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ABSTRACT 
The distribution of layered content over peer-to-peer networks 
becomes more important today as the users are consuming the 
content on terminals with various display capabilities and 
different network connections. For single-layer content 
distribution, the piece-picking algorithm only needs to ensure that 
content pieces are downloaded in time for display. When layered 
content is distributed over a peer-to-peer network, the piece-
picking algorithm needs to be modified to ensure that the best 
possible quality is displayed while all desired pieces still have to 
be received before their deadline expires. In this paper, the piece-
picking problem for layered content is analyzed and a number of 
piece-picking algorithms for layered content based on the 
solutions for the knapsack problem are presented. Furthermore, an 
evaluation of these algorithms is performed and possible 
applications are discussed. 

Categories and Subject Descriptors 
I.1.2 [Computing Methodologies]: Algorithms – Analysis of 
Algorithms. 

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
Knapsack Problem, Layered/Scalable Content, Piece-Picking, 
Piece Utility Calculation. 

1. INTRODUCTION 
As the popularity of streaming multimedia data over peer-to-peer 
(P2P) networks is constantly increasing nowadays, the users have 
access to network connections with varying bandwidth 
capabilities and are consuming the content on diverse terminals.  
Thus, it is important to provide the content in a number of 
different qualities to ensure that the user can consume the content 
in a suitable quality. The traditional approach for this problem is 
to provide the same content in different qualities encoded in 
different files. Although this approach works fine for most cases, 
it makes the sharing process less efficient, as only users 
consuming exactly the same quality can share data with each 
other. Solutions for layered video coding, where the different 
qualities are provided within a single bitstream, are better suited, 
as all peers interested in this content can exchange the base layer, 
and the optional enhancement layers can be shared with all peers 
interested in the same or higher quality. Additionally, the support 

of layered codecs can significantly reduce the start-up delay when 
streaming content over P2P.  
When content is distributed over P2P networks, the piece-picking 
algorithm ensures that the desired pieces are downloaded before 
their deadline expires. This is especially important for live 
streaming or Video on Demand (VoD) scenarios, where it is 
essential that the pieces are received in time for display in the 
video player. For the distribution of layered content, the piece-
picking algorithm needs to be modified to consider, in addition to 
the deadline, the layer of the piece. The main goal of the layered 
piece-picking algorithm is to ensure that all pieces are received in 
time for playback while trying to provide the best possible quality 
for the available bandwidth at every time instance. Additionally, 
frequent quality switches should be avoided as such switches are 
usually more disturbing for the user than watching the video at 
slightly lower, but constant quality. The problem of finding the 
best trade-off between smooth playback and displaying the best 
possible quality, while also trying to avoid quality switches, 
represents a very challenging optimization problem. In this paper, 
a number of different algorithms for the piece-picking of layered 
content that address this optimization problem are described and 
evaluated. Although the algorithms are codec-agnostic, the 
Scalable Video Coding (SVC) extension of the Advanced Video 
Coding (AVC) standard [1] has been utilized for our 
implementation work. 
To find a feasible piece-picking algorithm for layered content, 
several approaches have been investigated in [2]. The piece-
picking problem is very close to the knapsack problem (KP) [3], 
which is a well-known problem in combinatorial optimization. 
Therefore, the algorithms for the KP including solutions utilizing 
dynamic programming and greedy methods can be adapted to 
solve the piece-picking problem. In the evaluation section, the 
knapsack-related algorithms are evaluated and compared to a 
baseline algorithm using the provided simulation framework. 
The remainder of this paper is organized as follows. In Section 2 
the related work is discussed. Section 3 provides an introduction 
to the layered piece-picking problem. In Section 4 a detailed 
description of the piece selection algorithms addressed in this 
paper is provided. Finally, in Section 5 the presented piece-
picking algorithms are evaluated and compared to each other, 
while Section 6 concludes the paper. 

2. RELATED WORK 
The distribution of scalable content in P2P systems has been a 
popular research topic in recent years. There are already a number 
of P2P systems with SVC support and some of them, like 
LayerP2P [4], propose very well defined solutions for the 
distribution of scalable content in P2P systems. However, these 
P2P prototype systems are implemented from scratch with the 
intention to support scalability, and do not offer compatibility to 
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already existing P2P systems which provide a large user base and 
huge amounts of content. The focus of the work presented in this 
paper is to integrate the support of layered content into an already 
existing P2P system, the NextShare system [5], which is 
backwards compatible to the Bittorrent protocol. Thus, the 
architectural choices were made and the algorithms were 
developed taking the requirements of the Bittorrent protocol into 
account while ensuring that the algorithms can be easily 
integrated into a codec-agnostic Bittorrent-based P2P system. 

