
Live Transcoding and Streaming-as-a-Service
with Low Delay and High QoE

Christian Timmerer†,‡, Daniel Weinberger‡, Martin Smole‡, Reinhard Grandl‡,

Christopher Mueller‡, and Stefan Lederer‡
‡bitmovin GmbH, †Alpen-Adria-Universität

Klagenfurt, Austria
‡{firstname.lastname}@bitmovin.com, †{firstname.lastname}@itec.aau.at

Abstract - Multimedia content delivery and real-time
streaming over the top of the existing infrastructure is
nowadays part and parcel of every media ecosystem thanks
to open standards and the adoption of the Hypertext
Transfer Protocol (HTTP) as its primary mean for
transportation. Hardware encoder manufacturers have
adopted their product lines to support the dynamic adaptive
streaming over HTTP but suffer from the inflexibility to
provide scalability on demand, specifically for event-based
live services that are only offered for a limited period of
time. The cloud computing paradigm allows for this kind of
flexibility and provide the necessary elasticity in order to
easily scale with the demand required for such use case
scenarios. In this paper we describe how to deploy a
transcoding and streaming-as-a-service platform based on
open standards (i.e., mainly MPEG-DASH) utilizing
standard cloud and content delivery infrastructures to
enable low-delay and high-quality streaming to
heterogeneous clients. We describe how to deploy it for
video on demand, 24/7 live, and event-based live services.

INTRODUCTION

Real-time entertainment services such as streaming video
and audio are currently accounting for more than 70% of the
Internet traffic, e.g., in North America’s fixed access
networks during peak periods as shown in Figure 1 [1].
Interestingly, these services are all delivered over-the-top
(OTT) of the existing (networking) infrastructure using the
Hypertext Transfer Protocol (HTTP) which resulted in the
standardization of MPEG Dynamic Adaptive Streaming
over HTTP (DASH) [2]. The MPEG-DASH standard
enables smooth multimedia streaming towards
heterogeneous devices and commonly assumes the usage of
HTTP-URLs to identify the available segments [3].

More and more services are getting deployed adopting
the MPEG-DASH standard and we see an increasing offer
of various live events – 24/7 or special events for a limited
time – which are solely delivered over the open Internet
without any quality guarantees. Most of these services are
offered for free including advertisements, which provide
service providers means for monetization. In this paper we
present research that led to the deployment of a live
transcoding and streaming-as-a-service platform using the

MPEG-DASH standard which is used for both live 24/7 and
event-based temporary services. The system architecture is
described and we provide details about our live transcoding
and streaming-as-a-service. Additionally, we describe client
support mechanisms for live low-delay streaming enabling
high Quality of Experience (QoE). Finally, we provide a
conclusion highlighting the major components and features
introduced in this paper.

SYSTEM ARCHITECTURE

The high-level system architecture is depicted in Figure 2. It
comprises the following components (blue-rimmed modules
are further detailed in this paper):

a. the actual transcoding and streaming-as-a-service is
deployed on standard cloud infrastructure taking the
live source as input and providing multiple
representations (e.g., resolution, bitrate, etc.) according
to the MPEG-DASH standard as output;

b. the integration within the customer Web portal for the
actual deployment;

c. the streaming utilizing standard delivery infrastructure
over a content distribution network (CDN); and

d. the DASH client implementation integrated within
heterogeneous devices.

Figure 1. Peak Period Aggregation Traffic Composition -
North America, Fixed Access; Real-Time Entertainment

now accounts for >70% of the Internet Traffic [1].

The transcoding and streaming-as-a-service takes the live
multimedia content as an input and transcodes it to multiple
content representations in real-time on standard
infrastructure-as-a-service (IaaS) cloud environments
according to the requirements of the customer in terms of
resolutions, bitrates, quality, etc. These requirements are
expressed through an application programming interface
(API) exposed to the customer. The resulting manifest
describing the individual content representations and
primary input for the streaming client is incorporated within
the customer’s Web portal offering the service to the actual
clients (i.e., end users). The streaming is conducted utilizing
standard CDN infrastructure. The heterogeneous clients
request the multimedia segments based on the manifest
received prior to the streaming and adapt themselves to the
context conditions such as fluctuating network bandwidth.

