
Towards an Improved SVC-to-AVC Rewriter

Michael Sablatschan, Michael Ransburg, and Hermann Hellwagner
Multimedia Communication (MMC) Research Group, Institute of Information Technology (ITEC)

Klagenfurt University
Klagenfurt, Austria

E-mail: firstname.lastname@itec.uni-klu.ac.at

Abstract—The Scalable Video Coding (SVC) extension of the
H.264/AVC (AVC) video coding standard features spatial,
quality and temporal scalability. Backwards compatibility with
legacy decoding devices is maintained through an H.264/AVC
compliant base layer, which represents the lowest quality of an
SVC bit-stream. However, it is often desirable to also provide
the higher quality layers to legacy H.264/AVC devices. This is
achieved by a process commonly known as “bit-stream
rewriting”, which allows for an efficient SVC to AVC
conversion by exploiting the similarities of the two codecs. This
paper introduces an improved version of the existing JSVM
reference software rewriter (JSVM-rewriter). The
improvements include a better run-time performance through
parallel processing, as well as applicability in streaming
scenarios. A detailed evaluation provides performance
measurements for the improved rewriter and compares it to
the existing JSVM-rewriter. The evaluation shows that notable
performance improvements can be achieved using the
presented approach. The paper concludes on how the rewriter
could be further improved.

Keywords:SVC-to-AVC Rewriting; H.264/SVC; Transcoding;
Media Adaptation

I. INTRODUCTION
H.264/SVC [1] is a block-based hybrid scalable video

codec, which introduces scalability mechanisms in three
different scalability dimensions. First, it offers temporal
scalability, which refers to the embedding of the video
content at different temporal resolutions (frame rates).
Second, spatial scalability allows incorporating multiple
spatial resolutions (e.g., HD, SD) of the same video in a
single bit-stream. Finally, quality scalability (or SNR
scalability) refers to the fact that different quality variations
of the same video can be embedded into a single bit-stream
trading off visual distortion and required video bit-rate.

The scalability of the encoded video bit-stream is
achieved by a layered approach. An H.264/SVC bit-stream
comprises an H.264/AVC-conformant base layer which
represents video at the lowest quality that can be extracted
from the bit-stream. Building on top of the base layer,
enhancement layers can be used to refine the video quality
and/or the spatial resolution of the video. As a consequence,
the adaptation of the scalable video bit-stream is as simple as
truncating certain enhancement layers or parts thereof from
the initial bit-stream .

Since the bit-stream syntax and coding tools of the base
layer are backward-compatible to H.264/AVC, this part of

the bit-stream can be decoded by any legacy H.264/AVC
device. However, as the base layer only represents the lowest
quality of the H.264/SVC bit-stream, it is often desirable to
also provide the higher quality representations to legacy
H.264/AVC devices. This is achieved by a process named
“bit-stream rewriting” [2]. It allows to efficiently transform
an H.264/SVC bit-stream into an H.264/AVC bit-stream
without loss by exploiting the similarities of the two codecs,
i.e., without requiring complete transcoding of the bit-
stream. The JSVM-rewriter, which implements this process,
is available as part of the Joint Software Video Model
(JSVM) [3].

This paper introduces an improved version of the JSVM-
rewriter, which is used within the European project
SCALNET [4]. The main improvement is the parallel
rewriting of different segments of the H.264/SVC bit-stream.
Past research work has been carried out on parallel encoding
and decoding of bit-streams, including parallelism based on
Groups of Pictures (GOPs), e.g. in [5] and [6]. In the
approach presented in this paper, this GOP-based parallel
approach is applied on the aforementioned bit-stream
rewriting process. In the remainder of this paper,
H.264/AVC is denoted as AVC, and H.264/SVC as SVC.

Section II details the bit-stream rewriting process.
Section III introduces our improvements to the existing
JSVM-rewriter. Section IV evaluates the run-time
performance of the improved rewriter for different layer
configurations of three reference video bit-streams. Finally,
Section V concludes this paper and provides an outlook to
future research in this area.

