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Abstract—The Scalable Video Coding (SVC) extension of the 
H.264/AVC (AVC) video coding standard features spatial, 
quality and temporal scalability. Backwards compatibility with 
legacy decoding devices is maintained through an H.264/AVC 
compliant base layer, which represents the lowest quality of an 
SVC bit-stream. However, it is often desirable to also provide 
the higher quality layers to legacy H.264/AVC devices. This is 
achieved by a process commonly known as “bit-stream 
rewriting”, which allows for an efficient SVC to AVC 
conversion by exploiting the similarities of the two codecs. This 
paper introduces an improved version of the existing JSVM 
reference software rewriter (JSVM-rewriter). The 
improvements include a better run-time performance through 
parallel processing, as well as applicability in streaming 
scenarios. A detailed evaluation provides performance 
measurements for the improved rewriter and compares it to 
the existing JSVM-rewriter. The evaluation shows that notable 
performance improvements can be achieved using the 
presented approach. The paper concludes on how the rewriter 
could be further improved. 

Keywords:SVC-to-AVC Rewriting; H.264/SVC; Transcoding; 
Media Adaptation 

I.  INTRODUCTION 
H.264/SVC [1] is a block-based hybrid scalable video 

codec, which introduces scalability mechanisms in three 
different scalability dimensions. First, it offers temporal 
scalability, which refers to the embedding of the video 
content at different temporal resolutions (frame rates). 
Second, spatial scalability allows incorporating multiple 
spatial resolutions (e.g., HD, SD) of the same video in a 
single bit-stream. Finally, quality scalability (or SNR 
scalability) refers to the fact that different quality variations 
of the same video can be embedded into a single bit-stream 
trading off visual distortion and required video bit-rate. 

The scalability of the encoded video bit-stream is 
achieved by a layered approach. An H.264/SVC bit-stream 
comprises an H.264/AVC-conformant base layer which 
represents video at the lowest quality that can be extracted 
from the bit-stream. Building on top of the base layer, 
enhancement layers can be used to refine the video quality 
and/or the spatial resolution of the video. As a consequence, 
the adaptation of the scalable video bit-stream is as simple as 
truncating certain enhancement layers or parts thereof from 
the initial bit-stream . 

Since the bit-stream syntax and coding tools of the base 
layer are backward-compatible to H.264/AVC, this part of 

the bit-stream can be decoded by any legacy H.264/AVC 
device. However, as the base layer only represents the lowest 
quality of the H.264/SVC bit-stream, it is often desirable to 
also provide the higher quality representations to legacy 
H.264/AVC devices. This is achieved by a process named 
“bit-stream rewriting” [2]. It allows to efficiently transform 
an H.264/SVC bit-stream into an H.264/AVC bit-stream 
without loss by exploiting the similarities of the two codecs, 
i.e., without requiring complete transcoding of the bit-
stream. The JSVM-rewriter, which implements this process, 
is available as part of the Joint Software Video Model 
(JSVM) [3]. 

This paper introduces an improved version of the JSVM-
rewriter, which is used within the European project 
SCALNET [4]. The main improvement is the parallel 
rewriting of different segments of the H.264/SVC bit-stream.  
Past research work has been carried out on parallel encoding 
and decoding of bit-streams, including parallelism based on 
Groups of Pictures (GOPs), e.g. in [5] and [6]. In the 
approach presented in this paper, this GOP-based parallel 
approach is applied on the aforementioned bit-stream 
rewriting process. In the remainder of this paper, 
H.264/AVC is denoted as AVC, and H.264/SVC as SVC. 

Section II details the bit-stream rewriting process. 
Section III introduces our improvements to the existing 
JSVM-rewriter. Section IV evaluates the run-time 
performance of the improved rewriter for different layer 
configurations of three reference video bit-streams. Finally, 
Section V concludes this paper and provides an outlook to 
future research in this area. 

II. BIT-STREAM REWRITING 
SVC-to-AVC bit-stream rewriting can be subsumed as 

the low-complexity combination of interdependent layers of 
a scalable multi-layer SVC bit-stream to a single-layer AVC 
bit-stream. SVC-to-AVC bit-stream rewriting is only defined 
for the case of quality scalability; both Coarse-Grain 
Scalability (CGS) and Medium Grain Scalability (MGS) are 
supported. It is not possible to convert a spatially scalable 
SVC bit-stream to an AVC bit-stream. In order to enable 
SVC-to-AVC bit-stream rewriting, some modifications to the 
SVC decoding process were required. The two major aspects 
which have been changed affect the inter-layer intra-
prediction and the residual prediction.  