Please note that our approach is explicitly targeting
MPEG-DASH as the primary multimedia format
representation taking into account guidelines provided by
the DASH Industry Forum (DASH-IF:
http://www.dashif.org). In practice, however, there is also a
need to support Apple’s HTTP Live Streaming (HLS) for
iOS-based devices such as iPhone and iPad. This is a
requirement for iOS apps submitted for distribution in their
App Store. Thus, we support also HLS (http://www.dash-
player.com/demo/hls/) in addition to MPEG-DASH but we
hope that Apple will relax this requirement in the near
future.

LIVE TRANSCODING AND STREAMING

The core of such a transcoding and streaming-as-a-service
platform is the ability to take multimedia content from a live
source and to transcode it in real-time – actually much faster
than real-time is possible – into various content
representations based on a given configuration (e.g., video
profile, video quality, video resolution, audio/video bitrate).
The input is typically provided using the proprietary Real-
Time Messaging Protocol (RTMP) push, which is a de-facto
standard used within the industry to push live content over
the Internet. Other open standards such as HTTP/2 push
could be a replacement but it is not yet widely available, as
it has been only standardized recently [4]. Therefore, we
still have to stick with RTMP push for a while.

Such a service shall support a variety of input formats in
terms of video, audio, and containers as well as subtitles.

The transcoding mechanism utilizes the flexibility and
elasticity of existing cloud infrastructure-as-a-service (IaaS)
providing scalability on demand when it is needed. In
particular, cloud instances are requested and utilized
depending on the demand in order to satisfy real-time
requirements and even beyond, i.e., transcoding to various
content representations ranging from standard definition
resolution to ultra high definition resolution multiple times
faster than real-time. A screen shot is shown in Figure 3,
which reveals the performance of being much faster than
real-time and a preview of the results while the transcoding
is still in progress.

In the following we will describe an example workflow
in order to show how easy it is to setup a live transcoding
and streaming [5]. It simply requires an arbitrary stream
name, a stream key (required to be same as used by the
ingest application/service), the timeshift buffer in seconds
(if needed), the encoding profile (how many representations,
bitrates, resolutions, etc.), and the output location such as
Google Cloud Storage (GCS) to which all segments and the
manifests are transferred. The advantage of GCS is that it
offers CDN Interconnect for several CDNs such as Fastly,
Level3, HighWinds, and CloudFlare. After starting the live
stream, a RTMP URL is presented to the user which has to
be added to the ingest application/service together with the
stream key that is required to identify the live stream within
the transcoding and streaming service.

A REST API enables easy integration into existing media
workflows as well as support for multiple CDNs depending
on the costumer needs.

Figure 2: High-Level System Architecture for Live Transcoding and Streaming-as-a-Service.

Figure 3: Screen Shot of Customer Portal showing
141x Real-Time Transcoding [Source: Sep. 2015

https://twitter.com/bitmovin/status/639505160088256512].

CLIENT-SUPPORT FOR LIVE STREAMING

The MPEG-DASH standard defines the media presentation
description (MPD) as well as segment formats and
deliberately excludes the specification of the client
behavior, i.e., the implementation of the adaptation logic,
which determines the scheduling of the segment requests, is
left open for competition. In the past, various
implementations of the adaptation logic have been proposed
both within the research community and industry
deployments/products. In any case, the behavior of the
adaptation logic directly impacts the Quality of Experience
(QoE) which can be defined as "the degree of delight or
annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations with respect
to the utility and/or enjoyment of the application or service
in the light of the user’s personality and current state" [6].
For DASH-based services the main QoE influence factors
can be described as initial/start-up delay, buffer underruns
also known as stalls, quality switches, and media throughput
[7].