3. LAYERED PIECE-PICKING PROBLEM 
In this section the layered piece-picking problem with regard to 
the NextShare P2P system [5] is described. The NextShare P2P 
system is a fully decentralized P2P system which is based on a 
modified version of the Bittorrent protocol (supporting live 
streaming and VoD). The system is agnostic of the transmitted 
content and is intended for sharing all kinds of data and 
audiovisual content. Thus, when investigating different piece-
picking algorithms, it had to be taken into account that the 
algorithms need to be integrated into an existing Bittorrent-based 
P2P system, which imposes a number of requirements. When 
content is distributed in Bittorrent, it is split into pieces of fixed 
size. To perform a mapping of the layered content to pieces of 
fixed size, the audiovisual content is firstly provided at a constant 
bitrate. The content is then split into pieces which contain a fixed 
number of frames for each layer. Depending on the bitrate of the 
layers, the size of the pieces for each layer can vary. Thus, the 
pieces for each layer can be mapped to a different number of 
actual Bittorrent pieces. During the piece-picking process the 
mapping is still considered, i.e., if one piece is selected for 
download all corresponding Bittorrent pieces need to be selected 
for download. Additionally, only the layer-based scalability of 
SVC is considered initially, as a client can only decide on piece-
level which quality to download. A detailed description of the 
architectural choices for the integration of layered content in the 
NextShare architecture and more information on the layer and 
piece structure within NextShare are provided in [5]. 
As mentioned before, the piece-picking algorithm for single-layer 
content and live streaming or VoD scenarios assigns the priority 
only based on the deadline of the pieces. For layered content, the 
layer of the pieces also needs to be considered. While the priority 
settings based on the deadline remain the same as for single-layer 
content, the layer-based priority settings assign a higher priority to 
lower layers. The reason for this assignment is that higher layer 
pieces depend on lower layers for decoding. In addition to the 
deadline and the layer, also the available pieces from the previous 
timeslots need to be considered to avoid frequent quality switches. 
Although the calculation of the piece utilities is rather complex, 
such a calculation only needs to be performed for pieces with a 
deadline in the near future (the pieces within the sliding window, 

described below). For the pieces with a later deadline, the rarest-
first strategy as employed in the original Bittorrent protocol is 
usually the best choice. An illustration of such a sliding window is 
provided in Figure 1.  
In Figure 1 the rows illustrate the layers and the columns 
represent the timeslots. It should be noted that the size of the 
timeslots is constant, as each piece contains a fixed number of 
frames. The range of the sliding window is illustrated by the 
rectangular border. The numbers in the cells represent the 
download status, i.e., 1.0 indicates that the piece has been 
successfully downloaded and 0.0 indicates that the download has 
not started yet. As mentioned before, the cells in the sliding 
window represent pieces, which can be mapped to a different 
number of actual Bittorrent pieces depending on the bitrate of 
each layer. In the situation illustrated in Figure 1 the piece-picking 
algorithm has to decide which pieces need to be downloaded for 
the upcoming timeslots t+1 to t+8. When taking this decision, the 
algorithm has to find the best trade-off between smooth playback 
(no freezing or quality switching) and trying to provide the best 
possible quality to the user. Thus, the algorithm could decide to 
download the base layer pieces for t+7 and t+8 first, to avoid 
player freezing even if the network conditions get worse in the 
future. Another possibility would be to focus on downloading the 
second enhancement layer for t+5, and subsequently the first and 
second enhancement layer for t+6, to ensure that the pieces 
required for the current playback quality arrive in time. If the 
network conditions have improved over the last time instances, 
the algorithm might even decide to increase the current playback 
quality, e.g., by downloading the third enhancement layer for t+1 
and t+2. When actually applied, the algorithm will have to 
consider all of these possibilities and find the best possible 
solution for the current network conditions and user preferences. 
The initial filling of the sliding window is performed during the 
start-up phase. The start-up phase consists of a specific number of 
timeslots (usually around half or all of the timeslots of the sliding 
window) during which the initial download window is filled. The 
start-up algorithm starts to download the pieces of the lowest layer 
for all of its timeslots and then continues with the download of the 
pieces for the next higher layers, as long as there is time 
remaining in the start-up phase. After the start-up phase is 
finished, the highest layer for which all of the pieces within the 
initial download window have been downloaded is taken as the 
initial target download quality. 
In general, all pieces within the sliding window that are not 
currently being downloaded are considered for the piece-picking 
process. However, if pieces are unlikely to be received in time, 
their download can be stopped even before the deadline expires. 
Additionally, some pieces might be downloaded from more than 
one neighbour peer if they have a high priority and the deadline is 
already close. These special cases are considered when preparing 
the piece queue for the piece-picking algorithms. The algorithms 
subsequently select the most useful pieces from this queue. 
It should be noted that additionally to the piece selection process, 
all pieces selected for download have to be assigned to a suitable 
neighbour peer for download. This peer selection process is 
usually performed after the piece selection and assigns the 
download capacity of the neighbour peers to the pieces according 
to their utility (i.e., the piece with the highest utility is 
downloaded from the neighbour peer with the best download 
capability). 

