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ABSTRACT
As social networks have become more pervasive, they have
changed how we interact socially. The traditional TV experi-
ence has drifted from an event at a fixed location with family
or friends to a location-independent and distributed social
experience. In addition, more and more Video On-Demand
services have adopted pull-based streaming. In order to pro-
vide a synchronized and immersive distributed TV expe-
rience we introduce self-organized Inter-Destination Multi-
media Synchronization (IDMS) for adaptive media stream-
ing. In particular, we adapt the principles of IDMS to
MPEG-DASH to synchronize multimedia playback among
geographically distributed peers. We introduce session man-
agement to MPEG-DASH and propose a Distributed Con-
trol Scheme (DCS) to negotiate a reference playback times-
tamp among the peers participating in an IDMS session. We
evaluate our DCS with respect to scalability and the time re-
quired to negotiate the reference playback timestamp. Fur-
thermore, we investigate how to compensate for asynchro-
nism using Adaptive Media Playout (AMP) and define a
temporal distortion metric for audio and video which allows
the impact of playback rate variations to be modeled with
respect to QoE. This metric is evaluated based on a subjec-
tive quality assessment using crowdsourcing.

Categories and Subject Descriptors: C.2.4 Computer-
Communication Networks: Distributed Systems; H.5.1 In-
formation Interfaces and Presentation:Multimedia Informa-
tion Systems

General Terms: Algorithms, Design, Measurement, Ex-
perimentation

Keywords: Inter-Destination Multimedia Synchronization;
Adaptive Media Streaming; Self-Organization; Quality of
Experience; Dynamic Adaptive Streaming over HTTP
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1. INTRODUCTION
Over the past decade social communication has evolved

extensively through the introduction of platforms such as
Facebook, Twitter, and Google+. These cutting-edge forms
of social interaction place new requirements on the underly-
ing technologies that help us create, distribute and view mul-
timedia content. The traditional TV scenario as we know
it, watching TV with friends and family, is becoming in-
creasingly location independent with people wanting to ex-
perience multimedia together even if they are geographically
distributed. This new form of togetherness utilizes real-time
communication channels such as text, voice, or even video
telephony in order to share the experience.

The presence of a real-time communication channel re-
quires a synchronized playback of the multimedia among
the participating users. Asynchronism may lead to an un-
pleasant viewing experience and may diminish the feeling of
togetherness of the users as reported in [8]. Consider for ex-
ample, if, out of a group of friends watching a soccer game
together using multiple devices, some experience playback
that is a few seconds ahead of the others. This kind of asyn-
chronism between individual users may lead to a low system
acceptance. Thus, playback synchronization is a key fea-
ture of such a system. In general, the synchronization of the
playback among geographically distributed users is termed
Inter-Destination Multimedia Synchronization (IDMS) [19].
The technical challenges of IDMS can be summarized based
on the type of streaming technology employed (e.g., pull- or
push-based), the selection of an appropriate synchronization
point, and in cases where asynchronism does occur, an ap-
propriate mechanism should be used to smoothly and imper-
ceptibly synchronize the multimedia playback at the peers.

Our approach differs from existing push-based IDMS ap-
proaches that utilize RTP/RTCP receiver reports to signal
timing and control information and instead extends IDMS to
pull-based over-the-top streaming by adopting MPEG Dy-
namic Adaptive Streaming over HTTP (MPEG-DASH) [23].
Specifically, it relies on the following mechanisms: i) Ses-
sion management which is responsible for managing the
session to which peers belong; ii) Signalling of timing and
control information allows the exchange of timing infor-
mation and, if necessary, control information between peers;
iii) Negotiation on a reference playback timestamp
deals with the selection of a playback timestamp within a
session to which the peers have to synchronize their play-
back; iv) Carrying out the synchronization overcome
the identified asynchronism by modifying the multimedia
playback of each peer.



Figure 1: Architecture of IDMS for DASH.

In an RTP/RTCP-based environment these mechanisms
are typically implemented at the server level whereas MPEG-
DASH adopts a client-centric approach and, hence, migrates
these mechanisms to the client. This facilitates simple HTTP
servers that provide content in an MPEG-DASH compli-
ant format (e.g., segmented ISO Base Media File Format or
MPEG-2 Transport Stream). Furthermore, MPEG-DASH
provides a Media Presentation Description (MPD) which
describes the various spatial, temporal and quality dimen-
sions of the content as well as different encodings. The MPD
also contains information on the location of the content with
support for multiple content servers [23].

Figure 1 illustrates our IDMS approach for pull-based
streaming and, in particular, for MPEG-DASH. Rather than
modifying the server side for IDMS, we introduce session
management by defining IDMS Session Objects (ISOs).
These ISOs are referenced from within the MPD and are
stored at the server providing the MPD (i.e., MPD Server).
We assume that there is a dedicated MPD Server that han-
dles MPD requests from peers.

The contribution of this paper is as follows: 1) Section 3.1
discusses our MPD extensions by including ISOs. Our actual
IDMS approach adopts a Distributed Control Scheme (DCS)
where peers within a session build a peer-to-peer (P2P) over-
lay for signalling timing information and negotiating
on a reference playback timestamp. 2) Section 3.2 de-
scribes the creation of the P2P overlay and how the play-
back timestamp is negotiated among the peers within a ses-
sion. Furthermore, we address the scalability and reacha-
bility of peers in the P2P overlay. When peers in a session
have agreed on a reference playback timestamp, the question
arises how to overcome the identified asynchronism at each
peer (i.e., carrying out the synchronization). 3) Section
3.3 proposes a new approach that adopts Adaptive Media
Playout (AMP) and aims on minimizing the impact on the
Quality of Experience (QoE) when synchronizing the play-
back. In Section 4 we provide an evaluation of our IDMS
approach and Section 5 concludes the paper.

