware Networks, adopted from [10]. 109

222 List of Figures

Figure 55: Adaptive HTTP streaming in Content-Aware Networks, adopted

from [10]. ... 110

Figure 56: Request aggregation for P2P streaming for (a) conventional router

and (b) MANE. ... 113

Figure 57: Simulation of peer-assisted HTTP streaming with MANEs as peers,

adopted from [10]. .. 115

Figure 58: QoE scores vs. (a) loss rate at SVC base layer and enhancement

layer 1, and (b) loss rate at enhancement layer 1 and enhancement

layer 2 with base layer loss rate of 10%, adopted from [10]. 117

Figure 59: Modules of the Adaptation Framework at the Home-Box, adopted

from [9]. ... 120

Figure 60: Home-Box adaptation tool chain for RTP streaming, adopted

from [9]. ... 123

Figure 61: Segmentation of SVC bitstream for DASH. SVC layers in (a) original

bitstream and (b) segmentation for DASH. .. 125

Figure 62: Adaptation tool chain for DASH and P2P streaming, adopted

from [9]. ... 126

Figure 63: MPEG-21 Digital Item Adaptation architecture, adopted from [248]. 132

Figure 64: Architecture of the ADTE, adopted from [251]. 134

Figure 65: Illustration of estimation of maximum bitrate based on packet loss

characteristics. ... 136

Figure 66: Adaptation with (a) traditional representation switching and (b)

representation switch smoothing [14]. ... 139

Figure 67: Simplified block diagram of the SVC decoding process for (a)

traditional decoding, adopted from [158] and (b) decoding with

representation switch smoothing [14]. ... 141

Figure 68: Snapshots of test sequences; (a) Sequence 1 at 2,000 kbps,

(b) Sequence 1 at 400 kbps, (c) Sequence 2 at 2,000 kbps, and

(d) Sequence 2 at 250 kbps [14]. ... 143

Figure 69: Per-frame PSNR results for quality switching and representation

switch smoothing for (a) Sequence 1 and (b) Sequence 2 [14]. 144

Figure 70: Test-bed setup for adaptive SVC multicast streaming, adopted

from [9]. ... 148

Figure 71: Illustration of delay measurement in the end-to-end streaming

system. .. 150

Figure 72: Testing scenarios for video quality evaluations in the end-to-end

streaming system. .. 153

List of Figures 223

Figure 73: PSNR results for end-to-end streaming under bandwidth limitations

for (a) Foreman, (b) Container, (c) Hall_Monitor, and (d) Stefan

sequences. .. 154

Figure 74: Averaged PSNR results for end-to-end streaming under bandwidth

limitations. .. 155

Figure 75: Per-frame PSNR results for end-to-end streaming with traffic

limitation (a) without adaptation and (b) with adaptation. 156

Figure 76: Snapshots for (a) moderate distortion for 1,900 kbps bandwidth

limitation and (b) high distortion for 1,000 kbps bandwidth limitation. 157

Figure 77: PSNR results of rate control modes for different encoders for the

PedestrianArea sequence at (a) 1280x720, (b) 704x576,

(c) 960x540, (d) 640x360, (e) 352x288, and (f) 176x144 resolutions. ... 199

Figure 78: PSNR results of rate control modes for different encoders for the

CrowdRun sequence at (a) 1280x720, (b) 704x576, (c) 960x540,

(d) 640x360, (e) 352x288, and (f) 176x144 resolutions. 200

Figure 79: VQM results of rate control modes for different encoders for the

CrowdRun sequence at (a) 1280x720, (b) 704x576, (c) 960x540,

(d) 640x360, (e) 352x288, and (f) 176x144 resolutions. 201

Figure 80: Decoding speeds for the bSoft decoder/transcoder in combination

with the FFmpeg encoder. ... 203

Figure 81: Rate-distortion results for fast SVC-to-AVC transcoding for

(a) Foreman, (b) Container, (c) Hall_Monitor, and (d) Stefan

sequences. .. 217

List of Tables 225

List of Tables

Table 1: Combined bitrate suggestions for multi-rate streaming of industry

solutions [1].. 28

Table 2: Derived guidelines for bitrates in AVC-based multi-rate streaming. 31

Table 3: Adjusted bitrate recommendations for SVC streaming [1]. 34

Table 4: Mapping of VQM results to MOS. ... 36

Table 5: Relative bitrate penalties for additional MGS layers. 46

Table 6: Average encoding durations of different encoders. 55

Table 7: Selected bitrate recommendations for SVC streaming [2]. 60

Table 8: Storage requirements for SVC streaming per resolution. 63

Table 9: PSNR loss for spatial scalability. .. 66

Table 10: Bjontegaard Delta of RD curves for repeated transcoding [3]. 82

Table 11: SVC layer configurations for initial encoding at CBR and fixed QP rate

control modes. ... 84

Table 12: Y-PSNR results of SVC layers for the Hall_Monitor sequence with

various encoders and rate control modes, adopted from [5]. 85

Table 13: Y-PSNR results for MPEG-2 with fixed QP for the Hall_Monitor

sequence. .. 87

Table 14: Bjontegaard Delta for SVC tunneling, adopted from [5]. 88

Table 15: Comparison of required bandwidths for SVC tunneling vs. MPEG-2

simulcast, adopted from [5]. ... 89

Table 16: Summary of CAN-related challenges addressed by the presented use

cases, adopted from [10]. .. 118

Table 17: Characteristics of representation switch smoothing component

implementation options. ... 142

Table 18: Subjective test results for evaluation of representation switch

smoothing [14]. .. 145

Table 19: End-to-end delay measurements. ... 151

List of Listings 227

List of Listings

Listing 1: Simplified MPD for SVC streaming of multiple resolutions with a single

bitstream featuring spatial scalability [2]. ... 57

Listing 2: Simplified MPD for SVC streaming of multiple resolutions with one

bitstream per resolution [2]. ... 64

Listing 3: Example of remote MPD with 3 SVC layers, adopted from [9]. 206

Listing 4: Example of generated local MPD with AVC segments, adopted

from [9]. ... 206

Listing 5: Example of AQoS.xml. .. 211

Listing 6: Example of UCD.xml. .. 215

Listing 7: Example of UED.xml. .. 216

Bibliography 229

Bibliography

[1] M. Grafl, C. Timmerer, H. Hellwagner, W. Cherif, D. Négru, and S. Battista,
"Scalable Video Coding Guidelines and Performance Evaluations for Adaptive
Media Delivery of High Definition Content", in Proceedings of the 18th IEEE
International Symposium on Computers and Communication (ISCC), Split,
Croatia, July 2013.

[2] M. Grafl, C. Timmerer. H. Hellwagner, W. Cherif, A. Ksentini, "Hybrid Scalable
Video Coding for HTTP-based Adaptive Media Streaming with High-Definition
Content", in Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Madrid, Spain, June
2013.

[3] M. Grafl, C. Timmerer, and H. Hellwagner, "Quality impact of Scalable Video
Coding tunneling for Media-Aware content delivery", in Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2011.

[4] M. Grafl, "SVC tunneling for media-aware content delivery: Impact on video
quality", in Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Lucca, Italy, pp. 1–3,
June 2011.

[5] M. Grafl, C. Timmerer, M. Waltl, G. Xilouris, N. Zotos, D. Renzi, S. Battista, and
A. Chernilov, "Distributed adaptation decision-taking framework and Scalable
Video Coding tunneling for edge and in-network media adaptation", in
Proceedings of the International Conference on Telecommunications and
Multimedia (TEMU 2012), August 2012.

[6] C. Timmerer, M. Grafl, H. Hellwagner, D. Négru, E. Borcoci, D. Renzi, A.-L.
Mevel, and A. Chernilov, "Scalable Video Coding in Content-Aware Networks:
Research Challenges and Open Issues", in Proceedings of International
Tyrrhenian Workshop on Digital Communications (ITWDC), Ponza, Italy,
September 2010.

[7] M. Grafl, C. Timmerer, H. Hellwagner, D. Négru, E. Borcoci, D. Renzi, A.-L.
Mevel, and A. Chernilov, "Scalable Video Coding in Content-Aware Networks:
Research Challenges and Open Issues", in Trustworthy Internet, L. Salgarelli,
G. Bianchi, and N. Blefari-Melazzi, Eds. Milano: Springer Milan, pp. 349–358,
2011.

[8] M. Grafl and C. Timmerer (eds.), "Service/Content Adaptation Definition and
Specification", ICT-ALICANTE, Deliverable D2.2, September 2011.

[9] M. Waltl, M. Grafl, C. Timmerer (eds.) et al., "The ALICANTE Adaptation
Framework", ICT-ALICANTE, Deliverable D7F, June 2013.

[10] M. Grafl, C. Timmerer, H. Hellwagner, G. Xilouris, G. Gardikis, D. Renzi, S.
Battista, E. Borcoci, and D. Négru, "Scalable Media Coding Enabling Content-
Aware Networking", IEEE MultiMedia, vol. 20, no. 2, pp. 30–41, June 2013.

230 Bibliography

[11] G. Gardikis, E. Pallis, and M. Grafl, "Media-Aware Networks in Future Internet
Media", accepted for publication in 3D Future Internet Media, A. Kondoz and T.
Dagiuklas, Eds., Springer Science+Business Media, LLC, New York, scheduled
for publication in 2013.