 
Figure 1. Sliding Window. 

 
 



 

 

4. LAYERED PIECE-PICKING 
ALGORITHMS 
In this section different algorithms for solving the piece-picking 
problem are investigated. Before the actual discussion of the 
algorithms, the utility calculation, which is used by all algorithms, 
and the KP, which provides the basis for the algorithms, are 
described. An overview of the notations utilized in the following 
sections of this paper is presented in Table 1. 

4.1 Utility Calculation 
The calculation of the utility value is used by the piece selection 
algorithms in order to determine which pieces to select for 
download (pieces with higher utility are downloaded with higher 
priority). The utility of a piece is based on its layer, deadline, and 
download probability. Thus, to calculate the utility of a piece, it is 
firstly necessary to calculate the weighted download probability 
that the piece is received in time and is useful (a piece is only 
useful if the pieces of all lower layers at the same timeslot are also 
available). The weighted download probability is defined as 
follows: 

𝑤𝑤𝑤𝑤𝑖𝑖  𝑗𝑗  𝑘𝑘  𝑙𝑙 =  � �𝑤𝑤𝑝𝑝𝑖𝑖 𝑗𝑗 ′ 𝑘𝑘  𝑙𝑙�
𝑗𝑗 ′ ≤ 𝑗𝑗

× 𝑤𝑤𝑝𝑝𝑖𝑖−1 𝑗𝑗  𝑘𝑘  𝑙𝑙  (1) 

To calculate the weighted download probability, the download 
probability for the actual piece is multiplied with the download 
probability for the pieces of all lower layers at the same timeslot. 
The download propability pri j k l is calculated based on the 
remaining download size and the estimated download bandwidth 
from the neighbour peer (the estimated download bandwidth is 
available in the NextShare P2P system). Additionally, the result is 
multiplied with the download probability for the piece at the same 
layer at the previous timeslot, which prohibits the algorithm to 
implicitly switch to a higher quality. To avoid frequent quality 
switches, switches to a higher quality are not performed by the 
piece selection algorithm but are performed explicitly if the 

bandwidth is higher than expected over a number of timeslots. For 
this purpose a monitoring algorithm is used which utilizes the 
excess bandwidth to fill the buffer for the higher layers. If the 
bandwidth conditions remain constantly improved for some time, 
the algorithm switches to the higher layer and provides the initial 
buffer filling for the new layer(s). 
The overall weighted download probability that summarizes the 
download probability from all neighbour peers (if the piece itself 
or pieces it depends on are downloaded from multiple neighbours) 
is subsequently defined as 

𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗  𝑘𝑘 = 1 −� �1 − 𝑤𝑤𝑤𝑤𝑖𝑖  𝑗𝑗  𝑘𝑘  𝑙𝑙′ �
𝑙𝑙′ ≤ 𝑧𝑧

 (2) 

where z specifies the number of neighbour nodes and the product 
in the formula specifies the probability that the piece is not 
received in time from any of the neighbour peers. 
Based on (2) the utility is defined as follows: 

𝑢𝑢𝑖𝑖  𝑗𝑗  𝑘𝑘 =
𝑑𝑑𝑗𝑗  ×  𝑤𝑤𝑤𝑤𝑖𝑖 𝑗𝑗  𝑘𝑘

(𝑡𝑡𝑗𝑗  −  𝑡𝑡𝑘𝑘)𝛼𝛼  (3) 