2. RELATED WORK

2.1 Inter-Destination Multimedia Synchroniz-
ation

The common assumption of most IDMS solutions is that
clocks are already synchronized using existing time protocols
(e.g., the Network Time Protocol (NTP) or the Precision
Time Protocol (PTP)). Thus, most schemes only deal with
the signalling of timing and control information to achieve
IDMS among the participating clients [2, 19]. Current IDMS
solutions tend to be tailored to very specific use cases, for
example, the synchronization of multiplayer online games
[12] or synchronization in collaborative work [11]. In general,

the existing solutions can be grouped into three different
schemes [2, 19]:

Master-/Slave (MS) scheme uses a dedicated master
for signalling timing information which is elected from the
participating peers or determined by the media source and
thus implies a single point of failure. If the selected master
leaves the sessions a new master must be selected or elected
from the peers. Furthermore, the peers have to trust that
the control and timing information received from the master
is correct. The advantage of this scheme is that the content
provider is not required to provide a central instance for
signalling control and timing information. This allows the
re-election of a master if the previously elected master leaves
the IDMS session.

Synchronization Master Scheme (SMS) is a central-
ized approach where the synchronization is controlled by a
synchronization master which is either the media source or
a separate node (not a peer). The synchronization master
collects timing information and sends timing instruction to
which the peers have to adhere. This approach suffers from
scalability issues because a central instance can only han-
dle a certain number of peers. Furthermore, if more than
one synchronization instance is used, dedicated communi-
cation must be implemented between them. However, the
approach has the advantage that the peers can trust the syn-
chronization instance because it is in control of the content
provider.

Distributed Control Scheme (DCS) uses distributed
protocols to determine a common playback timestamp to
which the peers may synchronize. Here, timing informa-
tion is exchanged in a P2P manner among the peers. This
scheme has the highest robustness in terms of overall fail-
ure probability as the content provider is only required to
host the multimedia content. Nevertheless, the peers have
to trust each other. Furthermore, Network Address Trans-
lators (NATs) may cause problems, especially if the peers
are behind symmetric NATs.

In [24] the authors present a Master-/Slave scheme to
achieve IDMS, which adopts the local lag and time warp
algorithm to compensate for media playback inconsistencies
[14]. Therefore, a peer or the source is selected as the master
to which the media playback of all clients is synchronized.
In [4] and [16] a SMS approach using RTP and RTCP for
achieving IDMS is presented. Therefore, the receiver report
message and the application-specific message of RTCP were
extended. In a Distributed Control Scheme all the clients
signal timing information by either unicasting or multicas-
ting messages to each other. [9] presents the iNEM4U ap-
proach where a DCS is used to achieve IDMS among hetero-
geneous network infrastructures, thus, providing IDMS as a
service using the synchronized multimedia integration lan-
guage. Furthermore, it introduces iSession for the session
management, which provides an XML description of each
session including the users or clients, content source, and
other service-specific data.

A very recent DCS for achieving IDMS which uses an ex-
tended version of RTCP messages is presented by [18]. The
proposed DCS is designed on top of RTP/RTCP and assigns
peers to a specific cluster. Within a cluster the peers regu-
larly exchange RTCP RR packets including playback times-
tamps in order to achieve intra-cluster synchronization. This
solution uses multicast for exchanging the RTCP RR pack-
ets between the peers. Another DCS which uses multicast



for intra-stream synchronization is presented in [12]. It ap-
pears that in contrast to our approach, most existing DCSs
use multicast. We believe that it is risky to presume that
multicast is supported by the open Internet. Furthermore,
our DCS approach does not require a fully connected net-
work where all peers can communicate with each other and
our DCS approach is not directly coupled with the stream-
ing technology employed. Pull-based streaming, typically
MPEG-DASH, is used as an enabler and to store the session
information that is needed to build the application layer P2P
overlay (cf. Figure 1). As a result, our DCS approach may
also be used in conjunction with other streaming technolo-
gies.

A crucial aspect of IDMS systems, specifically in distributed
systems, is the selection of a reference or master to which
other peers synchronize their media playback. In [3] three
different reference selection policies are discussed: i) syn-
chronization to the slowest peer, i.e., the client that is dis-
playing the lowest frame number among the group of clients;
ii) synchronization to the fastest peer, i.e., the client that is
displaying the highest frame number; and iii) synchroniza-
tion to the average frame number among a group of clients.

These policies assume that the playback is paused or au-
dio/video frames are skipped to compensate for asynchro-
nism which is in contrast to our approach where the play-
back rate is dynamically increased or decreased.

2.2 Adaptive Media Playout
Adaptive media playout (AMP) deals with overcoming the

asynchronism and a common approach is adopting the skip-
ping or pausing of media units. In [10] the effect of stalls
during media playback was subjectively assessed. The re-
sults indicate that the Mean Opinion Score (MOS) degrades
with an increase in stalls during media playback. Thus,
using stalls to overcome asynchronism may lead to a low
QoE for the users. AMP was introduced to overcome these
shortcomings, and the approach described in [17] deals with
increasing or decreasing the playback rate of media units
without considering the influence on the QoE of the user.
Furthermore, we assume that the playback rate of both au-
dio and the video domain are altered simultaneously and
preserving the inter-stream synchronization between audio
and video.

Initially, AMP was thought to be used to compensate for
buffer under-flows or over-flows by decreasing or increasing
the media playback rate to allow the stabilization of the
playback buffer. The authors of [25] modelled the adapta-
tion of the media playback rate depending on the buffer vari-
ance. In [13] the buffer fill state was used to decide whether
the playback rate should be increased/decreased. All these
schemes try to avoid buffer under-flows or buffer over-flows
in an error prone environment. In [6] the authors attempt
to combine the decision with content features and use the
spatial resolution of the video frames to influence the adap-
tive playback in wireless video streaming. We apply AMP
to overcome identified asynchronisms and try to find time
windows in the content where a playback rate increase or
decrease has the least impact on the QoE.

The synchronization thresholds for IDMS using different
communication methods were investigated by [8]. The au-
thors found that the upper bound on acceptable asynchro-
nism varies depending on the communication tool. For ex-
ample, when users are provided with a voice communication

tool, asynchronism is only subjectively perceived for delays
greater than two seconds.