II. BIT-STREAM REWRITING
SVC-to-AVC bit-stream rewriting can be subsumed as

the low-complexity combination of interdependent layers of
a scalable multi-layer SVC bit-stream to a single-layer AVC
bit-stream. SVC-to-AVC bit-stream rewriting is only defined
for the case of quality scalability; both Coarse-Grain
Scalability (CGS) and Medium Grain Scalability (MGS) are
supported. It is not possible to convert a spatially scalable
SVC bit-stream to an AVC bit-stream. In order to enable
SVC-to-AVC bit-stream rewriting, some modifications to the
SVC decoding process were required. The two major aspects
which have been changed affect the inter-layer intra-
prediction and the residual prediction.

In the residual prediction residual data are mapped from
the reference layer to the enhancement layer by accumulating
transform coefficients. In order to be compatible with the

2010 Second International Conferences on Advances in Multimedia

978-0-7695-4068-9/10 $26.00 © 2010 IEEE

DOI 10.1109/MMEDIA.2010.27

18

AVC syntax though, it is necessary to perform the mapping
by accumulating the transform coefficient level values, i.e.,
without rescaling (inverse quantizing) the transform
coefficients. This required change is accomplished by scaling
the transform coefficient levels by the ratio of the
quantization intervals of the reference and the enhancement
layers (SVC Scaling).

The inter-layer intra-prediction in SVC predicts intra-
frame coded blocks in the enhancement layer from
reconstructed pixel values of neighboring blocks within the
reference layer. However, these pixel values are not available
in the enhancement layer. Thus a single layer AVC decoding
process cannot be applied. This problem is solved by
projecting the prediction data directly to the enhancement
layer instead of reconstructing the intensity values in the
reference layer for prediction. This way it is possible to
perform intra-frame prediction as in single-layer AVC
coding.

Fig. 1 depicts the rewriting process. It can be seen that
the residual data is accumulated on the transform coefficient
level values. Both the reference layer and the enhancement
layer are entropy decoded, but the intensity data are not fully
reconstructed. The results of the entropy decoding steps are
the quantized transform coefficients. In case of the reference
layer these are scaled, so that the quantized residuals can be
accumulated in the next step. After that the combined
coefficients are rewritten to an AVC bit-stream. The
rewriting comprises the entropy encoding and the writing of
the prediction data into the AVC bit-stream.

Compared to full transcoding, i.e. completely decoding
the SVC stream and then encoding to AVC, this rewriting
process avoids the computationally expensive inverse
quantization and inverse transform steps for decoding the
SVC bit-stream, as well as the transform and quantization
steps for encoding to AVC.

III. THE GOP-BASED PARALLEL REWRITER
The GOP-based parallel rewriter was developed in the

context of the SCALNET project and thus had to fulfill
requirements according to the scenarios identified in the
project.

A first requirement was that the rewriter needs to accept
a streamed video as input, rather than reading the video from
a file on the disk. This is needed for several reasons, which
correspond to the different video streaming scenarios within
the SCALNET project: 1) the SVC video is encoded on the
fly, as it is usual, e.g., in live streaming scenarios; 2) on-the-
fly filtering of SVC enhancement layers is performed before
the SVC stream is rewritten in order to, e.g., react to a
changing usage environment; 3) rewriting is performed
within the home network, in order to exploit the SVC
scalability features in the core network, but still service AVC
legacy devices.

Moreover, although the JSVM-rewriter inherently has a
lower execution time compared to full transcoding, it needs
to be further improved in order to be applicable in real-time
scenarios of the SCALNET project with high quality
affordances. Our approach to satisfy the requirement of
improved performance can be described as parallelization of

Figure 1. Block diagram of the SVC-to-AVC rewriting process.

the rewriting process based on Group Of Pictures (GOPs). A
GOP is a group of successive frames within a video stream.
In the context of this paper, the GOP size is considered to be
the number of frames between two Instantaneous Decoding
Refresh (IDR)-frames plus the IDR-frame at the beginning
of the GOP. As IDR-frames can be decoded without taking
reference to previous frames and each GOP starts with an
IDR-frame, GOPs can be decoded independently.