The general importance of a piece is defined as dj, which 
describes its importance with regard to the distortion reduction. 
The importance is defined based on the distortion reduction, as 
each received piece reduces the distortion. Thus, the importance 
for the base layer pieces is the highest, as these pieces provide the 
biggest distortion reduction (from no content at all to the basic 
quality). The distortion reduction importance is multiplied with 
the weighted download probability and divided by its urgency (the 
number of timeslots remaining to finish the download). Finally, 
the parameter α is utilized to influence the ratio between the 
urgency of the piece and its distortion reduction importance. 
To sort the pieces according to their utility, the cost for the 
transmission of a piece (the number of actual Bittorrent pieces it 
consists of) also needs to be taken into account. Thus, the 
weighted utility is defined as 

𝑤𝑤𝑢𝑢𝑖𝑖  𝑗𝑗  𝑘𝑘 =
 𝑢𝑢𝑖𝑖 𝑗𝑗  𝑘𝑘

𝑐𝑐𝑗𝑗
 (4) 

and is used to evaluate the utility of a piece based on the required 
bandwidth. As the piece size is constant for each layer, the cost 
values are only associated with the layers, but not with the 
timeslots. 

4.2 The Knapsack Problem 
In this section we firstly provide a formal definition of the piece 
selection problem and then relate it to the KP. The piece selection 
at decision point tk can be defined formally as an optimization 
problem as follows: 
Maximize 

�𝑢𝑢𝑖𝑖  𝑗𝑗  𝑘𝑘 × 𝑥𝑥𝑖𝑖  𝑗𝑗  𝑘𝑘  (5) 

Subject to 

�𝑐𝑐𝑗𝑗 × 𝑥𝑥𝑖𝑖  𝑗𝑗  𝑘𝑘 ≤ 𝑆𝑆 (6) 

𝑥𝑥𝑖𝑖  𝑗𝑗  𝑘𝑘 ∈  {0, 1} (7) 

𝑥𝑥𝑖𝑖  𝑗𝑗  𝑘𝑘 ≤ 𝑥𝑥𝑖𝑖  𝑗𝑗−1 𝑘𝑘  (8) 

𝑥𝑥𝑖𝑖  𝑗𝑗  𝑘𝑘 ≤ 𝑥𝑥𝑖𝑖−1 𝑗𝑗  𝑘𝑘  (9) 

Table 1. Notations. 

ti the ith timeslot of the stream 
tk the kth decision point during the download of the stream 
lj the jth layer of the stream 
nl the lth neighbour node (neighbour peer) 
m the number of timeslots within the sliding window 
n the number of layers within the sliding window 
z the number of neighbour peers 
pi j a piece at timeslot ti and layer lj 
dj the distortion reduction importance of a piece at layer lj 
pri j k l the probability at decision point tk that the piece pi j will be 

downloaded until its timeslot tj from neighbour node nl 
wpi j k l the weighted probability at decision point tk that the piece pi j 

and all the pieces it depends on will be downloaded until its 
timeslot tj from neighbour node nl 

wpi j k the weighted probability at decision point tk that one of the 
downloads of piece pi j and all the pieces it depends on will be 
successful until its timeslot tj 

ui j k the utility of the piece pi j at decision point tk 
α the urgency weighting, used to influence the ratio between 

urgency and distortion reduction of a piece 
cj the required bandwidth for transmission of a piece at layer lj 
S the maximum available download bandwidth 
wui j k the weighted utility of the piece pi j at decision point tk 
xi j k indicates whether piece pi j is selected for download at decision 

point tk (1 if selected, 0 otherwise) 
 



 

 

The aim of the piece selection process is to maximize the total 
utility of the selected pieces (5). Constraint (6) expresses the limit 
on the total cost of the pieces, i.e., the required bandwidth for the 
selected pieces has to be lower than the available download 
bandwidth. Each piece can be either selected or not selected for 
download (7). Due to the dependency between the layers, a piece 
can be selected only if the piece in the lower layer is also selected 
(8). In order to avoid frequent quality switches, constraint (9) is 
introduced to ensure that a piece can be selected only if the piece 
in the preceding timeslot of the same layer is also selected for 
download. The switching between layers is performed by the 
monitoring algorithm, which only switches layers if the network 
conditions remain changed over a longer period. However, 
switches to lower layers are still implicitly possible, if there is not 
sufficient bandwidth available to select higher layer pieces. 