[12] SVC Demux & Mux, "SVC Demux & Mux | Free software downloads at
SourceForge.net", Website, URL: "https://sourceforge.net/projects/svc-demux-
mux/". Accessed May 9, 2013.

[13] SVC RTP MST, "SVC RTP MST | Free software downloads at
SourceForge.net", Website, URL: "https://sourceforge.net/projects/svc-rtp-mst/".
Accessed May 9, 2013.

[14] M. Grafl, C. Timmerer, "Representation Switch Smoothing for Adaptive HTTP
Streaming", accepted for publication in Proceedings of the 4th International
Workshop on Perceptual Quality of Systems (PQS 2013), Vienna, Austria,
September 2013.

[15] ISO/IEC 15938-5:2003/Amd 4:2012, "Social metadata", 2012.

[16] ISO/IEC 23006-4:2013, "Information technology – Multimedia service platform
technologies – Part 4: Elementary services", 2013.

[17] ISO/IEC 23006-5:2013, "Information technology – Multimedia service platform
technologies – Part 5: Service aggregation", 2013.

[18] C. Timmerer, M. Eberhard, M. Grafl, K. Mitchell, S. Dutton, and H. Hellwagner,
"A Metadata Model for Peer-to-Peer Media Distribution", in Proceedings of the
Workshop on Interoperable Social Multimedia Applications (WISMA 2010),
Barcelona, Spain, May 2010.

[19] M. Grafl, "Overview of MPEG-M Part 4 (Elementary Services)", MPEG output
document ISO/IEC JTC1/SC29/WG11 N11969, Geneva, Switzerland, March
2011. Available online: "http://mpeg.chiariglione.org/standards/mpeg-
m/elementary-services", accessed May 18, 2013.

[20] P. Kudumakis, M. Sandler, A.-C. Anadiotis, I. Venieris, A. Difino, X. Wang, G.
Tropea, M. Grafl, V. Rodríguez-Doncel, S. Llorente, J. Delgado, "White Paper
on MPEG-M: A Digital Media Ecosystem for Interoperable Applications", MPEG
output document ISO/IEC JTC1/SC29/WG11 N13952, Incheon, Republic of
Korea, April 2013. Available online:
"http://mpeg.chiariglione.org/sites/default/files/files/standards/docs/w13952.zip",
accessed May 18, 2013.

[21] P. Kudumakis, M. Sandler, A.-C. Anadiotis, I. Venieris, A. Difino, X. Wang, G.
Tropea, M. Grafl, V. Rodríguez-Doncel, S. Llorente, J. Delgado, "MPEG-M: A
Digital Media Ecosystem for Interoperable Applications", accepted for
publication in Signal Processing: Image Communication, scheduled for
publication in 2013.

[22] W. B. Pennebaker and J. L. Mitchell, "JPEG: Still Image Data Compression
Standard", Springer, 1992.

Bibliography 231

[23] ISO/IEC 14496-10:2012, "Coding of audio-visual objects – Part 10: Advanced
Video Coding", 7th edition, 2012.

[24] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, "Overview of the
H.264/AVC video coding standard", IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[25] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.
Stockhammer, and T. Wedi, "Video coding with H.264/AVC: tools, performance,
and complexity", IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28,
2004.

[26] ISO/IEC 14496-14:2003, "Information technology – Coding of audio-visual
objects – Part 14: MP4 file format", 2003.

[27] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video
Coding Extension of the H. 264/AVC Standard." IEEE Transactions on Circuits
and Systems for Video Technology 17, no. 9, pp. 1103–1120, September 2007.

[28] C. A. Segall and G. J. Sullivan, "Spatial Scalability Within the H.264/AVC
Scalable Video Coding Extension", IEEE Transactions on Circuits and Systems
for Video Technology, vol. 17, no. 9, pp. 1121–1135, September 2007.

[29] H. W. Jones, "A Comparison of Theoretical and Experimental Video
Compression Designs", IEEE Transactions on Electromagnetic Compatibility,
vol. EMC-21, no. 1, pp. 50–56, February 1979.

[30] C. Reader, "History of MPEG Video Compression – Ver. 4.0", Joint Video Team
(JVT), Doc. JVT-E066, Geneva, Switzerland, October 2002. Available online
"http://wftp3.itu.int/av-arch/jvt-site/2002_10_Geneva/JVT-E066.zip", accessed
April 14, 2013.

[31] ISO/IEC 13818-2:1996, "Generic Coding of Moving Pictures and Associated
Audio – Part 2: Video", 1st edition, 1996.

[32] ISO/IEC 14496-10:2008, "Coding of audio-visual objects – Part 10: Advanced
Video Coding", 4th edition, 2008.

[33] M. Wien, H. Schwarz, and T. Oelbaum, "Performance Analysis of SVC", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1194–1203, September 2007.

[34] K. Brandenburg and B. Gill, "First Ideas on Scalable Audio Coding", in
Proceedings of the 97th Audio Engineering Society Convention, San Francisco,
CA, USA, November 1994.

[35] B. Kovesi, D. Massaloux, and A. Sollaud, "A scalable speech and audio coding
scheme with continuous bitrate flexibility", in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP '04), Montreal, Canada, vol. 1, pp. I–273–6, May 2004.

[36] M. van der Schaar and P. A. Chou, "Multimedia over IP and Wireless Networks:
Compression, Networking, and Systems", Academic Press, 2011.

232 Bibliography

[37] N. Adami, A. Signoroni, and R. Leonardi, "State-of-the-Art and Trends in
Scalable Video Compression With Wavelet-Based Approaches", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1238–1255, September 2007.

[38] V. K. Goyal, "Multiple description coding: compression meets the network",
IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–93, September 2001.

[39] H. Hellwagner, R. Kuschnig, T. Stütz, and A. Uhl, "Efficient in-network
adaptation of encrypted H.264/SVC content", Signal Processing: Image
Communication, vol. 24, no. 9, pp. 740–758, October 2009.

[40] B. Zhang, M. Wien, and J.-R. Ohm, "A novel framework for robust video
streaming based on H.264/AVC MGS coding and unequal error protection", in
Proceedings of the International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS 2009), Kanazawa, Japan, pp. 107–110,
December 2009.

[41] ALICANTE, "ALICANTE - MediA Ecosystem Deployment through Ubiquitous
Content-Aware Network Environments - FP7 Project" Home Page, URL:
"http://www.ict-alicante.eu/". Accessed September 25, 2012.

[42] G. Tselentis, A. Galis, S. Krco, and V. Lotz, "Towards the Future Internet:
Emerging Trends from European Research", IOS Press, 2010.

[43] E. Borcoci, D. Négru, and C. Timmerer, "A Novel Architecture for Multimedia
Distribution Based on Content-Aware Networking", in Proceedings of the 3rd
International Conference on Communication Theory, Reliability, and Quality of
Service (CTRQ), Athens, Greece, pp. 162–168, June 2010.

[44] S. Wenger, Ye-Kui Wang, and T. Schierl, "Transport and Signaling of SVC in IP
Networks", IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1164–1173, September 2007.

[45] R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwagner, "Design options and
comparison of in-network H. 264/SVC adaptation", Journal of Visual
Communication and Image Representation, vol. 19, no. 8, pp. 529–542,
December 2008.

[46] I. Kofler, M. Prangl, R. Kuschnig, and H. Hellwagner, "An H. 264/SVC-based
adaptation proxy on a WiFi router", in Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digital Audio and
Video, Braunschweig, Germany, pp. 63–68, May 2008.

[47] B. Shen, W.-T. Tan, and F. Huve, "Dynamic Video Transcoding in Mobile
Environments", IEEE MultiMedia, vol. 15, no. 1, pp. 42–51, March 2008.

[48] S. McCanne, V. Jacobson, and M. Vetterli, "Receiver-driven layered multicast",
in Conference Proceedings on Applications, technologies, architectures, and
protocols for computer communications, Palo Alto, California, United States, pp.
117–130, October 1996.

Bibliography 233

[49] IETF RFC 3550, "RTP: A Transport Protocol for Real-Time Applications", IETF
Request for Comments, July 2003.

[50] I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming Over the
Internet", IEEE Multimedia, vol. 18, no. 4, pp. 62–67, October-December 2011.

[51] Social Sensor, "Social Sensor – Sensing User Generated Input for Improved
Media Discovery and Experience", Home Page, URL:
"http://www.socialsensor.eu/". Accessed May 19, 2013.

[52] C Müller, S. Lederer, B. Rainer, M. Waltl, M. Grafl, and C. Timmerer, "Open
Source Column: Dynamic Adaptive Streaming over HTTP Toolset", ACM
SIGMultimedia Records, vol. 5, no. 1, March 2013.

[53] P2P-Next, "P2P-Next – Shaping the Next Generation of Internet TV", Home
Page, URL: "http://www.p2p-next.org/". Accessed May 19, 2013.

[54] ALICANTE Blog, "Standardisation Activities: Contributions to MPEG-M", blog
entry, URL: "http://www.ict-alicante.eu/blog/?p=1401", January 24, 2013.
Accessed May 20, 2013.

[55] P. Kudumakis, X. Wang, S. Matone, and M. Sandler, "MPEG-M: Multimedia
Service Platform Technologies [Standards in a Nutshell]", IEEE Signal
Processing Magazine, vol. 28, no. 6, pp. 159–163, November 2011.