3. SELF-ORGANIZED IDMS FOR
ADAPTIVE MEDIA STREAMING

3.1 Session Management
We adopt MPEG-DASH [23] as an enabler for our IDMS

approach to pull-based streaming, extending the MPD with
so-called IDMS Session Objects (ISOs) that are matched
against a session key provided by users. Nevertheless, our so-
lution remains compliant to the MPEG-DASH standard be-
cause non-IDMS peers will ignore the additional session de-
scription when parsing the MPD. Pull-based streaming such
as MPEG-DASH represents multimedia content as equally
sized, self-contained time units (e.g, 2s, 4s, 10s, etc.) which
are referred to as segments. These segments may be stored
as separate files or are indexed by byte ranges in a con-
tiguous file. Additionally, the multimedia content may be
provided in different representations – described with the
MPD – offering various scalability (e.g., spatial, temporal,
quality) of the multimedia content. The adaptation between
representations takes place at segment boundaries.

Definition: In the context of IDMS we define an ISO as
a time bounded entity to which a set of peers is assigned
to. Each ISO shall have an unique identifier for a certain
multimedia content.

We assume that an ISO is identified by an unique ses-
sion key which is provided by the user or the application.
The session key is signalled by adding it to the HTTP GET
message that requests a MPD from the MPD Server. As
peers may use Network Address Translation (NAT), Session
Traversal Utilities for NAT (STUN, RFC 5389) is applied
to determine the public IP address and port number to be
used during the synchronization. We use the same ports for
STUN negotiation and our synchronization protocols. Each
peer communicates with a STUN server (in our case the
MPD Server) in order to determine whether the peer is be-
hind a NAT and, if available, the type of NAT. Appendix
A outlines how the type of the NAT is identified and how it
can be traversed.

The resulting public IP (IPv4 or IPv6) address, port num-
ber, and NAT type is added along with the session key to
the initial HTTP GET message that requests the MPD from
the MPD Server as URL parameters. The initiation of an
IDMS session and the provision of the session key is out of
the scope of this paper. With the initiation of an IDMS ses-
sion an ISO with a specific session key is created. The MPD
Server adds the peers that request a certain MPD with a
specific session key to the corresponding ISO. When a peer
requests a MPD, the MPD Server adds the peer to the ISO
associated with the session key and returns both. As peers
may join the session at different points in time, each peer
may only have partial information about the actual number
of peers in an IDMS session.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="
http://www.aau.at/DASH/Session" targetNamespace="http://www
.aau.at/DASH/Session" xmlns:xlink="http://www.w3.org/1999/
xlink">

<xs:import namespace="http://www.w3.org/1999/xlink"
schemaLocation="xlink.xsd"/>

<xs:element name="IDMSSessionObject">
<xs:complexType>

<xs:sequence>



<xs:element name="PeerList" type="PeerListType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="TTL" type="xs:dateTime"
minOccurs="1" maxOccurs="1"/>

</xs:sequence>
<xs:attribute ref="xlink:href"/>
<xs:attribute ref="xlink:actuate" default="onLoad"/>

</xs:complexType>
</xs:element>
<xs:complexType name="PeerListType">

<xs:sequence>
<xs:element name="Peer" type="PeerType" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="PeerType">

<xs:sequence>
<xs:element name="Identifier" type="

PeerIdentifierType" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="PeerIdentifierType">

<xs:sequence>
<xs:element name="IP" type="xs:string"/>
<xs:element name="Port" type="xs:integer"/>

</xs:sequence>
<xs:attribute name="nat" type="xs:string"/>

</xs:complexType>
</xs:schema>

Listing 1: IDMS Session Object for MPEG-DASH.

Listing 1 depicts the XML Schema for an ISO. The ISO in-
cludes a list of peers (represented by @PeerListType) in the
IDMS session and a Time-To-Live (TTL). The maximum
TTL for an IDMS session is the duration of the requested
multimedia content. The @PeerIdentifierType contains the
public IP address, port number, and the NAT type of a spe-
cific peer. Note that a peer may have more than one iden-
tifier if it has several network interfaces that are connected
to different networks.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" xmlns:iso="http://www
.aau.at/DASH/Session" type="static"
mediaPresentationDuration="PT3256S" minBufferTime="PT1.2S"
profiles="urn:mpeg:dash:profile:isoff-on-demand:2011">

<BaseURL>http://www.example.com/</BaseURL>
<Period>

<AdaptationSet>
<Representation id="0" mimeType="video/mp4" codecs="avc1,

mp4a" startWithSAP="1" bandwidth="1713804">
<!-- ... representation info -->

</Representation> <!-- ... more representations -->
</AdaptationSet>

</Period>
<iso:IDMSSessionObject>

<iso:PeerList>
<iso:Peer>

<iso:Identifier nat="NoNAT">
<iso:IP>143.205.122.242</iso:IP>
<iso:Port>8029</iso:Port>

</iso:Identifier>
<iso:Identifier nat="FullCone">

<iso:IP>143.205.199.149</iso:IP>
<iso:Port>8030</iso:Port>

</iso:Identifier>
</iso:Peer> <iso:Peer>

<iso:Identifier nat="PortRestricted">
<iso:IP>10.0.0.5</iso:IP>
<iso:Port>8029</iso:Port>

</iso:Identifier>
</iso:Peer> <!-- ... more peers -->

</iso:PeerList> <iso:TTL>2014-07-26T21:32:52</iso:TTL>
</iso:IDMSSessionObject>
</MPD>

Listing 2: Excerpt of an example MPD with an ISO.

Figure 2: Message structure for the coarse synchro-
nization.

Listing 2 shows an excerpt of an MPD comprising an ISO.
Peers requesting the MPD will be added to the ISO. The pro-
cess of adding peers to the ISO induces an implicit ordering
of the peers which is used by the subsequent P2P synchro-
nization algorithms. Every peer numbers the peers in the
ISO strict monotonically increasing beginning with one.

3.2 Signalling of Timing Information and Ne-
gotiation of the Playback Timestamp

For creating the P2P overlay in order to signal timing in-
formation and negotiating a reference playback timestamp
among the peers, we propose to determine the playback
timestamp to which the peers shall synchronize their play-
back in two steps. In the first step, referred to as coarse
synchronization, new peers request the segments which are
currently played by other peers within the IDMS session,
thus reducing the synchronization effort and building the
P2P overlay. In a second step, fine synchronization, peers
agree on a reference playback timestamp in a self-organized
manner by using the constructed P2P overlay. In general,
we assume that the clocks of the peers are synchronized (e.g.
using NTP or PTP).