We apply this GOP-concept to our “GOP-based parallel
rewriter”. The idea is to rewrite several GOPs in parallel in
order to improve the performance of the JSVM-rewriter. The
GOP-based parallel approach also serves the requirement of
the video streaming ability. The incoming SVC stream is
buffered and assembled into GOPs until a configurable
number of N GOPs is received. The assembled GOPs are
then stored to disk and rewritten in parallel by N instances of
the JSVM-rewriter before they are streamed into the network
again. For an efficient exploitation of the GOP-based parallel
rewriter, it is installed on a multi-core system which allocates
the rewriting threads to different CPU cores. One drawback
of buffering GOPs is the increased delay which depends on
the number of buffered GOPs. Amongst other things this is
explained in more detail in the next section in which these
basic improvements to the JSVM-rewriter are evaluated.

IV. EVALUATION
In order to evaluate the performance of the parallel

rewriter compared to the JSVM-rewriter (version
JSVM_9_18), three different video sequences were encoded
in different variations. First, each sequence was encoded
with the resolutions 480x320p, 720x576p and 1280x720p,
resulting in nine video sequences. The different resolutions
were not encoded into a single SVC bit-stream, as it is not
possible to rewrite spatially scalable SVC bit-streams. The
resolutions were chosen on the basis of existing end-devices.
Each of the scalable sequences contains the temporal
resolutions 12.5 fps, 25 fps and 50 fps. 25 fps was chosen
since it is the frame rate used in the PAL (720x576p)
television standard, 50 fps is commonly used for the
1280x720p format and 12.5 fps was picked as an additional
scalability option, suitable e.g. for mobile devices. A
constraint in choosing the frame rate is imposed by the
hierarchical prediction structure with dyadic temporal
enhancement layers which only allows doubling the frame
rate between different enhancement layers [1].

Moreover two MGS quality enhancement layers are
included in each of the SVC bit-streams. MGS was chosen as
quality scalability type, but it is noted that CGS leads to

19

similar results. All test sequences have a GOP size of 16.
Each of the nine different SVC video sequences has zero
dependency enhancement layers D (i.e., no spatial or CGS
enhancement layers), two temporal enhancement layers T
and two quality enhancement layers Q, denoted as DTQ 022.
The Base Layer was encoded at the SVC Main profile and
the enhancement layers at the Scalable High profile. It would
be meaningless to rewrite the base layer and its temporal
enhancement layers because it is already compatible with
AVC. So the focus lies on the quality enhancement layers
and their different frame rates which results in six DTQ layer
combinations (001, 011, 021, 002, 012, 022) for each of the
nine video sequences. On the whole, 54 video sequence
variants, originating from three source video sequences, were
evaluated. The three source video sequences are the Mobcal,
Parkrun and Shields MPEG reference video sequences
recorded by SVT Sveriges Television. The quantization
parameters QP chosen for the two quality enhancement
layers are 36 and 32 for the 320p and 576p encodings and 34
and 30 for the 720p encodings, resulting in the bit-rates
depicted in Table I.

The three video sequences comprise contents of different
complexity. Especially the Parkrun-sequence contains a large
amount of details and high movement and therefore has a
notably higher bit-rate compared to the other sequences.
Enabling the rewriting functionality when encoding SVC
leads to a 5.8% increase of the bit-rate [7] due to the changes
in the SVC decoding process introduced in Section II.
Rewriting the bit-streams to AVC decreased the bit-rates by
17% to 35% in our tests. This corresponds to the bit-rate
overhead introduced by SVC compared to single layer
streams, in our case AVC. So up to 35% of bandwidth could
be saved at the cost of the scalability of SVC. This can be
useful in scenarios in which the advantages of SVC are no
longer needed (e.g. because the required quality can be
determined at the server). However, the SVC bit-rate
overhead as compared to single layer streams can be reduced
to less than 10% with optimized encoder control [1].