4.3 Dynamic Programming for the Knapsack 
Problem 
Exact solutions for the KP using dynamic programming have 
already been studied extensively in the literature [6]. This solution 
of the KP, from now on referred to as DP, does not consider the 
precedence constraints among the pieces, i.e., that the piece is 
useful only if the pieces it depends on are also selected. Its 
running time is O(S⋅m⋅n). 
When the DP algorithm is applied for piece-selection, it needs to 
be ensured that only useful pieces are selected. This can be either 
achieved when certain conditions regarding the utility and layer 
structure are fulfilled or by considering the dependencies 
explicitly in the algorithm. The conditions for the DP algorithm to 
select only useful pieces are provided below. 

�𝑡𝑡𝑖𝑖′ ≤ 𝑡𝑡𝑖𝑖  𝑎𝑎𝑎𝑎𝑑𝑑 𝑙𝑙𝑗𝑗 ′ ≤ 𝑙𝑙𝑗𝑗 � ⟹  �𝑢𝑢𝑖𝑖′ 𝑗𝑗 ′ 𝑘𝑘 ≥ 𝑢𝑢𝑖𝑖  𝑗𝑗  𝑘𝑘  𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐𝑗𝑗′ ≤ 𝑐𝑐𝑗𝑗 � (10) 

(10) specifies that if a piece pi j depends on piece pi j’, its utility 
cannot be larger than the utility of the piece it depends on. This 
condition is in conformance with the definition of the distortion 
reduction importance (dj), which specifies that pieces of lower 
layers have a higher importance. Similarly, the condition specifies 
that a piece pi’ j, which has an earlier deadline than a piece pi j, 
always needs to have a higher utility. Again, this is in 
conformance with the definition of the utility (3), where the 
importance value is divided by the remaining timeslots (and fewer 
remaining timeslots result in a higher utility).  
However, regarding the layer costs, condition (10) is very 
restrictive. To ensure that the optimal solution is found by the DP 
algorithm, the costs for lower layers always have to be lower or 
equal to the costs of the higher layers. Although this layer 
structure condition is often fulfilled and the DP algorithm still 
only selects useless pieces if no other pieces can be selected with 
the remaining bandwidth, it limits the applicability of the 
algorithm. 
The DP algorithm can also be extended to select only useful 
pieces by considering the dependencies between the pieces 
explicitly. This can be done but its complexity then increases to 
O(S⋅m⋅n2). More details on the extension of the DP algorithm and 
its application to the piece-picking problem can be found in [2]. 

4.4 The Multiple-Choice Multi-Dimension 
Knapsack Problem 

The dependency between the pieces does not have to be explicitly 
addressed if we consider the multiple-choice knapsack problem 

(MCKP). In this problem, there are several groups of items, each 
group representing one timeslot, and it is enough to choose only 
one item from each group. One item represents the piece sequence 
from the lowest layer piece which is still not downloaded to any 
higher layer piece. This means that, when the algorithm starts, 
there are as many items as layers for each group. The first item 
contains only the base layer piece, the second item the base and 
first enhancement layer pieces, etc., until the final item, which 
contains the pieces for all layers. All the items belonging to the 
same time slot form a group. Thus, we have to select at most one 
item from each group and for each time slot. 
A further extension of the MCKP is the multiple-choice multi-
dimensional knapsack problem (MMKP). In this case there are 
several knapsacks (neighbour peers), each of them with limited 
(download) capacity. The resource needs of the pieces can be 
described as a vector because the piece can be downloaded from a 
number of neighbour peers. The goal of applying the MMKP to 
our problem is to optimize the value of the selected pieces while 
none of the resources is exceeded. The main advantage of this 
approach is that it can consider the individual resources 
(bandwidth) provided by the neighbour peers instead of only the 
overall bandwidth. 
The MMKP can be easily mapped to the piece and peer selection 
problems. Due to its performance and applicability the HEU 
algorithm presented in [7] was selected for implementation. 
Although the algorithm can deal well with the dependency 
between the layers, it does not consider the dependency between 
pieces in the subsequent timeslots (to avoid quality switches). Its 
complexity is O(m2⋅(n-1)2⋅z), which already includes the peer 
selection process. 

4.5 The Greedy Algorithm 
Based on the already existing greedy algorithms for the KP, a 
greedy algorithm that specifically considers the requirements of 
the piece selection was developed. Before the algorithm starts, the 
pieces in the queue are ordered decreasingly according to their 
weighted utility. This sorting of the pieces in the queue has a 
complexity of O(m⋅n⋅log(max(m,n))). The pseudo-code 
description of the piece selection algorithm is provided in 
Algorithm 1: 

inputs: q (piece queue), bw (actual free bandwidth) 
outputs: r (list of pieces to download) 

1. for all pieces in q 
2.  if cj < bw 
3.  add pi j to r 
4.  update bw 

Algorithm 1. Greedy Piece Selection Algorithm. 