In the residual prediction residual data are mapped from 
the reference layer to the enhancement layer by accumulating 
transform coefficients. In order to be compatible with the 
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AVC syntax though, it is necessary to perform the mapping 
by accumulating the transform coefficient level values, i.e., 
without rescaling (inverse quantizing) the transform 
coefficients. This required change is accomplished by scaling 
the transform coefficient levels by the ratio of the 
quantization intervals of the reference and the enhancement 
layers (SVC Scaling). 

The inter-layer intra-prediction in SVC predicts intra-
frame coded blocks in the enhancement layer from 
reconstructed pixel values of neighboring blocks within the 
reference layer. However, these pixel values are not available 
in the enhancement layer. Thus a single layer AVC decoding 
process cannot be applied. This problem is solved by 
projecting the prediction data directly to the enhancement 
layer instead of reconstructing the intensity values in the 
reference layer for prediction. This way it is possible to 
perform intra-frame prediction as in single-layer AVC 
coding. 

Fig. 1 depicts the rewriting process. It can be seen that 
the residual data is accumulated on the transform coefficient 
level values. Both the reference layer and the enhancement 
layer are entropy decoded, but the intensity data are not fully 
reconstructed. The results of the entropy decoding steps are 
the quantized transform coefficients. In case of the reference 
layer these are scaled, so that the quantized residuals can be 
accumulated in the next step. After that the combined 
coefficients are rewritten to an AVC bit-stream. The 
rewriting comprises the entropy encoding and the writing of 
the prediction data into the AVC bit-stream.   

Compared to full transcoding, i.e. completely decoding 
the SVC stream and then encoding to AVC, this rewriting 
process avoids the computationally expensive inverse 
quantization and inverse transform steps for decoding the 
SVC bit-stream, as well as the transform and quantization 
steps for encoding to AVC. 

III. THE GOP-BASED PARALLEL REWRITER 
The GOP-based parallel rewriter was developed in the 

context of the SCALNET project and thus had to fulfill 
requirements according to the scenarios identified in the 
project.  

A first requirement was that the rewriter needs to accept 
a streamed video as input, rather than reading the video from 
a file on the disk. This is needed for several reasons, which 
correspond to the different video streaming scenarios within 
the SCALNET project: 1) the SVC video is encoded on the 
fly, as it is usual, e.g., in live streaming scenarios; 2) on-the-
fly filtering of SVC enhancement layers is performed before 
the SVC stream is rewritten in order to, e.g., react to a 
changing usage environment; 3) rewriting is performed 
within the home network, in order to exploit the SVC 
scalability features in the core network, but still service AVC 
legacy devices.  

Moreover, although the JSVM-rewriter inherently has a 
lower execution time compared to full transcoding, it needs 
to be further improved in order to be applicable in real-time 
scenarios of the SCALNET project with high quality 
affordances. Our approach to satisfy the requirement of 
improved performance can be described as  parallelization of  

 
 

Figure 1. Block diagram of the SVC-to-AVC rewriting process. 

the rewriting process based on Group Of Pictures (GOPs).  A 
GOP is a group of successive frames within a video stream. 
In the context of this paper, the GOP size is considered to be 
the number of frames between two Instantaneous Decoding 
Refresh (IDR)-frames plus the  IDR-frame  at  the  beginning  
of the GOP. As IDR-frames can be decoded without taking 
reference to previous frames and each GOP starts with an 
IDR-frame, GOPs can be decoded independently.  

We apply this GOP-concept to our “GOP-based parallel 
rewriter”. The idea is to rewrite several GOPs in parallel in 
order to improve the performance of the JSVM-rewriter. The 
GOP-based parallel approach also serves the requirement of 
the video streaming ability. The incoming SVC stream is 
buffered and assembled into GOPs until a configurable 
number of N GOPs is received. The assembled GOPs are 
then stored to disk and rewritten in parallel by N instances of 
the JSVM-rewriter before they are streamed into the network 
again. For an efficient exploitation of the GOP-based parallel 
rewriter, it is installed on a multi-core system which allocates 
the rewriting threads to different CPU cores. One drawback 
of buffering GOPs is the increased delay which depends on 
the number of buffered GOPs. Amongst other things this is 
explained in more detail in the next section in which these 
basic improvements to the JSVM-rewriter are evaluated. 

IV. EVALUATION 
In order to evaluate the performance of the parallel 

rewriter compared to the JSVM-rewriter (version 
JSVM_9_18), three different video sequences were encoded 
in different variations. First, each sequence was encoded 
with the resolutions 480x320p, 720x576p and 1280x720p, 
resulting in nine video sequences. The different resolutions 
were not encoded into a single SVC bit-stream, as it is not 
possible to rewrite spatially scalable SVC bit-streams. The 
resolutions were chosen on the basis of existing end-devices. 
Each of the scalable sequences contains the temporal 
resolutions 12.5 fps, 25 fps and 50 fps. 25 fps was chosen 
since it is the frame rate used in the PAL (720x576p) 
television standard, 50 fps is commonly used for the 
1280x720p format and 12.5 fps was picked as an additional 
scalability option, suitable e.g. for mobile devices. A 
constraint in choosing the frame rate is imposed by the 
hierarchical prediction structure with dyadic temporal 
enhancement layers which only allows doubling the frame 
rate between different enhancement layers [1].  