3.2.1 Peer-To-Peer Overlay Construction and Coarse
Synchronization

The P2P overlay is created using the information con-
tained in the ISO. Prior to any communication among the
peers, each peer uses STUN to detect the NAT type and, in
the case of a restricted NAT or port restricted NAT, it fol-
lows the procedure described in Appendix A. UDP is used
as the transport protocol between the peers because reliable
communication is not essential. Each peer that receives the
ISO requests the current playback timestamp from all peers
it lists. Figure 2 depicts the message structure for the coarse
synchronization which is used for both response and request
as specified by the Type field. For requests, the fields IP and
Port are set to the public IP address and port number of the
requesting peer – other fields are empty – which indicates
that the receiving peer shall respond with its current play-
back timestamp. The responding peer sets its own IP ad-
dress (field IP) and port number (field Port) allowing peers
to track which peers responded to which requests. The field
PTS is set to the current playback timestamp and the field
NTP TS is the corresponding NTP timestamp. The NTP
timestamp is used to align all received timestamps to the
same point in time. As the list of peers in the ISO grows
over time, peers joining the session early will only have a
subset of available peers. Therefore, if a peer is asked for its
playback timestamp by an unknown peer it adds the asso-
ciated IP address and port to the list of known peers.

Algorithm 1 implements coarse synchronization. The peer
requesting the playback timestamps waits until either all re-
quests have been satisfied or a given time period TC has
elapsed. If no timestamp arrives during TC the peer starts
over by requesting playback timestamps from the known
peers (i.e., request timestamps). Each peer that receives a
request (i.e., receive request) responds with its IP address,
port number, playback timestamp, and the corresponding



Algorithm 1 Coarse Synchronization.

1: function request timestamps
2: for all p ∈ peers do
3: sendPacket(Type.Request, p.IP, p.Port,myIP,

myPort, null, null)
4: end for
5: wait(TC) ∨ receivedTS.size() = peers.size()
6: if receivedTS.size() = 0 then
7: request timestamps()
8: else
9: calculateSegment()

10: end if
11: end function
12: function receive request(pt : packet)
13: if isPeerKnown(pt.srcIP, pt.srcPort) 6= true then
14: addPeer(pt.srcIP, pt.srcPort)
15: end if
16: sendPacket(Type.Response, pt.srcIP, pt.srcPort,

myIP,myPort, PTS,NTPTS)
17: end function
18: function receive timestamp(pt : packet)
19: receivedTS.add(pt.PTS, pt.NTP )
20: end function

NTP timestamp. The timestamps from the responses may
be combined to calculate the start segment using one of four
strategies, namely the i) maximum, ii) minimum, iii) aver-
age, and iv) weighted average of the received timestamps.
Which strategy should be selected depends on the appli-
cation and may be influenced by Quality of Service (QoS)
parameters like bandwidth, delay, and maximum selectable
bit-rate of the multimedia content. In our application, we
determine the start segment using the average of the play-
back timestamps.

Let Tref be the timestamp resulting from such a strategy.

We calculate the segment to start with by dTref
Ts
e, where

Ts is the segment size in seconds. Suppose that M is the
theoretical reference timestamp to which all peers will ad-
just their playback. Therefore, without loss of generality
the asynchronism ξ after asking the other peers for their
playback timestamp and downloading N segments until the
playback starts is given by:

0 ≤ |ξ| ≤ |M − dTref
Ts
e · Ts +

N∑
i=1

bc(ti)

br(ti)
| (1)

where bc(t) is the bit-rate of the transmission channel in
bit/s at time instant t and br(t) is the bit-rate of the cur-
rent representation of the multimedia content. The coarse
synchronization ensures that if a peer joins an IDMS session
it starts with a segment that is as closest as possible to the
segment the other peers are currently playing.

3.2.2 Self-organized Fine Synchronization
The second synchronization phase starts once playback

commences at the segment determined by coarse synchro-
nization with the goal of agreeing on a reference timestamp
to which all the peers in an IDMS session should synchronize.
We propose Merge and Forward, a flooding-based algorithm
that calculates the average playback timestamp among the
peers in a distributed and self-organized manner. Here, the
average playback timestamp is utilized because it favors nei-
ther the peers already within the IDMS session or those that
have just joined. Selecting the minimum would privilege

Algorithm 2 Merge and Forward.

Bi, Li, Pi, NTPi, I
M
i , Imi , Si, Ci ← 1

1: function broadcastToNeighbors
2: update(Pi, NTPi)
3: for all p ∈ peers do
4: sendPacket(Pi, NTPi, I

M
i , Imi , Si, Ci, Bi)

5: end for
6: end function
7: function receiveBloomFilter(Pj , NTPj , Ij , Sj , Cj , Bj)
8: if Sj > Si then
9: Bi ← H(i), Li ← ∅, Si ← Sj , Ci ← 1

10: end if
11: update(Pi, NTPi), update(Pj , NTPj)
12: if Bi ⊕Bj 6= 0 ∧Bi ∩Bj = ∅ then

13: Bi ← Bi +Bj , Pi ← Pi·Ci+Pj ·Cj
Ci+Cj

14: IMi ← max{IMi , IMj }, Imi ← min{Imi , Imj }
15: Ci ← Ci + Cj
16: end if
17: if Bi ⊕Bj 6= 0 ∧Bi ∩Bj 6= 0 ∧Bj /∈ Li then
18: if Cj ≥ Ci ∧ i ∈ Bi ∩Bj then
19: Bi ← Bj , Pi ← Pj , Ci ← Cj
20: else if Cj ≥ Ci then

21: Bi ← Bj +H(i), Pi ← Pj ·Cj+Pi
Cj+1

22: Ci ← Cj + 1
23: end if
24: IMi ← max{IMi , IMj }, Imi ← min{Imi , Imj }
25: end if
26: Li ← {Bj} ∪ Li
27: end function

Figure 3: Message structure for the fine synchro-
nization.

peers that recently joined an IDMS session and it will force
all other peers to synchronize to this playback timestamp.
The maximum will have the opposite effect. Merge and
Forward focuses on reducing the overhead introduced when
exchanging playback timestamps using unicast between all
peers in contrast to other algorithms which use multicast
[18]. Furthermore, by avoiding pure flooding it maintains
media throughput and thus the QoE.