[56] ALICANTE Blog, "New Amendment of MPEG-7 Part 5", blog entry, URL:
"http://www.ict-alicante.eu/blog/?p=1374", October 1, 2012. Accessed May 19,
2013.

[57] MPEG output document N13158, "Report of Results of the Joint Call for
Proposals on Scalable High Efficiency Video Coding (SHVC)", ISO/IEC JTC
1/SC 29/WG 11/N13158, Shanghai, China, October 2012. Available online
"http://mpeg.chiariglione.org/standards/mpeg-h/high-efficiency-video-
coding/report-results-joint-call-proposals-scalable-high", accessed April 15,
2013.

[58] Joint Video Team (JVT), "Joint Scalable Video Model (JSVM)", Version 9.19.15,
2011.

[59] Y. Sánchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De Vleeschauwer,
W. Van Leekwijck, and Y. Le Louédec, "iDASH: improved dynamic adaptive
streaming over HTTP using scalable video coding", in Proceedings of the 2nd
Annual ACM Conference on Multimedia Systems, New York, NY, USA, pp.
257–264, February 2011.

[60] Y. Sánchez, C. Hellge, T. Schierl, W. Van Leekwijck, and Y. Le Louédec,
"Scalable Video Coding based DASH for efficient usage of network resources",
Position Paper at the 3rd W3C Web and TV Workshop, September 2011.

[61] C. Müller, D. Renzi, S. Lederer, S. Battista, and C. Timmerer, "Using Scalable
Video Coding for Dynamic Adaptive Streaming over HTTP in Mobile
Environments", in Proceedings of the 20th European Signal Processing
Conference (EUSIPCO), Bucharest, Romania, August 2012.

234 Bibliography

[62] I. Kofler, R. Kuschnig, and H. Hellwagner, "Implications of the ISO Base Media
File Format on Adaptive HTTP Streaming of H. 264/SVC", in Proceedings of the
9th IEEE Consumer Communications and Networking Conference, Las Vegas,
NV, USA, January 2012.

[63] M. Wien and H. Schwarz, "Testing conditions for SVC coding efficiency and
JSVM performance evaluation", Joint Video Team (JVT), Doc. JVT-Q205,
Poznan, Poland, October 2005. Available online "http://wftp3.itu.int/av-arch/jvt-
site/2005_10_Nice/JVT-Q205.doc", accessed April 14, 2013.

[64] H. Schwarz and T. Wiegand, "R-D Optimized Multi-Layer Encoder Control for
SVC", in Proceedings of the IEEE International Conference on Image
Processing, vol. 2, p. II –281 –II –284, October 2007.

[65] T. Oelbaum, H. Schwarz, M. Wien, and T. Wiegand, "Subjective performance
evaluation of the SVC extension of H.264/AVC", in Proceedings of the 15th
IEEE International Conference on Image Processing, pp. 2772–2775, October
2008.

[66] J.-S. Lee, F. De Simone, and T. Ebrahimi, "Subjective quality assessment of
scalable video coding: A survey", in Proceedings of 3rd International Workshop
on Quality of Multimedia Experience (QoMEX), Mechelen, Belgium, pp. 25–30,
September 2011.

[67] F. Niedermeier, M. Niedermeier, and H. Kosch, "Quality Assessment of the
MPEG-4 Scalable Video CODEC", in Image Analysis and Processing – ICIAP
2009, vol. 5716, P. Foggia, C. Sansone, and M. Vento, Eds. Springer Berlin /
Heidelberg, pp. 297–306, 2009.

[68] F. Niedermeier, "Objective assessment of the MPEG-4 scalable video CODEC",
Diploma Thesis, University of Passau, Department of Informatics and
Mathematics, Passau, Germany, 2009.

[69] M. Niedermeier, "Subjective assessment of the MPEG-4 scalable video
CODEC", Diploma Thesis, University of Passau, Department of Informatics and
Mathematics, Passau, Germany, 2009.

[70] G. Nur, H. K. Arachchi, S. Dogan, and A. M. Kondoz, "Advanced Adaptation
Techniques for Improved Video Perception", IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 2, pp. 225–240, February 2012.

[71] G. Nur, H. K. Arachchi, S. Dogan, and A. M. Kondoz, "Seamless video access
for mobile devices by content-aware utility-based adaptation", Multimedia Tools
and Applications, pp. 1–31, May 2012.

[72] M. Slanina, M. Ries, and J. Vehkaperä, "Rate Distortion Performance of
H.264/SVC in Full HD with Constant Frame Rate and High Granularity", in
Proceedings of the 8th International Conference on Digital Telecommunications
(ICDT 2013), Venice, Italy, pp. 7–13, April 2013.

[73] R. Gupta, A. Pulipaka, P. Seeling, L. J. Karam, and M. Reisslein, "H.264 Coarse
Grain Scalable (CGS) and Medium Grain Scalable (MGS) Encoded Video: A

Bibliography 235

Trace Based Traffic and Quality Evaluation", IEEE Transactions on
Broadcasting, vol. 58, no. 3, pp. 428–439, September 2012.

[74] S.-H. Yang and W.-L. Tang, "What are Good CGS/MGS Configurations for
H.264 Quality Scalable Coding?", in Proceedings of the International
Conference on Signal Processing and Multimedia Applications (SIGMAP 2011),
Seville, Spain, pp. 104–109, July 2011.

[75] T. Wiegand, L. Noblet, and F. Rovati, "Scalable Video Coding for IPTV
Services", IEEE Transactions on Broadcasting, vol. 55, no. 2, pp. 527–538,
June 2009.

[76] Z. Avramova, D. De Vleeschauwer, K. Spaey, S. Wittevrongel, H. Bruneel, and
C. Blondia, "Comparison of simulcast and scalable video coding in terms of the
required capacity in an IPTV network", in Proceedings of Packet Video (PV)
Workshop, pp. 113–122, November 2007.

[77] Z. Avramova, D. De Vleeschauwer, P. Debevere, S. Wittevrongel, P. Lambert,
R. Van de Walle, and H. Bruneel, "On the performance of scalable video coding
for VBR TV channels transport in multiple resolutions and qualities", Multimedia
Tools and Applications, vol. 57, no. 3, pp. 605–631, April 2012.

[78] P. Lambert, P. Debevere, S. Moens, R. Van de Walle, and J.-F. Macq,
"Optimizing IPTV video delivery using SVC spatial scalability", in Proceedings of
the 10th Workshop on Image Analysis for Multimedia Interactive Services
(WIAMIS '09), London, UK, pp. 89–92, May 2009.

[79] Google+ Hangout, "Catch up in a hangout - Google+", Home Page, URL:
"http://www.google.com/+/learnmore/hangouts/". Accessed June 29, 2012.

[80] Y. Xu, C. Yu, J. Li, H. Hu, Y. Liu, and Y. Wang, "Measurement Study of
Commercial Video Conferencing Systems", Technical Report, Polytechnic
Institute of NYU, New York, NY, USA, 2012. Available online
"http://eeweb.poly.edu/faculty/yongliu/docs/MPVC-measurement.pdf", accessed
April 14, 2013.

[81] Y. Xu, C. Yu, J. Li, and Y. Liu, "Video Telephony for End-consumers:
Measurement Study of Google+, iChat, and Skype", in Proceedings of the ACM
Internet measurement conference (IMC 2012), Boston, Massachusetts, USA,
November 2012.

[82] T. Wiegand and G. J. Sullivan, "The picturephone is here. Really", IEEE
Spectrum, vol. 48, no. 9, pp. 50–54, September 2011.

[83] Apple HTTP Live Streaming, "HTTP Live Streaming Resources - Apple
Developer" Home Page, URL: "https://developer.apple.com/resources/http-
streaming/". Accessed June 29, 2012.

[84] Adobe Flash Media Streaming, "Streaming server | Adobe Flash Media
Streaming Server 4.5", Home Page, URL:
"http://www.adobe.com/products/flash-media-streaming.html". Accessed June
29, 2012.

236 Bibliography

[85] Adobe HTTP Dynamic Streaming, "Live video streaming online | HTTP Dynamic
Streaming", Home Page, URL: "http://www.adobe.com/products/hds-dynamic-
streaming.html". Accessed June 29, 2012.

[86] Microsoft Smooth Streaming, "Smooth Streaming: The Official Microsoft IIS
Site", Home Page, URL: "http://www.iis.net/download/SmoothStreaming".
Accessed June 29, 2012.

[87] YouTube, "YouTube - Broadcast Yourself", Home Page, URL:
"http://www.youtube.com/". Accessed June 29, 2012.

[88] Netflix, "Netflix - Watch TV Shows Online, Watch Movies Online", Home Page,
URL: "http://www.netflix.com/". Accessed June 29, 2012.

[89] Hulu, "Watch TV. Watch Movies. | Online | Free | Hulu", Home Page, URL:
"http://www.hulu.com/". Accessed June 29, 2012.

[90] MTV, "New Music Videos, Reality TV Shows, Celebrity News, Pop Culture |
MTV", Website, URL: "http://mtv.com/". Accessed February 2, 2013.

[91] Facebook Video Calling, "Facebook Video Calling", Home Page, URL:
"http://www.facebook.com/videocalling/". Accessed June 29, 2012.