Moreover two MGS quality enhancement layers are 
included in each of the SVC bit-streams. MGS was chosen as 
quality scalability type, but it is noted that CGS leads to 
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similar results. All test sequences have a GOP size of 16. 
Each of the nine different SVC video sequences has zero 
dependency enhancement layers D (i.e., no spatial or CGS 
enhancement layers), two temporal enhancement layers T 
and two quality enhancement layers Q, denoted as DTQ 022. 
The Base Layer was encoded at the SVC Main profile and 
the enhancement layers at the Scalable High profile. It would 
be meaningless to rewrite the base layer and its temporal 
enhancement layers because it is already compatible with 
AVC. So the focus lies on the quality enhancement layers 
and their different frame rates which results in six DTQ layer 
combinations (001, 011, 021, 002, 012, 022) for each of the 
nine video sequences. On the whole, 54 video sequence 
variants, originating from three source video sequences, were 
evaluated. The three source video sequences are the Mobcal, 
Parkrun and Shields MPEG reference video sequences 
recorded by SVT Sveriges Television. The quantization 
parameters QP chosen for the two quality enhancement 
layers are 36 and 32 for the 320p and 576p encodings and 34 
and 30 for the 720p encodings, resulting in the bit-rates 
depicted in Table I.  

The three video sequences comprise contents of different 
complexity. Especially the Parkrun-sequence contains a large 
amount of details and high movement and therefore has a 
notably higher bit-rate compared to the other sequences. 
Enabling the rewriting functionality when encoding SVC 
leads to a 5.8% increase of the bit-rate [7] due to the changes 
in the SVC decoding process introduced in Section II. 
Rewriting the bit-streams to AVC decreased the bit-rates by 
17% to 35% in our tests. This corresponds to the bit-rate 
overhead introduced by SVC compared to single layer 
streams, in our case AVC. So up to 35% of bandwidth could 
be saved at the cost of the scalability of SVC. This can be 
useful in scenarios in which the advantages of SVC are no 
longer needed (e.g. because the required quality can be 
determined at the server). However, the SVC bit-rate 
overhead as compared to single layer streams can be reduced 
to less than 10% with optimized encoder control [1]. 

The evaluations were carried out on an Intel(R) 
Core(TM)2 Extreme CPU X9650 with four 3.00 GHz cores 
and 3 GB memory. The JSVM-rewriter is compared to the 
GOP-based parallel rewriter configured with different 
numbers of threads (1, 2, 4, 8, and 16). The number of 
rewriting threads has a linear dependency to the delay 
introduced by the GOP-based parallel rewriter: Due to the 
GOP-buffering described in Section III, a higher number of 
threads results in higher delay. For example, with a GOP size 
of 16, a frame rate of 25 fps and two GOPs rewritten in 
parallel, the minimum delay would be 2*16/25 (= 1.28) 
seconds plus the rewriting duration. Thus, the configuration 
of the GOP-based parallel rewriter has to be carefully chosen 
with respect to the delay requirements.  
The evaluation results are presented using stacked bar charts 
in Fig. 2-4. The height of the bars specifies the throughput in 
frames per second. On the x-axis the different tests are 
outlined: The JSVM-rewriter on the left hand side followed 
by the different configurations of the GOP-based parallel 
rewriter.  For every test there is a group of  three bars,  which  

TABLE I.  SVC BIT-RATES IN MB/S. 

 001 011 021 002 012 022 
Mobcal_320p 0.545 0.603 0.672 1.111 1.196 1.297
Parkrun_320p 1.342 1.465 1.549 2.569 2.826 2.986
Shields_320p 0.689 0.750 0.822 1.383 1.471 1.573
Mobcal_576p 1.279 1.420 1.592 2.554 2.757 3.002
Parkrun_576p 3.828 4.493 4.793 7.247 8.459 9.103
Shields_576p 1.524 1.670 1.842 3.036 3.241 3.484
Mobcal_720p 3.228 3.469 3.772 6.727 7.081 7.522
Parkrun_720p 11.584 14.258 15.984 21.924 26.348 29.707
Shields_720p 3.713 3.970 4.282 7.913 8.280 8.722

 

correspond to the different video sequences. Each bar is 
subdivided into the different DTQ layer combinations from 
001 to 022 in ascending order regarding the throughput. This 
means that the combination for which the throughput is the 
smallest can be  found  at  the bottom. Fig. 2 depicts the 
results for the spatial resolution 480x320p. 