For tracking which and how many peers have contributed
to the average playback timestamp we use a Bloom filter.
Therefore, each peer uses the same set of hash functions
h1(x), ..., hk(x) for computing the bits to set when inserting
itself into the Bloom filter [5]. This allows us to exchange
a fixed length packet and contributes to the scalability of
our P2P approach. Figure 3 depicts the message structure
for the P2P communication once the overlay has been con-
structed by the coarse synchronization with the following
semantics: a) ATS : average playback timestamp. b) NTP
TS : NTP timestamp for aligning the playback timestamp.
c) L/H PeerID : the lowest and highest peer identification
number seen by the sending peer according to the ISO (i.e.,
number of Peer elements within the ISO). d) Seq.Nr.: in-
dicates the current synchronization round. e) Cnt.: the
number of peers contributed to current average playback
timestamp. f) Bloom filter : fixed length Bloom filter with
a length of m bits. The PeerID is used later for determining
how many peers are in a certain Bloom filter. The overall



size of such a message is 32 + m
8

bytes. The Seq.Nr. al-
lows the peers to trigger a re-synchronization by increasing
the sequence number (e.g., due to asynchronism or MPD
update). Other peers receiving a message with a higher se-
quence number will reset to the initial condition and start
over. The P2P algorithm making use of this message struc-
ture is shown in Algorithm 2 and referred to as Merge and
Forward (M &F).

Each peer i maintains a Bloom filter Bi and inserts itself
with its own peer id according to the indices obtained by
the use of a common set of k hash functions h1(x), ..., hk(x),
a list of already seen Bloom filters Li, a playback times-
tamp Pi and its corresponding NTP timestamp depicted by
NTPi, a sequence number Si which is initially set to zero,
and the highest peer id seen Ii. H(x) depicts the func-
tion that generates the bit-sequence for peer x by applying
h1(x), ..., hk(x). Each peer forwards Bi, Pi, Ci, I

M
i and

Imi periodically to its neighbors depicted by the function
broadcastToNeighbors, with period τ . If peer i receives a
Bloom filter from one of its neighbors j, it checks whether
it can merge the Bloom filters. The Bloom filters can only
be merged if they are disjoint to avoid introducing a bias
to the weighted average. If the Bloom filters are merged
by using the bit-wise OR depicted by +, then we calculate
the weighted average between Pi and Pj . Ci depicts the
number of peers that contributed to the average playback
timestamp. If the Bloom filters are not disjoint and if we
have not seen the received Bloom filter yet, we store the
received Bloom filter and add it to the list of already seen
Bloom filters. Finally, the peer id IMi is set to the maximum
of IMi and IMj and Imi is set to the minimum of Imi and Imj .
After a synchronization round has finished (all peers hold
the same reference playback timestamp), a peer may trig-
ger a new synchronization round by increasing Si. If a peer
receives an sequence number that is higher than its own, it
resets Bi such that it only includes itself, empties the list Li
and sets Si ← Sj . The re-synchronization may be triggered
if a peer has paused the playback of the multimedia content
or if it is unable to synchronize its playback to the negoti-
ated reference. In the latter case, the peer may increase the
importance of its timestamp by introducing a weight (e.g.,
PTS = wi · PTS, wi ≥ 1).

In order to calculate the overlap or the intersection of two
Bloom filters (Bi ∩ Bj), the algorithm must know which
peers have already been inserted. Due to the nature of
Bloom filters testing if peers are in a filter may identify
peers that were not inserted (false positives). Consider a
test function test(B, x) that returns true if peer x was in-
serted into the Bloom Filter. Let’s assume we know that
peer x is not in Bloom filter B and that when we receive the
Bloom filter of size m, s bits are set by the use of k hash
functions. If we test whether peer x was inserted into the
Bloom filter and this test returns true we have encountered
a false positive. The probability of encountering a false pos-
itive for the received Bloom filter is given by ( s

m
)k, s the

number of bits set [5]. Therefore, if we try to determine
which and how many peers (p1, p2, ..., pn) have contributed
to the timestamp represented by the Bloom filter, assum-
ing that we test for n peers and h peers are really in the
Bloom Filter (h ≤ n) the false positive rate is given by:

Pfalse(p1 ∨ p2 ∨ ...∨ pn) =
∑n−h
i=1 ( s

m
)k = (n−h) · ( s

m
)k (due

to independence). Merge and Forward uses the L/H PeerID
as the upper limit and lower limit to test for peers in a

Bloom filter. Nevertheless, this has no impact on the calcu-
lated average playback timestamp because the false positives
have only an impact on which Bloom filters are merged and,
thus, only increase the required time. Therefore, we assume
that the size of the Bloom filter is chosen sufficiently large.
It can be proven that the resulting average playback times-
tamp equals to real average playback timestamp of the peers
[Sketch of proof : solving the recursive construction of the
weighted average playback timestamp (binary tree) leads to
the real average playback timestamp. Furthermore, through
contradiction it is shown that the calculated average play-
back timestamp is unique for the same number of peers and
playback timestamps among different network graphs].