[92] Skype, "Free Skype internet calls and cheap calls to phones online - Skype",
Home Page, URL: "http://www.skype.com/". Accessed June 29, 2012.

[93] iOS Developer Library, "Technical Note TN2224", Website, URL:
"http://developer.apple.com/library/ios/#technotes/tn2224/_index.html", August
3, 2011. Accessed June 29, 2012.

[94] OS X Developer Library, "Technical Note TN2218", Website, URL:
"http://developer.apple.com/library/mac/#technotes/tn2218/_index.html", May 1,
2008. Accessed June 29, 2012.

[95] M. Levkov, "Video encoding and transcoding recommendations for HTTP
Dynamic Streaming on the Adobe® Flash® Platform", Adobe Systems Inc.,
URL:
"http://download.macromedia.com/flashmediaserver/http_encoding_recommend
ations.pdf", October 2010. Accessed August 29, 2012.

[96] A. Kapoor, "Dynamic streaming on demand with Flash Media Server 3.5 |
Adobe Developer Connection", blog entry, URL:
"http://www.adobe.com/devnet/flashmediaserver/articles/dynstream_on_deman
d.html", January 12, 2009. Accessed June 29, 2012.

[97] J. Ozer, "Adaptive Streaming in the Field", Streaming Media Magazine, vol.
December 2010/January 2011, January 2011.

[98] J. Ozer, "Encoding for Adaptive Streaming", presented at the Streaming Media
West 2011, Los Angeles, CA, USA, November 2011.

[99] YouTube Help, "Advanced encoding specifications - YouTube Help", Website,
URL:

Bibliography 237

"http://support.google.com/youtube/bin/static.py?hl=en&topic=1728573&guide=
1728585&page=guide.cs". Accessed October 1, 2012.

[100] YouTube Help, "Encoding settings for live streaming - YouTube Help", Website,
URL:
"http://support.google.com/youtube/bin/static.py?hl=en&guide=2474025&topic=
2474327&page=guide.cs&answer=1723080". Accessed October 1, 2012.

[101] Apple QuickTime, "Apple - QuickTime - Download and watch videos, movies,
and TV shows", Home Page, URL: "http://www.apple.com/quicktime/".
Accessed June 29, 2012.

[102] Adobe System Inc., "RTMP Specification 1.0", URL:
"http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/r
tmp/pdf/rtmp_specification_1.0.pdf", June 2009. Accessed August 29, 2012.

[103] bSoft, "bSoft >> Home", Home Page, URL: "http://bsoft.net/". Accessed
September 26, 2012.

[104] Cisco, "Cisco Visual Networking Index: Forecast and Methodology, 2011-2016
[Visual Networking Index (VNI)]", Website, URL:
"http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns8
27/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html",
May 30, 2012. Accessed October 2, 2012.

[105] OECD Broadband Portal, "Average advertised download speeds, by technology
(Oct. 2009)", Excel file, URL:
"http://web.archive.org/web/20110305191656/http://www.oecd.org/dataoecd/10/
54/39575095.xls", October 2009. Accessed October 2, 2012.

[106] OECD Broadband Portal, "Average advertised download speeds, by technology
(Sept. 2011)", Excel file, URL:
"http://www.oecd.org/internet/broadbandandtelecom/BB-
Portal_5b_13July_Final.xls", September 2011. Accessed October 2, 2012.

[107] OECD Broadband Portal, "Broadband and telecom - Organisation for Economic
Co-operation and Development", Website, URL:
"http://www.oecd.org/internet/broadbandandtelecom/oecdbroadbandportal.htm".
Accessed October 2, 2012.

[108] MainConcept, "Home: MainConcept", Home Page, URL:
"http://mainconcept.com/". Accessed September 25, 2012.

[109] Vanguard Software Solutions, "Vanguard Software Solutions | Scalable Video
Coding (SVC)", Website, URL: "http://www.vsofts.com/technology/scalable-
video-coding.html". Accessed January 4, 2013.

[110] H. Kirchhoffer, H. Schwarz, and T. Wiegand, "CE1: Simplified FGS", Joint Video
Team (JVT), Doc. JVT-W090, San Jose, CA, April 2007. Available online
"http://wftp3.itu.int/av-arch/jvt-site/2007_04_SanJose/JVT-W090.zip", accessed
April 14, 2013.

238 Bibliography

[111] J.-R. Ohm, "Bildsignalverarbeitung fuer multimedia-systeme", Skript, Institut für
Nachrichtentechnik und theoretische Elektrotechnik der TU Berlin, 1999.

[112] J. Klaue, B. Rathke, and A. Wolisz, "EvalVid – A Framework for Video
Transmission and Quality Evaluation", in Computer Performance Evaluation.
Modelling Techniques and Tools, vol. 2794, P. Kemper and W. Sanders, Eds.
Springer Berlin / Heidelberg, pp. 255–272, 2003.

[113] D. Rodrigues, E. Cerqueira, and E. Monteiro, "Quality of Service and Quality of
Experience in Video Streaming", in Proceedings of the International Workshop
on Traffic Management and Traffic Engineering for the Future Internet
(FITraMEn2008), EuroNF NoE, Porto, Portugal, pp. 11–12, December 2008.

[114] K. Piamrat, C. Viho, J.-M. Bonnin, and A. Ksentini, "Quality of Experience
Measurements for Video Streaming over Wireless Networks", in Proceedings of
the 6th International Conference on Information Technology: New Generations
(ITNG '09), Las Vegas, Nevada, USA, pp. 1184–1189, April 2009.

[115] T. A. Le, H. Nguyen, and H. Zhang, "EvalSVC – An evaluation platform for
scalable video coding transmission", in Proceedings of the 14th IEEE
International Symposium on Consumer Electronics (ISCE), Braunschweig,
Germany, pp. 1–6, June 2010.

[116] T. Zinner, O. Abboud, O. Hohlfeld, T. Hoßfeld, and P. Tran-Gia, "Towards QoE
Management for Scalable Video Streaming", in Proceedings of the 21th ITC
Specialist Seminar on Multimedia Applications-Traffic, Performance and QoE,
Miyazaki, Japan, March 2010.

[117] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality
assessment: from error visibility to structural similarity", IEEE Transactions on
Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[118] NTIA, "ITS | Video Quality Metric (VQM) Software", Website, URL:
"http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx".
Accessed October 3, 2012.

[119] ITU-R Rec. BT.1683, "Objective perceptual video quality measurement
techniques for standard definition digital broadcast television in the presence of
a full reference", 2004.

[120] M. H. Pinson and S. Wolf, "A new standardized method for objectively
measuring video quality", IEEE Transactions on Broadcasting, vol. 50, no. 3,
pp. 312–322, September 2004.

[121] S. Wolf and M. Pinson, "Application of the NTIA general video quality metric
(VQM) to HDTV quality monitoring", in Proceedings of The 3rd International
Workshop on Video Processing and Quality Metrics for Consumer Electronics
(VPQM), Scottsdale, AZ, USA, January 2007.

[122] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, "Study
of Subjective and Objective Quality Assessment of Video", IEEE Transactions
on Image Processing, vol. 19, no. 6, pp. 1427–1441, June 2010.

Bibliography 239

[123] Y. Wang, "Survey of objective video quality measurements", Technical Report,
Worcester Polytechnic Institute, June 2006. Available online
"ftp://130.215.28.31/pub/techreports/pdf/06-02.pdf", accessed April 14, 2013.

[124] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, "Objective Video
Quality Assessment Methods: A Classification, Review, and Performance
Comparison", IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 165–182,
2011.

[125] ITU-T Rec. P.910, "Subjective video quality assessment methods for multimedia
applications", 2008.

[126] Xiph.Org Foundation, "Xiph.org :: Derf's Test Media Collection", Website, URL:
"http://media.xiph.org/video/derf/". Accessed January 3, 2013.

[127] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, "Frequent layer switching for
perceived quality improvements of coarse-grained scalable video", Multimedia
Systems, vol. 16, no. 3, pp. 171–182, June 2010.

[128] A. Eichhorn and P. Ni, "Pick Your Layers Wisely - A Quality Assessment of
H.264 Scalable Video Coding for Mobile Devices", in Proceedings of the IEEE
International Conference on Communications (ICC '09), Mechelen, Belgium, pp.
1–6, September 2009.

[129] x264, "VideoLAN - x264, the best H.264/AVC encoder", Website, URL:
"http://www.videolan.org/developers/x264.html". Accessed January 4, 2013.

[130] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen, "Low overhead container
format for adaptive streaming", in Proceedings of the 1st Annual ACM SIGMM
Conference on Multimedia Systems, Scottsdale, Arizona, USA, pp. 193–198,
February 2010.

[131] Akamai Technologies Inc., "Akamai HD Network: Encoding Best Practices for
the iPhone and iPad", White Paper, URL:
"http://www.akamai.com/dl/whitepapers/Akamai_HDNetwork_Encoding_BP_iPh
one_iPad.pdf", 2011. Accessed January 31, 2013.

[132] G. Van der Auwera, P. David, and M. Reisslein, "Traffic and Quality
Characterization of Single-Layer Video Streams Encoded with the
H.264/MPEG-4 Advanced Video Coding Standard and Scalable Video Coding
Extension", IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 698–718,
2008.