One noticeable point when looking at the figures is the 
decreased performance of the GOP-based parallel rewriter in 
single threaded mode compared to the JSVM-rewriter. This 
overhead results mainly from our approach of simply storing 
the assembled GOPs to disk and calling the JSVM-rewriter 
for each GOP. It can be further observed that the throughput 
increases with the number of threads used, which reflects 
that our approach is effective. A strong increase of the 
throughput from 1 to 4 threads is evident, which is to be 
expected on the test machine with 4 CPU cores. The 
performance still improves for 8 and also for 16 threads in 
case of the spatial resolution of 480x320p. Although 
employing 4 threads at 4 cores, there are still CPU stalls due 
to system IO. These stalls are allocated by the additional 
threads, which leads to the slight improvements. From Fig. 3 
and Fig. 4 it can be observed that the performance 
deteriorates clearly when using 16 threads with higher spatial 
resolutions. The higher resolutions imply higher memory 
consumption, which is the reason for the system running out 
of memory at high loads. This leads to swapping operations 
and causes the performance of the rewriter to drop rapidly. 
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Figure 2. Rewriter evaluation for 480x320p sequences. 
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 Moreover the figures show that there is only a small 
difference between the three video sequences Mobcal, 
Parkrun and Shields. This means that the content of video 
sequences has no significant impact on the performance of 
the rewriter. 

It can be seen from Fig. 2 that all sequences at a spatial 
resolution of 480x320p and with a frame rate of 25 or 12.5 
fps can be rewritten in real-time by the GOP-based parallel 
rewriter configured with 4, 8, and 16 threads. For example, 
the JSVM-rewriter manages to rewrite the 012 variant of the 
Parkrun sequence at 22.0 fps and the single threaded GOP-
based parallel rewriter only at 14.5 fps. When configured to 
rewrite with two threads, the GOP-based parallel rewriter 
reaches 19.7 fps, with 4 threads 29.4 fps, 33.1 fps with 8 
threads, and 33.7 fps with 16 threads. The lower curve in 
Fig. 2 outlines the results for the 012 Parkrun sequence. The 
curves for all the other video sequences and layer 
combinations progress similarly with different offsets. The 
upper curve in Fig. 2 for example shows the behavior for 
variant 001. The variants with only one quality enhancement 
layer show a better throughput compared to the variants with 
two quality enhancement layers in all tests. 

Fig. 3 depicts the results for the video sequences encoded 
with a spatial resolution of 720x576p. Here, for the layer 
combination 012 of the Parkrun sequence only 7.5 (JSVM), 
5.2 (1 thread), 7.0 (2), 10.6 (4), 12.3 (8) and 8.0 (16) fps are 
achieved. These results indicate that it is not possible to 
rewrite PAL video sequences with 25 fps in real-time on the 
adopted platform. Only by dropping a temporal and a quality 
enhancement layer (DTQ 001, i.e., frame rate 12.5 fps), real-
time rewriting can be accomplished with a throughput of 
12.7 fps using 2 rewriting threads, 17.3 fps with 4 threads, 
and 17.9 fps with 8 threads (the upper curve in Fig. 3). 

Fig. 4 shows that real-time rewriting of 1280x720p SVC 
video sequences is not possible with any configuration of the 
GOP-based parallel rewriter. For the 001 variant the 
throughput of 8.7 fps with 8 threads is the maximum. 

V. CONCLUSION AND FUTURE WORK 
In this paper an improved version of the existing JSVM-

rewriter was introduced. The improvements can be 
subsumed as a parallelization of the rewriting process based 
on GOPs. The evaluation showed that despite the overhead 
introduced by the GOP-based parallel rewriter, notable 
performance improvements are accomplished, especially for 
the configurations with 4 and 8 rewriting threads. With our 
test setup, real-time rewriting with the GOP-based parallel 
rewriter is possible for resolutions of 480x320p at 25 fps and 
720x576p at 12.5 fps. Thus, further enhancements of the 
presented approach are still necessary in order to support 
higher resolutions. A first improvement of the GOP-based 
parallel rewriter would be a better integration of the JSVM-
rewriter. This way the overhead of invoking the command 
processor to execute the JSVM-rewriter for each GOP could 
be avoided and instead of storing each GOP to disk, 
rewriting could take place in memory. A next step would be 
a profiling of the existing JSVM-rewriter in order to find out 
where code optimizations would be reasonable. Profiling 
would also give the information if the integration of existing 
improved SVC decoders could bring some performance gain. 
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Figure 3. Rewriter evaluation for 720x576p sequences.
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Figure 4. Rewriter evaluation for 1280x720p sequences. 
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