I. Low-Delay Streaming

For DASH-based live services the initial or start-up delay is
an important aspect for which we have developed a specific
solution. The initial or start-up delay comprises the time
between service/content request and start of the actual
playout which typically involves processing time both at the
server and client, network time for sending the MPD request
and receiving first segments, and initial buffer time before
the playout starts. In general, the start-up delay shall be low
but it also depends on the use case. For example, the QoE of
live streams or short movie clips is more sensitive to start-
up delay than full-length video on demand content.
Therefore, we propose a solution targeting live services
using the live profile which includes a live edge hint within
the MPD that allows DASH clients effectively determining
the live edge. In particular, the proposed solution comprises
an additional attribute to be included within the
SegmentTemplate element in combination with the
“$Number$” identifier for URL templates. This additional
attribute is called liveEdgeNumber and provides the
latest number of the segment which has been just written by
the server upon MPD request from a client. A sequence
diagram of the proposed solution is shown in Figure 4.

In contrast to conventional live-edge detection methods
(i.e., calculating a starting point and searching the timeline
in both directions) with liveEdgeNumber, the start-up
delay introduced by the live-edge calculation and/or
searching the timeline would decrease to zero. This
mechanism can be used for all adaptive streaming systems
where segments are using a “$Number$” identifier for
URL templates. We have also deployed this solution within
bitcodin demonstrating its scalability in real-world
deployments.

Achieving a low end-to-end delay in live web video
scenarios can be challenging, especially in context of

adaptive streaming technologies, like MPEG-DASH or
HLS. There are several different components, which add
additional delay to the whole end-to-end chain, like the
recording device itself, the encoding instance, the player
implementation and obviously the interconnection of these
parts. In combination with the live transcoding and
streaming service it is possible to achieve an end-to-end
delay of less than 10 seconds which satisfies the
requirements of a significant majority of the broadcasters as
indicated in [8]. For low-delay streaming, the segment
duration shall be kept small, in the order of one second, and
to ensure only minor additional delay during the
transmission, the livestream should be connected to a high-
performance output, which can be used as origin for a CDN.

II. High-Quality Streaming

A survey on Quality of Experience of HTTP adaptive
streaming [9] reveals that the "quality adaptation in video
streaming and its influence on QoE is not well understood
so far" and, thus, we would like to present some of the
major QoE influence factors in more detail.

In previous work [7] we have presented details how to
evaluate the QoE of DASH-based services describing an
evaluation setup for both objective and subjective tests. The
former can be done within a simple lab environment and the
latter adopted a crowdsourcing approach in order to avoid
cost-intensive subjective quality assessments. Seufert et al.
[9] conclude that "the start-up delay does not necessarily
influence the QoE but buffer underruns or stalls will
definitely and also significantly impact the media
experience and, thus, shall be avoided at all". Therefore, the
adaptation logic should support and also be configured in a
way to avoid stalls by taking into account the available
bandwidth and the client’s buffer state. The former can be
estimated when measuring the throughput while
downloading the segments and comparing it with what is
provided within the MPD. The latter can be used to
compensate for short-term changes in the available network.

In typical deployments player implementations try to
achieve a low start-up delay by downloading the lowest
quality representations first and after a while switching up to

Figure 4: Sequence Diagram for liveEdgeNumber.

higher quality representations (if sufficient bandwidth is
available). Additionally, playback can start once enough
segments are available in the client buffer (i.e., three
segments are typically used) and additional low quality
segments are downloaded in the background to fill up the
buffer until a predefined threshold. While in some cases this
is a reasonable approach, the visual quality in the beginning
– depending on the number of low-quality segments
buffered within the client – is usually very low which is
disregarded by many users and – in the worst case – users
may start to abandon the service. Therefore, player
implementations should be configurable with respect to both
the start-up delay and the start-up quality. The former
should be a threshold representing the number of seconds
which have to be buffered on the client before playback
begins. The latter enables developers to overwrite any
suggested quality level determined by the built-in adaptation
logic and is referred to as preferred start-up quality. It can
be used to create a completely new custom adaptation logic,
or slightly modify the default behavior, e.g., in context of a
more aggressive startup. Finally, it should be possible to
specify the duration of preferred start-up quality after which
the adaptation logic falls back to its default behavior. Please
note that there is an intrinsic relationship between the start-
up threshold and the preferred start-up delay and developers
are advised to choose these values carefully.