[133] B. Crabtree, M. Nilsson, P. Mulroy, and S. Appleby, "Equitable Quality Video
Streaming", in Proceedings of the 6th IEEE Consumer Communications and
Networking Conference (CCNC 2009), Las Vegas, Nevada, USA, pp. 1–5,
January 2009.

[134] MPEG output document N13514, "Study of ISO/IEC PDTR 23009-3 DASH
Implementation Guidelines", ISO/IEC JTC 1/SC 29/WG 11/N13514, Incheon,
Republic of Korea, April 2013.

240 Bibliography

[135] ISO/IEC 11172-2:1993, "Information technology – Coding of moving pictures
and associated audio for digital storage media at up to about 1,5 Mbit/s – Part
2: Video", 1993.

[136] ISO/IEC 15444-3:2007, "Information technology – JPEG 2000 image coding
system: Motion JPEG 2000", 2007.

[137] ISO/IEC 14496-2:2004, "Information technology – Coding of audio-visual
objects – Part 2: Visual", 2004.

[138] SMPTE ST 2042-1:2012, "VC-2 Video Compression", 2012.

[139] RFC 6386, "VP8 Data Format and Decoding Guide", IETF Request for
Comments, 2011.

[140] ISO/IEC FDIS 23008-2, "Information technology – High efficiency coding and
media delivery in heterogeneous environments – Part 2: High efficiency video
coding", 2013.

[141] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, "Rate-
constrained coder control and comparison of video coding standards", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.
688–703, July 2003.

[142] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, "Video transcoding: an overview of
various techniques and research issues", IEEE Transactions on Multimedia, vol.
7, no. 5, pp. 793–804, October 2005.

[143] A. Vetro, C. Christopoulos, and H. Sun, "Video transcoding architectures and
techniques: an overview", IEEE Signal Processing Magazine, vol. 20, no. 2, pp.
18–29, March 2003.

[144] G. Fernandez-Escribano, H. Kalva, P. Cuenca, L. Orozco-Barbosa, and A.
Garrido, "A Fast MB Mode Decision Algorithm for MPEG-2 to H.264 P-Frame
Transcoding", IEEE Transactions on Circuits and Systems for Video
Technology, vol. 18, no. 2, pp. 172–185, February 2008.

[145] J. Xin, A. Vetro, and H. Sun, "Converting DCT coefficients to H.264/AVC
transform coefficients", Advances in Multimedia Information Processing-PCM,
no. 2004, pp. 939–946, 2004.

[146] J. Xin, A. Vetro, H. Sun, and Y. Su, "Efficient MPEG-2 to H.264/AVC
Transcoding of Intra-Coded Video", EURASIP Journal on Applied Signal
Processing, vol. 2007, pp. 1–13, 2007.

[147] G. Fernández-Escribano, P. Cuenca, L. Orozco-Barbosa, A. Garrido, and H.
Kalva, "Simple intra prediction algorithms for heterogeneous MPEG-2/H.264
video transcoders", Multimedia Tools and Applications, vol. 38, no. 1, pp. 1–25,
May 2008.

[148] J. De Cock, S. Notebaert, and R. Van de Walle, "Transcoding from H.264/AVC
to SVC with CGS Layers", in Proceedings of the IEEE International Conference

Bibliography 241

on Image Processing (ICIP 2007), San Antonio, TX, USA, vol. 4, pp. IV – 73–IV
– 76, September 2007.

[149] J. De Cock, S. Notebaert, P. Lambert, and R. Van de Walle, "Advanced
bitstream rewriting from H. 264/AVC to SVC", in Proceedings of the 15th IEEE
International Conference on Image Processing (ICIP 2008), San Diego,
California, USA, pp. 2472–2475, October 2008.

[150] J. De Cock, S. Notebaert, P. Lambert, and R. Van de Walle, "Architectures for
Fast Transcoding of H.264/AVC to Quality-Scalable SVC Streams", IEEE
Transactions on Multimedia, vol. 11, no. 7, pp. 1209–1224, November 2009.

[151] J. D. Cock, S. Notebaert, K. Vermeirsch, P. Lambert, and R. V. de Walle,
"Transcoding of H.264/AVC to SVC with motion data refinement", in
Proceedings of the 16th IEEE International Conference on Image Processing
(ICIP), Cairo, Egypt, pp. 3673–3676, November 2009.

[152] J. De Cock, "Compressed-domain transcoding of H.264/AVC and SVC video
streams", PhD Thesis, Ghent University, Faculty of Engineering, Ghent,
Belgium, 2009.

[153] D. Kim and J. Jeong, "Fast Transcoding Algorithm from MPEG2 to H.264",
Advances in Image and Video Technology, vol. 4319, pp. 1067–1074, 2006.

[154] B. Petjanski and H. Kalva, "DCT domain intra MB mode decision for MPEG-2 to
H.264 transcoding", in Digest of Technical Papers of the International
Conference on Consumer Electronics (ICCE '06), Las Vegas, Nevada, USA, pp.
419–420, January 2006.

[155] G. Chen, Y. Zhang, S. Lin, and F. Dai, "Efficient block size selection for MPEG-
2 to H.264 transcoding", in Proceedings of the 12th annual ACM International
Conference on Multimedia (MULTIMEDIA '04), New York, NY, USA, p. 300,
October 2004.

[156] J. Yang, Q. Dai, W. Xu, and R. Ding, "A rate control algorithm for MPEG-2 to H.
264 real-time transcoding", in Proc. SPIE 5960, Visual Communications and
Image Processing 2005, 59605U, vol. 5960, pp. 1995–2003, July 2005.

[157] P. Amon, Haoyu Li, A. Hutter, D. Renzi, and S. Battista, "Scalable video coding
and transcoding", in Proceedings of the IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR 2008), vol. 1, pp. 336–341,
May 2008.

[158] A. Segall and Jie Zhao, "Bit stream rewriting for SVC-to-AVC conversion", in
Proceedings of the 15th IEEE International Conference on Image Processing,
San Diego, CA, USA, pp. 2776–2779, October 2008.

[159] M. Sablatschan, M. Ransburg, and H. Hellwagner, "Towards an Improved SVC-
to-AVC Rewriter", in Proceedings of the 2nd International Conferences on
Advances in Multimedia, pp. 18–21, June 2010.

[160] H. Liu, Y.-K. Wang, Y. Chen, and H. Li, "Spatial transcoding from Scalable
Video Coding to H.264/AVC", in Proceedings of the IEEE International

242 Bibliography

Conference on Multimedia and Expo (ICME 2009), Cancun, Mexico, pp. 29–32,
July 2009.

[161] B. Li, Y. Guo, H. Li, and C. W. Chen, "Hybrid Bit-stream Rewriting from Scalable
Video Coding to H.264/AVC", Proc. SPIE 7744, Visual Communications and
Image Processing 2010, 77441A, August 2010.

[162] M. Sablatschan, J. O. Murillo, M. Ransburg, and H. Hellwagner, "Efficient SVC-
to-AVC Conversion at a Media Aware Network Element", in Mobile Multimedia
Communications, J. Rodriguez, R. Tafazolli, and C. Verikoukis, Eds., Springer
Berlin Heidelberg, pp. 582–588, 2012.

[163] P. Kunzelmann and H. Kalva, "Reduced Complexity H.264 to MPEG-2
Transcoder", in Digest of Technical Papers of the International Conference on
Consumer Electronics, Las Vegas, Nevada, USA, pp. 1–2, January 2007.

[164] S. Moiron, S. Faria, A. Navarro, V. Silva, and P. Assunção, "Video transcoding
from H.264/AVC to MPEG-2 with reduced computational complexity", Signal
Processing: Image Communication, vol. 24, no. 8, pp. 637–650, September
2009.

[165] FFmpeg, "FFmpeg", Home Page, URL: "http://ffmpeg.org". Accessed
September 25, 2012.

[166] GPL MPEG-1/2 DirectShow Decoder Filter, "SourceForge.net: GPL MPEG-1/2
DirectShow Decoder Filter - Project Web Hosting - Open Source Software",
Home Page, URL: "http://gplmpgdec.sf.net/". Accessed September 25, 2012.

[167] G. Bjøntegaard, "Calculation of average PSNR differences between RD-
curves", ITU-T Q.6/SG 16 Video Coding Experts Group (VCEG), Doc. VCEG-
M33, Austin, Texas, USA, April 2001. Available online "http://wftp3.itu.int/av-
arch/video-site/0104_Aus/VCEG-M33.doc", accessed April 14, 2013.

[168] G. Bjøntegaard, "Improvements of the BD-PSNR model", ITU-T Q.6/SG 16
Video Coding Experts Group (VCEG), Doc. VCEG-AI11, Berlin, Germany, July
2008. Available online "http://wftp3.itu.int/av-arch/video-site/0807_Ber/VCEG-
AI11.zip", accessed April 14, 2013.

[169] T. Kallioja, "Television Goes Online", Telecommunications Forum presentation,
Espoo, Finland, November 2006. Available online:
"http://www.netlab.tkk.fi/opetus/s383001/2006/kalvot/TelecomForum-
2006.11.07-Kallioja-OnlineTV.pdf", accessed June 13, 2013.

[170] P. Assunção and M. Ghanbari, "A frequency-domain video transcoder for
dynamic bit-rate reduction of MPEG-2 bit streams", IEEE Transactions on
Circuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967,
December 1998.