The evaluations were carried out on an Intel(R)
Core(TM)2 Extreme CPU X9650 with four 3.00 GHz cores
and 3 GB memory. The JSVM-rewriter is compared to the
GOP-based parallel rewriter configured with different
numbers of threads (1, 2, 4, 8, and 16). The number of
rewriting threads has a linear dependency to the delay
introduced by the GOP-based parallel rewriter: Due to the
GOP-buffering described in Section III, a higher number of
threads results in higher delay. For example, with a GOP size
of 16, a frame rate of 25 fps and two GOPs rewritten in
parallel, the minimum delay would be 2*16/25 (= 1.28)
seconds plus the rewriting duration. Thus, the configuration
of the GOP-based parallel rewriter has to be carefully chosen
with respect to the delay requirements.
The evaluation results are presented using stacked bar charts
in Fig. 2-4. The height of the bars specifies the throughput in
frames per second. On the x-axis the different tests are
outlined: The JSVM-rewriter on the left hand side followed
by the different configurations of the GOP-based parallel
rewriter. For every test there is a group of three bars, which

TABLE I. SVC BIT-RATES IN MB/S.

 001 011 021 002 012 022
Mobcal_320p 0.545 0.603 0.672 1.111 1.196 1.297
Parkrun_320p 1.342 1.465 1.549 2.569 2.826 2.986
Shields_320p 0.689 0.750 0.822 1.383 1.471 1.573
Mobcal_576p 1.279 1.420 1.592 2.554 2.757 3.002
Parkrun_576p 3.828 4.493 4.793 7.247 8.459 9.103
Shields_576p 1.524 1.670 1.842 3.036 3.241 3.484
Mobcal_720p 3.228 3.469 3.772 6.727 7.081 7.522
Parkrun_720p 11.584 14.258 15.984 21.924 26.348 29.707
Shields_720p 3.713 3.970 4.282 7.913 8.280 8.722

correspond to the different video sequences. Each bar is
subdivided into the different DTQ layer combinations from
001 to 022 in ascending order regarding the throughput. This
means that the combination for which the throughput is the
smallest can be found at the bottom. Fig. 2 depicts the
results for the spatial resolution 480x320p.

One noticeable point when looking at the figures is the
decreased performance of the GOP-based parallel rewriter in
single threaded mode compared to the JSVM-rewriter. This
overhead results mainly from our approach of simply storing
the assembled GOPs to disk and calling the JSVM-rewriter
for each GOP. It can be further observed that the throughput
increases with the number of threads used, which reflects
that our approach is effective. A strong increase of the
throughput from 1 to 4 threads is evident, which is to be
expected on the test machine with 4 CPU cores. The
performance still improves for 8 and also for 16 threads in
case of the spatial resolution of 480x320p. Although
employing 4 threads at 4 cores, there are still CPU stalls due
to system IO. These stalls are allocated by the additional
threads, which leads to the slight improvements. From Fig. 3
and Fig. 4 it can be observed that the performance
deteriorates clearly when using 16 threads with higher spatial
resolutions. The higher resolutions imply higher memory
consumption, which is the reason for the system running out
of memory at high loads. This leads to swapping operations
and causes the performance of the rewriter to drop rapidly.