For high quality streaming, the initial or startup delay
shall be as low as possible, buffer underrun / stalls shall be
zero as this would impact severely the QoE, the number of
quality switches shall be also low and oscillations shall be
avoided, and the media throughput at the client shall be
high. Other parameters are related to the media encoding
configuration including the number of representations
including its bitrates, resolutions, and visual quality as well
as the segment length.

CONCLUSIONS

In this paper we have presented means for the live
transcoding and streaming-as-a-service with low delay and
high QoE. The system architecture is presented allowing for
the ingest of live content (for both professional and user-
generated content) and means for much faster than real-time
multi-bitrate encoding, packaging, and streaming by
adopting MPEG-DASH as its primary transport format
(incl. support for HLS). On the client side we proposed
means for a faster start-up delay and at the same time
enhanced start quality thanks to an easy-to-use configurable
player implementation which – in combination with a zero-
stalling adaptation logic – enables high quality streaming
within heterogeneous environments.

REFERENCES

[1] Sandvine, "Global Internet Phenomena Report Africa,
Middle East, and North America", Sandvine Intelligent
Broadband Networks, December 2015.

[2] Sodogar, I., "The MPEG-DASH Standard for
Multimedia Streaming over the Internet", IEEE
Multimedia, Vol. 18, No. 4, Oct.-Dec. 2011, pp. 62-67.

[3] Timmerer, C., Mueller, C., Lederer, S., "Adaptive
Media Streaming over Emerging Protocols", Broadcast
Engineering Conference (BEC), NAB2014, Las Vegas,
NV, USA, April 2014.

[4] Belshe, M., Peon, R., Thomson, M., (eds.), "Hypertext
Transfer Protocol version 2", February 2015.

[5] bitcodin blog, "MPEG-DASH and HLS Live Streaming
with bitcodin", November 2015
[https://www.bitcodin.com/blog/2015/11/mpeg-dash-
and-hls-live-streaming-with-bitcodin/].

[6] Le Callet, P., Möller, S., Perkis, A., (eds), "Qualinet
White Paper on Definitions of Quality of Experience",
European Network on Quality of Experience in
Multimedia Systems and Services (COST Action IC
1003), Lausanne, Switzerland, Version 1.2, March
2013.

[7] Timmerer, C., Weinberger, D., Mueller, C., Lederer, S.
"Ultra-High-Definition-Quality of Experience with
MPEG-DASH", Broadcast Engineering Conference
(BEC), NAB2015, Las Vegas, NV, USA, April 2015.

[8] DASH-IF, "Survey of European Broadcasters on
MPEG-DASH", May 2013 [http://dashif.org/wp-
content/uploads/2015/04/Survey-of-the-European-
Broadcasters-on-MPEG-DASH-Whitepaper-V2.1.pdf]

[9] Seufert, M., et al., "A Survey on Quality of Experience
of HTTP Adaptive Streaming", IEEE Communications
Surveys & Tutorials, vol. 2014 (2014).

AUTHOR INFORMATION

Christian Timmerer, bitmovin GmbH and Alpen-Adria-
Universität Klagenfurt, Austria,
christian.timmerer@bitmovin.com.

Daniel Weinberger, bitmovin GmbH, Klagenfurt, Austria,
daniel.weinberger@bitmovin.net.

Martin Smole, bitmovin GmbH, Klagenfurt, Austria,
martin.smole@bitmovin.net.

Reinhard Grandl, bitmovin GmbH, Klagenfurt, Austria,
reinhard.grandl@bitmovin.net.

Christopher Mueller, bitmovin GmbH, Klagenfurt,
Austria, christopher.mueller@bitmovin.net.

Stefan Lederer, bitmovin GmbH, Klagenfurt, Austria,
stefan.lederer@bitmovin.net.