[171] M. Lavrentiev and D. Malah, "Transrating of MPEG-2 coded video via
requantization with optimal trellis-based DCT coefficients modification", in
Proceedings of the 12th European Signal Processing Conference (EUSIPCO),
Vienna, Austria, 2004.

Bibliography 243

[172] J. Pan, S. Paul, R. Jain, "A survey of the research on future internet
architectures", IEEE Communications Magazine, vol.49, no.7, pp. 26–36, July
2011.

[173] D. Trossen, "Invigorating the future internet debate", SIGCOMM Computer
Communication Review, vol. 39, no. 5, pp. 44–51, October 2009.

[174] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, R. Braynard,
"Networking named content", in Proceedings of ACM CoNEXT 2009, Rome,
Italy, December 2009.

[175] J. Choi, J. Han, E. Cho, T. Kwon, Y. Choi, "A survey on content-oriented
networking for efficient content delivery", IEEE Communications Magazine,
vol.49, no.3, pp. 121–127, March 2011.

[176] H. Koumaras, D. Négru, E. Borcoci, V. Koumaras, C. Troulos, Y. Lapid, E.
Pallis, M. Sidibé, A. Pinto, G. Gardikis, G. Xilouris, C. Timmerer, "Media
Ecosystems: A Novel Approach for Content-Awareness in Future Networks",
Future Internet: Achievements and Promising Technology, Springer Verlag, pp.
369–380, May 2011.

[177] IETF RFC 2326, "Real Time Streaming Protocol (RTSP)", IETF Request for
Comments, April 1998.

[178] N. Ramzan, E. Quacchio, T. Zgaljic, S. Asioli, L. Celetto, E. Izquierdo, F. Rovati,
"Peer-to-peer streaming of scalable video in future Internet applications", IEEE
Communications Magazine, vol.49, no.3, pp.128–135, March 2011.

[179] M. Eberhard, T. Szkaliczki, H. Hellwagner, L. Szobonya, C. Timmerer, "An
Evaluation of Piece-Picking Algorithms for Layered Content in Bittorrent-based
Peer-to-Peer Systems", in Proceedings of the IEEE Multimedia and Expo
(ICME'11), Barcelona, Spain, July 2011.

[180] T. Stockhammer, "Dynamic adaptive streaming over HTTP – standards and
design principles", in Proceedings of the 2nd Annual ACM Conference on
Multimedia Systems, New York, NY, USA, pp. 133–144, February 2011.

[181] Z. C. Zhang and V. O. Li, "Router-assisted layered multicast", in Proceedings of
IEEE International Conference on Communications (ICC), New York, NY, USA,
vol. 4, pp. 2657–2661, May 2002.

[182] IETF RFC 3973, "Protocol Independent Multicast – Dense Mode (PIM-DM):
Protocol Specification (Revised)", IETF Request for Comments, January 2005.

[183] A. Kayssi, H. Karaki, and W. Abu-Khraybeh, "RTP-based caching of streaming
media", in Proceedings of the 8th IEEE International Symposium on Computers
and Communication (ISCC), pp. 1067–1071 vol. 2, July 2003.

[184] S. Lederer, C. Müller, and C. Timmerer, "Towards peer-assisted dynamic
adaptive streaming over HTTP", in Proceedings of 19th International Packet
Video Workshop (PV), pp. 161 –166, May 2012.

244 Bibliography

[185] P. Le Callet, S. Möller, and A. Perkis (eds.), "Qualinet White Paper on
Definitions of Quality of Experience", European Network on Quality of
Experience in Multimedia Systems and Services (COST Action IC 1003),
Lausanne, Switzerland, June 2012.

[186] W. Cherif, A. Ksentini, D. Négru, M. Sidibe, "A_PSQA: PESQ-like non-intrusive
tool for QoE prediction in VoIP services", in Proceedings of the IEEE
International Conference on Communications (ICC), Ottawa, Canada, June
2012.

[187] J. Huusko et al., "Cross-layer architecture for scalable video transmission in
wireless network", Signal Processing: Image Communication, vol. 22, no. 3, pp.
317–330, March 2007.

[188] P. Helle, H. Lakshman, M. Siekmann, J. Stegemann, T. Hinz, H. Schwarz, D.
Marpe, and T. Wiegand, "A Scalable Video Coding Extension of HEVC", in
Proceedings of the Data Compression Conference (DCC), Snowbird, UT, USA,
pp. 201–210, March 2013.

[189] R. Mohan, J. R. Smith, and C.-S. Li, "Adapting multimedia Internet content for
universal access", IEEE Transactions on Multimedia, vol. 1, no. 1, pp. 104–114,
March 1999.

[190] F. Pereira and I. Burnett, "Universal multimedia experiences for tomorrow",
IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 63–73, March 2003.

[191] E. Borcoci, A. Asgari, N. Butler, T. Ahmed, A. Mehaoua, G. Kourmentzas, and
S. Eccles, "Service management for end-to-end QoS multimedia content
delivery in heterogeneous environment", in Proceedings of the Advanced
Industrial Conference on Telecommunications/Service Assurance with Partial
and Intermittent Resources Conference/E-Learning on Telecommunications
Workshop (aict/sapir/elete 2005), Lisbon, Portugal, pp. 46–52, July 2005.

[192] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner, "Bitstream syntax
description-based adaptation in streaming and constrained environments",
IEEE Transactions on Multimedia, vol. 7, no. 3, pp. 463 – 470, June 2005.

[193] J. Chakareski, "In-Network Packet Scheduling and Rate Allocation: A Content
Delivery Perspective", IEEE Transactions on Multimedia, vol. 13, no. 5, pp.
1092–1102, October 2011.

[194] ENVISION, "ENVISION: Co-optimisation of overlay applications and underlying
networks", Home Page, URL: "http://envision-project.org/". Accessed
September 26, 2012.

[195] DANAE, "European R&D Projects: DANAE", Website, URL:
"http://cordis.europa.eu/projects/rcn/71233_en.html". Accessed September 26,
2012.

[196] M. Ransburg, H. Hellwagner, R. Cazoulat, B. Pellan, C. Concolato, S. De
Zutter, C. Poppe, R. Van de Walle, and A. Hutter, "Dynamic and distributed
adaptation of scalable multimedia content in a context-aware environment", in

Bibliography 245

Proceedings of the European Symposium on Mobile Media Delivery (EuMob
2006), Alghero, Italy, September 2006.

[197] MEDIEVAL, "Home - MEDIEVAL", Home Page, URL: "http://www.ict-
medieval.eu/". Accessed June 13, 2013.

[198] I. Ahmed, L. Badia, D. Munaretto, and M. Zorzi, "Analysis of PHY/Application
Cross-layer Optimization for Scalable Video Transmission in Cellular Networks",
in Proceedings of the IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), Madrid, Spain, June 2013.

[199] ENTHRONE, "Enthrone Web Site", Home Page, URL: "http://enthrone.org/".
Accessed September 26, 2012.

[200] S. A. Chellouche, D. Negru, Y. Chen, and M. Sidibe, "Home-Box-assisted
content delivery network for Internet Video-on-Demand services", in
Proceedings of the 17th IEEE Symposium on Computers and Communications
(ISCC), Cappadocia, Turkey, pp. 544–550, July 2012.

[201] S. Perez, "Verizon And Motorola Announce FiOS TV Media Server That Can
Record Six Shows At Once", TechCrunch, URL:
"http://techcrunch.com/2013/01/07/verizon-and-motorola-announce-fios-tv-
media-server-that-can-record-six-shows-at-once/", January 7, 2013. Accessed
April 21, 2013.

[202] IETF RFC 6190, "RTP Payload Format for Scalable Video Coding", IETF
Request for Comments, May 2011.

[203] FFmpeg documentation, "Video Codecs", Website, URL:
"http://www.ffmpeg.org/general.html#Video-Codecs". Accessed April 21, 2013.

[204] Participatory Culture Foundation – Develop, "ConversionMatrix – Develop",
Website, URL:
"https://develop.participatoryculture.org/index.php/ConversionMatrix", October
23, 2012. Accessed April 21, 2013.

[205] S. A. Chellouche, J. Arnaud, and D. Negru, "Flexible User Profile Management
for Context-Aware Ubiquitous Environments", in Proceedings of the 7th IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegs,
Nevada, USA, pp. 1–5, January 2010.

[206] C. Müller, "libdash supports now persistent connections and pipelining", blog
entry, URL: "http://www-itec.uni-klu.ac.at/dash/?p=553", March 1, 2012.
Accessed April 4, 2013.

[207] swift, "swift: the multiparty transport protocol", Website, URL:
"http://www.libswift.org/". Accessed April 23, 2013.

[208] V. Grishchenko, F. Osmani, R. Jimenez, J. Pouwelse, and H. Sips, "On the
Design of a Practical Information-Centric Transport", Technical Report PDS-
2011-006, Parallel and Distributed Systems Report Series, Delft University of
Technology, Delft, Netherlands, March 2011. Available online

246 Bibliography

"http://people.kth.se/~rauljc/tud11/grishchenko2011swift.pdf", accessed April
23, 2013.