012

012

012

012

012 012

002

002

002

002
002 002

022

022

022

022

022 022

011

011

011

011

011
011

001

001

001

001
001 001

021

021

021

021

021 021

012

012

012

012

012 012

002

002

002

002 002 002

022

022

022

022

022 022

011

011

011

011

011
011

001

001

001

001 001 001

021

021

021

021

021 021

012

012

012

012

012 012

002

002

002

002 002 002

022

022

022

022

022 022

011

011

011

011

011 011

001

001

001

001
001 001

021

021

021

021

021 021

10

15

20

25

30

35

40

45

50

55

60

65

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

1 (jsvm) 1 2 4 8 16
number of threads

Pa
rk

ru
n_

32
0p

Pa
rk

ru
n_

32
0p

Pa
rk

ru
n_

32
0p

Pa
rk

ru
n_

32
0p

Pa
rk

ru
n_

32
0p

Pa
rk

ru
n_

32
0p

Sh
ie

ld
s_

32
0p

Sh
ie

ld
s_

32
0p

Sh
ie

ld
s_

32
0p

Sh
ie

ld
s_

32
0p

Sh
ie

ld
s_

32
0p

Sh
ie

ld
s_

32
0p

M
ob

ca
l_

32
0p

M
ob

ca
l_

32
0p

M
ob

ca
l_

32
0p

M
ob

ca
l_

32
0p

M
ob

ca
l_

32
0p

M
ob

ca
l_

32
0p

Figure 2. Rewriter evaluation for 480x320p sequences.

20

 Moreover the figures show that there is only a small
difference between the three video sequences Mobcal,
Parkrun and Shields. This means that the content of video
sequences has no significant impact on the performance of
the rewriter.

It can be seen from Fig. 2 that all sequences at a spatial
resolution of 480x320p and with a frame rate of 25 or 12.5
fps can be rewritten in real-time by the GOP-based parallel
rewriter configured with 4, 8, and 16 threads. For example,
the JSVM-rewriter manages to rewrite the 012 variant of the
Parkrun sequence at 22.0 fps and the single threaded GOP-
based parallel rewriter only at 14.5 fps. When configured to
rewrite with two threads, the GOP-based parallel rewriter
reaches 19.7 fps, with 4 threads 29.4 fps, 33.1 fps with 8
threads, and 33.7 fps with 16 threads. The lower curve in
Fig. 2 outlines the results for the 012 Parkrun sequence. The
curves for all the other video sequences and layer
combinations progress similarly with different offsets. The
upper curve in Fig. 2 for example shows the behavior for
variant 001. The variants with only one quality enhancement
layer show a better throughput compared to the variants with
two quality enhancement layers in all tests.

Fig. 3 depicts the results for the video sequences encoded
with a spatial resolution of 720x576p. Here, for the layer
combination 012 of the Parkrun sequence only 7.5 (JSVM),
5.2 (1 thread), 7.0 (2), 10.6 (4), 12.3 (8) and 8.0 (16) fps are
achieved. These results indicate that it is not possible to
rewrite PAL video sequences with 25 fps in real-time on the
adopted platform. Only by dropping a temporal and a quality
enhancement layer (DTQ 001, i.e., frame rate 12.5 fps), real-
time rewriting can be accomplished with a throughput of
12.7 fps using 2 rewriting threads, 17.3 fps with 4 threads,
and 17.9 fps with 8 threads (the upper curve in Fig. 3).

Fig. 4 shows that real-time rewriting of 1280x720p SVC
video sequences is not possible with any configuration of the
GOP-based parallel rewriter. For the 001 variant the
throughput of 8.7 fps with 8 threads is the maximum.

V. CONCLUSION AND FUTURE WORK
In this paper an improved version of the existing JSVM-

rewriter was introduced. The improvements can be
subsumed as a parallelization of the rewriting process based
on GOPs. The evaluation showed that despite the overhead
introduced by the GOP-based parallel rewriter, notable
performance improvements are accomplished, especially for
the configurations with 4 and 8 rewriting threads. With our
test setup, real-time rewriting with the GOP-based parallel
rewriter is possible for resolutions of 480x320p at 25 fps and
720x576p at 12.5 fps. Thus, further enhancements of the
presented approach are still necessary in order to support
higher resolutions. A first improvement of the GOP-based
parallel rewriter would be a better integration of the JSVM-
rewriter. This way the overhead of invoking the command
processor to execute the JSVM-rewriter for each GOP could
be avoided and instead of storing each GOP to disk,
rewriting could take place in memory. A next step would be
a profiling of the existing JSVM-rewriter in order to find out
where code optimizations would be reasonable. Profiling
would also give the information if the integration of existing
improved SVC decoders could bring some performance gain.