3.3 Dynamic AMP for IDMS
In this section we describe our dynamic AMP approach

for IDMS which dynamically increases/decreases the play-
back rate to overcome the asynchronism without impacting
the QoE. Other approaches neither consider the impact on
the QoE nor vary the playback rate dynamically every time
a peer synchronizes its playback (cf. Section 2). We propose
using the current buffer contents of a peer for determining
when and for which duration we should change the play-
back rate and formulate the following general constrained
optimization problem:

arg min
X
f(X) (2a)

x2 · (xsign(ξ)
3 − 1) · sign(ξ) = |ξ| (2b)

L ≤ B − x2 · x3 + x2 ·
bc
br

(2c)

x1 ≤ T (2d)

x2 ≤ tmax (2e)

where X ∈ R3 is our vector with (x1, x2, x3)T , x1 denotes
the starting time of the playback rate change relative to
the current buffer, x2 denotes the duration of the playback
rate change, and x3 denotes the target playback rate. Our
aim is to find values for X such that X∗ is a minimizer for
f(X) (∀X ∈ R3 : f(X∗) ≤ f(X)). f(X) can be any func-
tion that models the impact of changing the playback rate
for the given duration on the QoE. Furthermore, we define
constraints that reduce the set of feasible points. First, we
introduce the constraint as depicted by Equation 2b which
states that the given asynchronism should be compensated
for by selecting appropriate values for x2 and x3, respec-
tively. ξ denotes the asynchronism identified by comparing
the current playback timestamp to the reference timestamp.
If ξ < 0 the playback rate is reduced and if ξ > 0 the play-
back rate is increased in order to compensate for the asyn-
chronism. Equation 2c avoids buffer underflows and, thus,
stalls in the multimedia playback. This constraint only ap-
plies if the playback rate is increased. In particular, L de-
notes the lower buffer threshold in seconds, B the current
buffer fill state in seconds, bc the client’s bandwidth, and br
the bit-rate of the selected representation. Furthermore, we
constrain the starting time (T ) of the playback rate varia-
tion by bounding x1 (cf. Equation 2d). Equation 2e limits
the duration (tmax) of the playback variation.

By measuring distortion in the audio and video domain we
attempt to approximate the impact of playback rate changes
on the QoE. Therefore, we define a metric that allows mea-
suring the playback rate variations with respect to the (vi-



sual) motion intensity and the (audio) spectral energy. We
derive the visual feature (motion intensity) from the average
length of the motion vectors between two consecutive frames
whereas the audio featrue is extracted from the spectral en-
ergy of the audio frames (for each channel). We compare
these audio-visual (AV) features from a given content section
with a given duration (e.g., 2s) for the increased/decreased
playback rate and the nominal playback rate. As the length
of the asynchronism is known, both the target playback rate
and the duration of the playback rate change can be cal-
culated. Importantly, introducing an increase/decrease in
the playback rate will alter the duration of the respective
content section which may or may not be perceived by the
user.

The video metric is defined in Equation 3.

dv(X) =

∼
ev∑
j=sv

fv(j)−
ev∑
j=sv

fv(j) (3)

where sv denotes the number of the first frame of the con-
tent section for which the playback rate should be changed.
∼
ev = sv + b(te − tb) · fps∆µc is the index of the last frame
when using the increased/decreased playback rate, te the
end timestamp of the content section, ta the start times-
tamp of the content section, fps∆µ the frame rate of the
changed playback rate ∆µ, and ev is the number of the last
frame using the nominal playback rate for a given duration.
fv denotes the average motion intensity.

The audio metric is defined in Equation 4.

da(X) =

C∑
c=1

((

∼
ea∑

u=sa

Sf∑
k=0

|âcu(k)| −
ea∑

u=sa

Sf∑
k=0

|âcu(k)|)) (4)

where C denotes the number of available audio channels and
Sf denotes the highest frequency. sa,

∼
ea, and ea are defined

in the same way as for video. The Fourier transformed audio
frames are denoted by âc (we use a half overlapping Ham-
ming window) for a given audio channel c.

The combined AV metric is defined in Equation 5.

g(X) =
√
dv(X)2 + da(X)2 (5)

g(X) is neither convex nor continuous because it depends
on the features which are derived from the actual content.

The highest asynchronism in our IDMS system is given
by Equation 1. The initial asynchronism of a newly joined
peer depends on the time the peer requires for downloading
sufficient segments such that it can start the playback. If
the asynchronism is greater than the current buffer fill state
the peer will not be able to compensate the asynchronism.
In such cases, the synchronization process must be parti-
tioned into a number of smaller synchronization processes.
Therefore, we define the asynchronism for each synchroniza-
tion process as δk+1 = min(ξ − δk, B − L), starting with
δ0 = min(ξ,B − L). This has no effect if ξ is lower than
zero because reducing the playback rate does not affect the
buffer fill state.

Using the sequential unrestricted minimization technique,
we transform the general optimization problem given in Equa-
tion 2 into the following optimization problem:

arg min
X
f(X) =

{
g(X) + γ ·

∑3
i=1 pi(X) if ξ ≥ 0

g(X) + γ ·
∑3
i=2 pi(X) if ξ < 0

(6a)

p1(X) = min{0, B − x2 · x3 + x2 ·
bc
br
− L}2 (6b)

p2(X) = min{0, T − x1}2 (6c)

p3(X) = min{0, tmax − x2}2 (6d)

Equation 6a shows the transformed cost function. To re-
duce the set of feasible points we use the constraint given in
Equation 2b and apply the implicit function theorem, reduc-

ing x2 to a function of x3 by u(x3) = sign(δk) · |δk|
x
sign(δk)
3 −1

for x3 6= 1 [Proof : by application of the implicit function

theorem on f(x3, x2) = x2 · (xsign(δk)
3 − 1) · sign(δk)− |δk|].

Thus, we try to find values x1 and x3 that minimize f(X).
The penalty function p1(X) (cf. Equation 6b) states that
the buffer fill state shall not be drained below the threshold
L when increasing the playback rate. p2(X) (cf. Equation
6c) depicts the costs that depend on the starting point of the
playback rate variation. p3(X) (cf. Equation 6d) states that
a peer should be synchronized within tmax seconds. γ sets
the penalty factor for the transformed constraints (γ > 0).
For solving the optimization problem during the multime-
dia playback we use multiple instances of the Nelder-Mead
algorithm with different starting points [20].

To conclude, our dynamic AMP approach overcomes asyn-
chronism by searching for content sections where the play-
back rate may be increased/decreased having the least im-
pacting on the QoE.

4. EXPERIMENTAL RESULTS
The evaluation of our self-organized IDMS for DASH ap-

proach comprises two aspects. First, we investigate the pro-
posed DCS by simulation with respect to the traffic gener-
ated during the negotiation on the reference playback times-
tamp and the time needed until all peers have the necessary
information for calculating the average playback timestamp.
Second, we conduct a subjective quality assessment for eval-
uating the introduced A/V metric and the dynamic AMP
approach.