[209] V. Grishchenko, A. Bakker, and R. Petrocco, "Peer-to-Peer Streaming Peer
Protocol (PPSPP)", IETF Internet Draft draft-ietf-ppsp-peer-protocol-06,
February 2013. Available online "http://tools.ietf.org/html/draft-ietf-ppsp-peer-
protocol-06", accessed April 23, 2013.

[210] libswift, "triblerteam/libswift · GitHub", Website, URL:
"https://github.com/triblerteam/libswift". Accessed April 23, 2013.

[211] B. Shao, D. Renzi, P. Amon, G. Xilouris, N. Zotos, S. Battista, A. Kourtis, and
M. Mattavelli, "An adaptive system for real-time scalable video streaming with
end-to-end QOS control", in Proceedings of the 11th International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS 2010), Desenzano
del Garda, Italy, pp. 1–4, April 2010.

[212] T. C. Thang, J.-G. Kim, J. W. Kang, and J.-J. Yoo, "SVC adaptation: Standard
tools and supporting methods", Signal Processing: Image Communication, vol.
24, no. 3, pp. 214–228, March 2009.

[213] I. Kofler, "In-Network Adaptation of Scalable Video Content", PhD Thesis,
Alpen-Adria-Universität Klagenfurt, Fakultät für Technische Wissenschaften,
Klagenfurt, Austria, November 2010.

[214] M. Li, Z. Chen, and Y.-P. Tan, "On Quality of Experience of Scalable Video
Adaptation", Journal of Visual Communication and Image Representation, in
press, March 2013.

[215] D. T. Nguyen, M. Hayashi, and J. Ostermann, "Adaptive error protection for
Scalable Video Coding extension of H.264/AVC", in Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME), Hannover, Germany
pp. 417–420, June 2008.

[216] J. M. Monteiro, C. T. Calafate, and M. S. Nunes, "Evaluation of the H.264
Scalable Video Coding in Error Prone IP Networks", IEEE Transactions on
Broadcasting, vol. 54, no. 3, pp. 652–659, 2008.

[217] E.-D. Jang, J.-G. Kim, T. C. Thang, and J.-W. Kang, "Adaptation of Scalable
Video Coding to packet loss and its performance analysis", in Proceedings of
the 12th International Conference on Advanced Communication Technology
(ICACT), Gangwon-Do, Korea, vol. 1, pp. 696–700, February 2010.

[218] Y. Chen, K. Xie, F. Zhang, P. Pandit, and J. Boyce, "Frame loss error
concealment for SVC", Journal of Zhejiang Univ. - Sci. A, vol. 7, no. 5, pp. 677–
683, May 2006.

[219] Y. Guo, Y. Chen, Y.-K. Wang, H. Li, M. M. Hannuksela, and M. Gabbouj, "Error
Resilient Coding and Error Concealment in Scalable Video Coding", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 19, no. 6, pp.
781–795, 2009.

Bibliography 247

[220] S. Mohamed, G. Rubino, F. Cervantes, and H. Afifi, "Real-Time Video Quality
Assessment in Packet Networks: A Neural Network Model", in Proceedings of
International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA'01), Las Vegas, Nevada, USA, June 2001.

[221] G. Rubino and M. Varela, "A new approach for the prediction of end-to-end
performance of multimedia streams", in Proceedings of the 1st International
Conference on the Quantitative Evaluation of Systems (QEST 2004),
Enschede, Netherlands, September 2004.

[222] E. Gelenbe, "Learning in the recurrent random neural network", Neural
Computation, vol. 5, no. 1, pp. 154–164, 1993.

[223] K. D. Singh, A. Ksentini, and B. Marienval, "Quality of Experience Measurement
Tool for SVC Video Coding", in Proceedings of the IEEE International
Conference on Communications (ICC), Kyoto, Japan, pp. 1–5, June 2011.

[224] A. Ksentini and Y. Hadjadj-Aoul, "On Associating SVC and DVB-T2 for Mobile
Television Broadcast", in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM 2011), Houston, Texas, USA, pp. 1–5, December
2011.

[225] S. Winkler, "Perceptual distortion metric for digital color video", in Proc. SPIE
3644, Human Vision and Electronic Imaging IV, pp. 175–184, May 1999.

[226] C. Yim and A. C. Bovik, "Evaluation of temporal variation of video quality in
packet loss networks", Signal Processing: Image Communication, vol. 26, no. 1,
pp. 24–38, January 2011.

[227] K. Seshadrinathan and A. C. Bovik, "Temporal hysteresis model of time varying
subjective video quality", in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP '11), Prague, Czech
Republic, pp. 1153–1156, May 2011.

[228] V. Joseph and G. De Veciana, "Jointly optimizing multi-user rate adaptation for
video transport over wireless systems: Mean-fairness-variability tradeoffs", in
Proceedings of the IEEE INFOCOM, Orlando, FL, USA, pp. 567–575, March
2012.

[229] J. P. Hansen, S. Hissam, D. Plakosh, and L. Wrage, "Adaptive Quality of
Service in ad hoc wireless networks", in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC), Paris, France, pp.
1749–1754, April 2012.

[230] J. P. Hansen and S. Hissam, "Assessing QoS Trade-Offs for Real-Time Video",
in Proceedings of the IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), Madrid, Spain, June 2013.

[231] A. Hutter, P. Amon, G. Panis, E. Delfosse, M. Ransburg, and H. Hellwagner,
"Automatic adaptation of streaming multimedia content in a dynamic and
distributed environment", in Proceedings of the IEEE International Conference
on Image Processing (ICIP 2005), Genoa, Italy, vol. 3, pp. III–716–9,
September 2005.

248 Bibliography

[232] M. Yarvis, P. Reiher, and G. J. Popek, "Conductor: a framework for distributed
adaptation", in Proceedings of the Seventh Workshop on Hot Topics in
Operating Systems, Rio Rico, Arizona, USA, pp. 44–49, March 1999.

[233] O. Abboud, J. Rückert, D. Hausheer, and R. Steinmetz, "QoE-aware Quality
Adaptation in Peer-to-Peer Video-on-Demand", Technical Report PS-TR-2012-
01, Peer-to-Peer Systems Engineering, Technische Universität Darmstadt,
2012. Available online "http://www.ps.tu-
darmstadt.de/fileadmin/publications/PS-TR-2012-01.pdf", accessed April 14,
2013.

[234] G. Nur, H. K. Arachchi, S. Dogan, and A. M. Kondoz, "Ambient Illumination as a
Context for Video Bit Rate Adaptation Decision Taking", IEEE Transactions on
Circuits and Systems for Video Technology, vol. 20, no. 12, pp. 1887–1891,
December 2010.

[235] M. Waltl, C. Timmerer, and H. Hellwagner, "Improving the Quality of Multimedia
Experience through Sensory Effects", in Proceedings of the 2nd International
Workshop on Quality of Multimedia Experience (QoMEX 2010), pp. 124 –129,
June 2010.

[236] M. Waltl, B. Rainer, C. Timmerer, H. Hellwagner, "Enhancing the User
Experience with the Sensory Effect Media Player and AmbientLib", in Advances
in Multimedia Modeling (K. Schoeffmann, B. Merialdo, A. Hauptmann, C.-W.
Ngo, Y. Andreopoulos, C. Breiteneder, eds.), Springer Verlag, Berlin,
Heidelberg, pp. 624-626, January 2012.

[237] B. Rainer, M. Waltl, E. Cheng, M. Shujau, C. Timmerer, S. Davis, I. Burnett, C.
Ritz, H. Hellwagner, "Investigating the Impact of Sensory Effects on the Quality
of Experience and Emotional Response in Web Videos", in Proceedings of the
4th International Workshop on Quality of Multimedia Experience (QoMEX'12),
Yarra Valley, Australia, pp. 278-283, July 2012.

[238] C. Müller, S. Lederer, and C. Timmerer, "An evaluation of dynamic adaptive
streaming over HTTP in vehicular environments", in Proceedings of the 4th
Workshop on Mobile Video, Chapel Hill, North Carolina, USA, pp. 37–42,
February 2012.

[239] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen,
"Initial delay vs. interruptions: Between the devil and the deep blue sea", in
Proceedings of the 4th International Workshop on Quality of Multimedia
Experience (QoMEX 2012), Yarra Valley, Australia, pp. 1–6, July 2012.

[240] M. Fiedler, T. Hoßfeld, and P. Tran-Gia, "A generic quantitative relationship
between quality of experience and quality of service", IEEE Network, vol. 24,
no. 2, pp. 36–41, 2010.

[241] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, "Measuring the quality of
experience of HTTP video streaming", in Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011),
Dublin, Ireland, pp. 485–492, May 2011.

Bibliography 249

[242] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, "Flicker effects in
adaptive video streaming to handheld devices", in Proceedings of the 19th ACM
International Conference on Multimedia, New York, NY, USA, pp. 463–472,
December 2011.

[243] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, "Spatial flicker effect in
video scaling", in Proceedings of the 3rd International Workshop on Quality of
Multimedia Experience (QoMEX), Mechelen, Belgium, pp. 55–60, September
2011.

[244] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, "QDASH: a QoE-
aware DASH system", in Proceedings of the 3rd ACM Multimedia Systems
Conference, New York, NY, USA, pp. 11–22, February 2012.

[245] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz, "Subjective Impression of
Variations in Layer Encoded Videos", in Quality of Service — IWQoS 2003, K.
Jeffay, I. Stoica, and K. Wehrle, Eds. Springer Berlin Heidelberg, pp. 137–154,
2003.