VI. ACKNOWLEDGEMENTS
This work is supported by the Österreichische

Forschungsförderungsgesellschaft mbH (FFG) in the context
of the Celtic SCALNET (CP5-022) project.

REFERENCES
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable

video coding extension of the H.264/AVC standard”, IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 9, 1103–1120, Sept. 2007.

[2] A. Segall, “CE 8: SVC-to-AVC Bit-Stream Rewriting for Coarse
Grain Scalability,” Joint Video Team, Doc. JVT-V035, Jan. 2007.

[3] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Joint
Scalable Video Model”, Doc. JVT-X202, 2007.

[4] SCALNET project, http://www.scalnet.info, retrieved Nov. 2009.
[5] A. Rodriguez, A. Gonzalez, M.P. Malumbres, “Hierarchical

parallelization of an h.264/avc video encoder”, Proc. Int. Symp. on
Parallel Computing in Electrical Engineering, 363-368, Sept. 2006.

[6] A. Bilas , J. Fritts , J.P. Singh, Real-Time Parallel MPEG-2 Decoding
in Software, Proc. Int.. Symp. on Parallel Processing, 197-203,
Apr.1997.

[7] A. Segall and J. Zhao, “Bit-Stream Rewriting for SVC-to-AVC
Conversion,” 15th IEEE Int. Conf. on Image Processing, Oct. 2008.

012

012

012

012

012

012

002

002

002

002
002

002022

022

022

022

022

022
011

011

011

011

011

011
001

001

001

001
001

001
021

021

021

021

021

021

012

012

012

012

012

012

002

002

002

002 002

002
022

022

022

022

022

022
011

011

011

011

011

011
001

001

001

001
001

001
021

021

021

021

021

021

012

012

012

012

012

012
002

002

002

002
002

002022

022

022

022

022

022

011

011

011

011

011

011
001

001

001

001
001

001

021

021

021

021

021

021

4

8

12

16

20

24

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

1 (jsvm) 1 2 4 8 16
number of threads

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

M
ob

ca
l_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Pa
rk

ru
n_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p

Sh
ie

ld
s_

57
6p Sh

ie
ld

s_
57

6p

Sh
ie

ld
s_

57
6p

Figure 3. Rewriter evaluation for 720x576p sequences.

012

012

012

012

012

002

002

002

002 002

022

022

022

022

022

011

011

011

011

011

001

001

001

001 001

021

021

021

021

021

012

012

012

012

012

002 002

002

002 002

022

022

022

022

022

011

011

011

011

011

001

001

001

001 001

021

021

021

021

021

012

012

012

012

012

002

002

002

002 002

022

022

022

022

022

011

011

011

011

011

001

001

001

001 001

021

021

021

021

021

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
)

1 (jsvm) 1 2 4 8 16
number of threads

Sh
ie

ld
s_

72
0p

Sh
ie

ld
s_

72
0p

Sh
ie

ld
s_

72
0p

Sh
ie

ld
s_

72
0p

Sh
ie

ld
s_

72
0p

M
ob

ca
l_

72
0p

M
ob

ca
l_

72
0p

M
ob

ca
l_

72
0p

M
ob

ca
l_

72
0p

M
ob

ca
l_

72
0p

M
ob

ca
l_

72
0p

Sh
ie

ld
s_

72
0p

Pa
rk

ru
n_

72
0p

Pa
rk

ru
n_

72
0p

Pa
rk

ru
n_

72
0p

Pa
rk

ru
n_

72
0p Pa

rk
ru

n_
72

0p

Pa
rk

ru
n_

72
0p

Figure 4. Rewriter evaluation for 1280x720p sequences.

21