4.1 Evaluation of Merge and Forward
To evaluate the performance of the Merge and Forward

algorithm, we compare our algorithm to an approach that is
similar to the one described in [18]. As this approach uses
multicast, we modify it such that each peer aggregates all re-
ceived playback timestamps into a single message and sends
them periodically to its neighbors using unicast because we
do not assume that multicast is in place. We call this ap-
proach Aggregate. We compare the two algorithms based
on the overhead produced by peers agreeing on the average
playback timestamp and the duration of the process. The
evaluation scenario foresees that a certain number of peers
will join the P2P overlay over the lifetime of the session. If
the peers join one by one after the existing peers have al-
ready synchronized, the time required by Merge and Forward
to synchronize is the same as Aggregate. Furthermore, peers
may leave the P2P overlay during the negotiation process
as any reference timestamp they have contributed persists
until a re-synchronization is triggered.

We simulated the algorithms on Erdös-Renyi random net-
works [7] implemented using OMNeT++ [21]. A period τ
of 250 milliseconds was used for both algorithms, with the
round trip time set to 300 milliseconds and a maximum clock
skew of 30 milliseconds randomly (uniformly) chosen from
an interval of [−15, 15]. For Merge and Forward we set the
size of the Bloom filter to 512 bit. We generate random net-



Figure 4: Traffic overhead per peer until all peers
have the same reference playback timestamp using
Merge and Forward (M&F) and Aggregate (95% CI).

works for the following number of peers: 40, 60, and 80 with
following probabilities for creating a connection between two
peers: 0.1 to 0.9 increased in 0.1 steps. We use these num-
bers of peers and connectivities in order to show how the
algorithms scale when increasing the number of peers and
their connectivity. For each of the parameter settings we
conducted 30 simulation runs and taking the average of the
results.

Figure 4 illustrates the average network traffic (in kbit)
generated at each peer by both algorithms during the agree-
ment phase with respect to the overall connectivity of the
network. The connectivity is given by the ratio of the av-
erage node degree and the number of peers in the network

(c =
1
|V |

∑|V |
i=1 dG(v)

|V |−1
, V is the set of vertices and dG(v) is the

degree of node v ∈ V ). The x-axis represents connectivity in
intervals which increase in 0.1 steps. With low connectivity,
Merge and Forward generates more traffic than Aggregate
but this is due to the time required to compute the average
playback timestamp among all peers. If the connectivity
increases the fixed length messages of Merge and Forward
start to pay off and it subsequently outperforms the Aggre-
gate algorithm.

Figure 5 depicts the time for the distributed calculation
of the average playback timestamp. Here, Aggregate rep-
resents the optimum case because lists of timestamps can
be merged even if they overlap because the contribution of
each peer can be clearly identified. Using Bloom filters and
only a single field for the average playback timestamp, the
contribution of a single peer cannot be uniquely identified
anymore. If a peer receives a Bloom filters where a subset
of the peers contributed to the received one and to one that
the peer holds, calculating the weighted average would yield
a skewed weighted averaged compared to the real weighted
average without the overlap. However, with an increase in
the connectivity, the time needed by Merge and Forward
converges to the time needed by Aggregate. This shows that
the negotiation time required by Merge and Forward does
not solely depend on the number of peers in the overlay.

Combining Figure 4 and Figure 5 yields the average traffic
in kbit/s generated at each peer by both algorithms during

Figure 5: Time for the distributed calculation of
the average playback timestamp using Merge and
Forward (M&F) and Aggregate (95% CI).

the agreement phase, Merge and Forward always outper-
forms Aggregate. If a peer does join an IDMS session, the
whole process of calculating the reference playback times-
tamp is restarted. Compared to Merge and Forward, using
Aggregate or any other pure flooding algorithm will gener-
ate more overhead as the number of peers or connectivity
increases. The assumption that Merge and Forward has to
calculate the average among all playback timestamps and
the low overhead result in an increase in the time until all
peers hold the same timestamp.

4.2 Evaluation of the dynamic AMP
We evaluated our dynamic AMP approach by conduct-

ing a subjective quality assessment using crowdsourcing [22].
The aim is to determine how the AV metrics introduced in
Equation 3, Equation 4, and Equation 5 reflect the actual
impact on the QoE when increasing or decreasing the play-
back rate.

To carry out our user study we used the Microworkers [15]
crowdsourcing platform which hosts so-called campaigns to
which users (microworkers) can subscribe. These campaigns
include a detailed description of the task and ask subjects to
submit proof that they participated in the campaign. Our
user study was designed with a duration of 15 minutes and
offered $0.25 as a reward, slightly more that the typical $0.20
paid for such a campaign. The design of our study is as fol-
lows: 1.) We present an introduction where we explain the
task and the test procedure in detail. 2.) A pre-questionnaire
is presented to the subject which asks for demographic data.
3.) A short training phase is conducted in order to mitigate
the surprise effect. 4.) The main evaluation takes place using
a Single Stimulus method as defined in [1]. 5.) At the end a
post-questionnaire is presented which allows for comments.
6.) A unique token is provided as proof for a successful par-
ticipation.

For the training phase we selected a short video sequence
from Babylon A. D. The training sequence is presented with
three different media playback rates µ ∈ {1, 0.5, 2} in order
to introduce AMP to the subject and and the corresponding
effect on the playback. A playback rate of one depicts the



Figure 6: MOS and 95% CI for (g(X), µ).

nominal playback rate of the video sequence (e.g., 25 frames
per second). A playback rate of 2 is twice as fast as the
nominal playback rate and 0.5 is half the nominal playback
rate. The stimulus for the main evaluation is the first 51 sec-
onds of Big Buck Bunny (http://www.bigbuckbunny.org).
This content provides high and low motion scenes as well as
scenes with high and low audio volume. We introduce four
content sections for which the playback rates are increase
and decreased. The playback timestamps for the selected
content sections in seconds are as follows (start-end): 6.4–
7.2, 9–10, 16–18, 35–38, and 46–49. These content sections
are presented with following playback rates: 0.5, 0.6, 0.8, 1,
1.2, 1.4, 1.6, 1.8, 2. The multimedia player that is employed
uses the Waveform Similarity based Overlap-Add algorithm
[26] that tries to preserve pitch for the audio domain while
increasing or decreasing the playback rate. For rating the
QoE we use a continuous rating scale [0, 100] displayed as a
slider. Furthermore, we randomly insert a control question
after a stimulus presentation which asks the participants
what they have seen in the previous video sequence.