[246] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, "Fine-grained scalable
streaming from coarse-grained videos", in Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digital Audio and
Video, New York, NY, USA, pp. 103–108, June 2009.

[247] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, C. Timmerer, "Implementation
and User-centric Comparison of a Novel Adaptation Logic for DASH with SVC",
in Proceedings of the IFIP/IEEE International Workshop on Quality of
Experience Centric Management (QCMan), Ghent, Belgium, May 2013.

[248] ISO/IEC 21000-7, "Information technology – Multimedia framework
(MPEG-21) – Part 7: Digital Item Adaptation".

[249] Ian S. Burnett, Fernando Pereira, Rik Van de Walle, and Rob Koenen (eds),
"The MPEG-21 Book", John Wiley & Sons, Chichester, England, 2006.

[250] ISO/IEC 23009-1:2012, "Information technology – Dynamic adaptive streaming
over HTTP (DASH) – Part 1: Media presentation description and segment
formats", 2012.

[251] I. Kofler, "MPEG-21-based Adaptation Decision Taking in the Binary Encoded
Metadata Domain", Diploma Thesis, Alpen-Adria-Universität Klagenfurt,
Fakultät für Wirtschaftswissenschaften und Informatik, Klagenfurt, Austria,
February 2006.

[252] J. Li (ed.), "SP/CP Service Environment – Intermediate", ICT-ALICANTE,
Deliverable D5.1.1, September 2011.

[253] C. Müller and C. Timmerer, "A VLC media player plugin enabling dynamic
adaptive streaming over HTTP", in Proceedings of the 19th ACM international
conference on Multimedia, Scottsdale, Arizona, USA, pp. 723–726, December
2011.

250 Bibliography

[254] Tears of Steel, "Tears of Steel | Mango Open Movie Project", Home Page, URL:
"http://mango.blender.org/", accessed June 11, 2013.

[255] R. Lowry, "Concepts and Applications of Inferential Statistics", R. Lowry, 1998-
2013. Available online: "http://vassarstats.net/textbook/", accessed June 21,
2013.

[256] LIVE555.COM, "The LIVE555 Media Server", Home Page, URL:
"http://www.live555.com/mediaServer/". Accessed May 10, 2013.

[257] VideoLAN, "VideoLAN - VLC: Official site - Free multimedia solutions for all
OS!", Home Page, URL: "http://www.videolan.org/". Accessed May 10, 2013.

[258] Markus Waltl, "[ALICANTE] Layered Multicast Adaptation - YouTube", Website,
URL: "http://www.youtube.com/watch?v=h4lscvE7lq4", October 2011. Accessed
May 10, 2013.

[259] ALICANTE Blog, "ALICANTE Blog", blog, URL: "http://www.ict-
alicante.eu/blog/", accessed June 21, 2013.

[260] Y. Zhang (ed.), "Trials and Validation", ICT-ALICANTE, Deliverable D8.3,
scheduled for August 2013.

[261] Wireshark, "Wireshark · Go deep", Home Page, URL:
"http://www.wireshark.org/". Accessed May 10, 2013.

[262] IETF RFC 4566, "SDP: Session Description Protocol", IETF Request for
Comments, July 2006.

[263] G. Xilouris (ed.), "ALICANTE Overall System and Components Definition and
Specifications", ICT-ALICANTE, Deliverable D2.1, September 2011.

	Ehrenwörtliche Erklärung
	Declaration of Honour
	Acknowledgements
	Kurzfassung
	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Structure

	2 Technical Background
	2.1 Video Coding
	2.1.1 Encoding Tools
	2.1.2 Advanced Video Coding

	2.2 Scalable Video Coding
	2.3 ALICANTE Project
	2.3.1 ALICANTE Architecture
	2.3.1.1 Overview
	2.3.1.2 Scalable Video Coding and Content-Aware Networks
	2.3.1.3 Media Streaming Advances
	2.3.1.4 Towards Media Service Platform Technologies

	2.3.2 Use Cases
	2.3.2.1 Multicast/Broadcast
	2.3.2.2 Home-Box Sharing
	2.3.2.3 Video Conferencing
	2.3.2.4 Peer-to-Peer Media Streaming

	2.3.3 Research Challenges and Open Issues
	2.3.3.1 Distributed Adaptation Decision-Taking Framework
	2.3.3.2 Efficient, Scalable SVC Tunneling
	2.3.3.3 Impact on the Quality of Service/Experience

	2.4 Conclusions

	3 Scalable Video Coding Framework
	3.1 Introduction
	3.2 Related Work
	3.2.1 SVC Performance
	3.2.2 Multi-Bitrate Streaming of Single-Layer Formats

	3.3 Test-bed Setup
	3.3.1 Deduced Bitrate Suggestions
	3.3.2 SVC Encoders and Evaluation Metrics
	3.3.3 Selection of Test Sequences

	3.4 High-Definition SVC Encoding Performance for Adaptive Media Streaming
	3.4.1 Rate Control Modes
	3.4.2 Combination of Spatial Scalability and MGS
	3.4.3 Number of MGS Layers
	3.4.4 Quality Scalability Modes
	3.4.5 Requantization of MGS Layers
	3.4.6 Encoding Durations

	3.5 Hybrid SVC-DASH with High-Definition Content
	3.5.1 Deployment of SVC in DASH
	3.5.2 SVC Encoding Performance
	3.5.2.1 Encoder Comparison and Bitrate Validation for 4 Quality Layers
	3.5.2.2 Combination of Spatial Scalability and MGS
	3.5.2.3 Combination of CGS and MGS

	3.6 Conclusions

	4 SVC Tunneling
	4.1 Introduction
	4.2 Concept and Considerations
	4.2.1 SVC Transcoding
	4.2.1.1 Transcoding to SVC
	4.2.1.2 Transcoding from SVC
	4.2.1.3 Repeated Transcoding

	4.2.2 Partial SVC Tunneling
	4.2.3 Delay and Rate Control Considerations

	4.3 Evaluations
	4.3.1 Same-Bitrate Evaluation
	4.3.1.1 Initial Test-Bed Setup
	4.3.1.2 Experimental Results
	4.3.1.3 Discussion of Experimental Results

	4.3.2 Comparing Rate Control Modes for SVC Tunneling
	4.3.2.1 Test-Bed Setup and Quantization Considerations
	4.3.2.2 Experimental Results and Discussion

	4.3.3 Advanced Configuration Options for SVC Tunneling
	4.3.3.1 Test-Bed Setup and Configuration Improvements
	4.3.3.2 Experimental Results
	4.3.3.3 Partial SVC Tunneling Evaluation
	4.3.3.4 JSVM-Based Evaluation

	4.4 Conclusions

	5 Distributed Adaptation and Media Transport
	5.1 Introduction
	5.2 Scalable Media Coding Enabling Content-Aware Networking
	5.2.1 Use Cases
	5.2.1.1 Unicast Streaming
	5.2.1.2 Multicast Streaming
	5.2.1.3 Peer-to-Peer Streaming
	5.2.1.4 Adaptive HTTP Streaming

	5.2.2 Analysis of Use Cases
	5.2.2.1 Flow Processing
	5.2.2.2 Caching and Buffering
	5.2.2.3 QoS/QoE Management

	5.2.3 Conclusions

	5.3 Distributed Adaptation Framework
	5.3.1 Adaptation Framework Architecture
	5.3.1.1 Adaptation Decision-Taking
	5.3.1.2 Coordination of Adaptation Decisions
	5.3.1.3 SVC Tunneling

	5.3.2 Related Work
	5.3.3 Adaptation at Network Edges
	5.3.3.1 RTP Streaming
	5.3.3.2 Adaptive HTTP Streaming
	5.3.3.3 P2P Streaming

	5.3.4 In-Network Adaptation
	5.3.5 Scalability Considerations

	5.4 SVC Adaptation
	5.4.1 Related Work
	5.4.1.1 Adaptation Strategies
	5.4.1.2 Adaptation for HTTP Streaming
	5.4.1.3 Standardization
	5.4.1.4 Conclusions

	5.4.2 Adaptation Logic
	5.4.3 Smooth Transition between Representations
	5.4.3.1 Introduction and Concept
	5.4.3.2 Implementation Options
	5.4.3.3 Evaluation
	5.4.3.4 Conclusions

	5.5 Validation of End-to-End Adaptation System
	5.5.1 Test-Bed Setup
	5.5.2 Evaluation
	5.5.2.1 End-to-end Delay
	5.5.2.2 Video Quality Impact

	5.6 Conclusions

	6 Conclusions and Future Work
	6.1 Summary
	6.2 Findings
	6.3 Future Work

	Annex A – Abbreviations and Acronyms
	Annex B – Configurations of Tested Encoders
	Annex C – Additional SVC Rate-Distortion Performance Results
	Annex D – SVC Decoding and Transcoding Speeds
	Annex E – Generation of Local MPD
	Annex F – Questionnaire for the Subjective Evaluation of Representation Switch Smoothing
	Annex G – Adaptation Logic Implementation for MPEG-21 ADTE
	Annex H – SVC-to-AVC Transcoder Rate-Distortion Performance Results
	List of Figures
	List of Tables
	List of Listings
	Bibliography