For the statistical analysis of the results, we screened the
subjects according to [1] and specifically removed partici-
pants who failed to correctly answer to the control question.
This yielded 55 (48 male and 7 female) subjects for the sta-
tistical analysis out of a total of 80 participants.

The QoE ratings for each stimulus presentation were sub-
ject to a Shapiro-Wilk-test to assess whether the ratings
were normally distributed. The null hypothesis (H0), stat-
ing that no normal distribution is present, was rejected for
each configuration of playback rates. Furthermore, we cal-
culate the average distortion g(X) for each stimulus presen-
tation.

Figure 6 depicts the assessed Mean Opinion Score (MOS)

for each tuple (g(X), µ). The hidden reference condition is
given by µ = 1. The results state that playback rates be-
low (i.e, µ = 0.8) and above (i.e., µ ∈ {1.2, 1.4, 1.6, 1.8})
the nominal playback rate have no significant impact on
the QoE. This confirmed a Student’s t-test for equal sample
variances which showed no significant difference in MOS be-
tween the reference condition and the playback rates as fol-
lows: µ = 0.8 : p = 0.93, t = −0.083;µ = 1.2 : p = 0.92, t =
0.096;µ = 1.4 : p = 0.81, t = 0.42;µ = 1.6 : p = 0.22, t =
1.23;µ = 1.8 : p = 0.16, t = 1.41 for α = 5%. These results
indicate that the subjects could not notice a significant dif-
ference for playback rates within the range of [0.8, 1.8]. For
the other playback rates, the QoE significantly degrades. A
Student’s t-test revealed that there is a statistical significant

difference between the MOS of the reference condition and
the playback rates µ = 0.5 : p = 0.00, t = 4.5217;µ = 0.6 :
p = 0.002, t = 3.2;µ = 2 : p = 0.03, t = 2.19 for α = 5%.

Finally we investigated how well our distortion metric de-
fined in Equation 5 correlates with the assessed MOS. For
playback rates greater than the nominal playback rate the
Pearson correlation coefficient is ρ = 0.975 with the prob-
ability of encountering a false positive being p = 0.0009.
Playback rates lower than the nominal playback rate exhibit
a high negative correlation with ρ = −0.995 and p = 0.0047.
This indicates a strong linear correlation between our dis-
tortion metric and the MOS assessed by the subjective qual-
ity assessment, supporting our approach to the optimization
problem as stated in Section 3.3. Furthermore, such an op-
timizer will always perform equal or better than skipping or
pausing the multimedia playback in terms of QoE.

5. CONCLUSION AND FUTURE WORK
In this paper we develop IDMS for pull-based streaming

by using a DCS to negotiate a reference playback timestamp
among the peers participating in a session. Specifically,
we introduce the notion of an IDMS session for pull-based
streaming and showed how MPEG-DASH can be adopted
to incorporate these IDMS sessions in the MPD. Following
this, we describe a DCS for negotiating a reference playback
timestamp among the peers in an IDMS Session. The pro-
posed DCS was evaluated with respect to scalability and the
time required to synchronize a certain number of peers. The
results show that Merge and Forward scales very well with
the number of peers. Furthermore, the overhead saved may
allow the peers to request higher quality streams which can
improve the overall QoE of the IDMS system.

The selection of the average playback timestamp as the
reference has the potential drawback that certain peers may
be unable to synchronize to it due to a shortage of band-
width. Therefore, we introduce a re-synchronization method
that allows a peer to influence the calculation of the refer-
ence playback timestamp such that all peers are guaran-
teedly able to synchronize their multimedia playback. We
leave the problem of determining an appropriate weight for
a given peer’s playback timestamp as subject to future work.

The synchronization of an IDMS system is crucial because
it directly impacts the QoE, with skipping and pausing lead-
ing to an undesirable degradation. As a result, we adopt
AMP and formulate an optimization problem which selects
appropriate parameters such that the impact of the result-
ing playback rate adjustment on the QoE is minimized while
avoiding asynchronism. We use a distortion metric as the
objective function whose validity for modeling the impact of
playback rate adjustments on the QoE is supported by the
results of a subjective quality assessment. The evaluation
of our IDMS approach in a real world environment and the
QoE provided by the system remain as future work.
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APPENDIX
A. NETWORK ADDRESS TRANSLATION

We differentiate between the following types of NAT: no
NAT, symmetric firewall, full cone NAT, restricted cone
NAT, port restricted NAT, and symmetric NAT. In the case
of a full cone NAT, where the mapping is done statically by
the NAT such that any address is allowed to send packets by
using the public IP address and port number to a peer, the
communication with the STUN instance has already reg-
istered the necessary ports at the peer’s NAT. If the peer
detects that its NAT is a restricted cone NAT or port re-
stricted NAT, the peer’s NAT allows only incoming packets
from an address if the peer has already send a packet to this
address. Therefore, we add a relaying function to the STUN
instance which is used by peers with a restricted cone NAT
or port restricted NAT. The procedure for a peer with a re-
stricted cone NAT or port restricted NAT is as follows: first,
it sends a UDP packet to the address with which it wants
to communicate using the IP and port signalled by the ISO,
this tells the NAT that incoming packets from the destina-
tion address are allowed; second, if the other peer has one
of the mentioned NATs it uses the relaying function of the
STUN instance to signal the other peer that it shall send a
packet to the given public IP and port; third, the other peer
uses the signalled information to open its NAT. After this
handshake the P2P synchronization protocol can be carried
out as described in Section 3.2. This allows to have more
than one peer behind the same NAT. If there is no NAT but
a symmetric firewall or a symmetric NAT there is no peer
to peer communication possible. If the router supports Uni-
versal Plug and Play it is possible to add forwarding rules
for the ports used by our synchronization protocols but this
is out of scope of this paper.