The algorithm selects as many pieces as possible (depending on 
the currently available free bandwidth) from the beginning of the 
piece queue. As the pieces are sorted according to their weighted 
utility, the most useful pieces are selected for download. In line 2, 
a check is performed if the cost of the actual piece is lower than 
the available bandwidth. The complexity of the greedy piece 
selection algorithm without the initial sorting is O(m⋅n), but the 
overall time complexity is O(m⋅n⋅log(max(m,n))). 
Although the greedy algorithm does not explicitly consider the 
dependencies between the pieces, it selects only useful pieces if 
condition (11) is fulfilled: 



 

 

�𝑡𝑡𝑖𝑖′ ≤ 𝑡𝑡𝑖𝑖  𝑎𝑎𝑎𝑎𝑑𝑑 𝑙𝑙𝑗𝑗 ′ ≤ 𝑙𝑙𝑗𝑗 � ⟹ �𝑤𝑤𝑢𝑢𝑖𝑖′ 𝑗𝑗 ′ 𝑘𝑘 ≥ 𝑤𝑤𝑢𝑢𝑖𝑖  𝑗𝑗  𝑘𝑘� (11) 

Again, this condition is in conformance with the definition of the 
distortion reduction importance (dj), which specifies that pieces of 
lower layers have a higher importance, and the utility (3), where 
fewer remaining timeslots result in a higher utility. Compared to 
condition (10), which ensures that the DP algorithm selects only 
useful pieces, condition (11) is less restrictive regarding the costs. 
It only implies that the utility per cost unit is higher for lower 
layer pieces, which should always be the case if the utility 
parameters are selected correctly. 

5. EVALUATION OF THE ALGORITHMS 
In this section the evaluation of the KP-based algorithms (the DP, 
HEU, and greedy algorithms) is presented. Firstly, the algorithms 
are compared to a simple layered piece-picking algorithm (the 
baseline algorithm), and the advantages of the KP-based 
algorithms in comparison to the baseline algorithm are presented. 
Additionally, the differences between the three KP-based 
algorithms are discussed. 
The performance of the algorithms described in Section 3 was 
tested using the Oversim P2P simulation framework [8], which is 
based on the OMNeT++ simulation framework [9]. In order to 
support the protocols utilized within the NextShare P2P system 
and the piece-picking algorithms, we modified Oversim and 
implemented a new overlay (the NextShare protocol) and a 
number of new applications (the piece-picking algorithms). All 
algorithms were tested in a number of different settings where the 
following parameters were adjusted: number and bandwidth of the 
neighbour peers, number and cost of layers, sliding window size, 
network conditions, and the utility parameters. 
The simulations have shown that the performance of the KP-based 
algorithms in terms of received video peak signal-to-noise ratio 
(PSNR) is very similar, as these algorithms use the same utility 
formula to assign priority to the pieces. Nevertheless, the 
algorithms differ in terms of time complexity (and hence runtime). 
Some additional differences between the KP-based algorithms are 
also discussed at the end of this section. 
However, to illustrate the advantages of the KP-based algorithms, 
they are also compared to an efficient simple piece-picking 
algorithm, the baseline algorithm. The baseline algorithm works 
similar to the algorithm for the sliding window initialization. The 
algorithm considers all pieces within the sliding window that are 
not currently being downloaded and firstly selects the pieces from 

the lowest layer, starting with the earliest deadline, and then 
continues to select pieces from the next higher layer, and so on. 
Although this algorithm is rather simple to implement it achieves 
quite good results and is, thus, compared to the other algorithms 
presented in this paper. 
In Figure 2 the received video quality for streaming a video 
sequence is illustrated as an example of the experiments with our 
simulation framework. The results for the algorithms discussed 
based on this test run have been similar over numerous test runs, 
but due to space constraints a single test run is presented. The 
video has a length of approx. five minutes (120 timeslots with 2.5 
seconds each). It was encoded with three quality layers (500 kpbs, 
800 kpbs, and 1000 kpbs) using medium-grain scalability (MGS). 
For the encoding process our optimized reference encoder [5] was 
used. The reason for using only quality layers and no spatial 
layers for the test sequence was to allow an easy comparison of 
the layers’ PSNR values. 
The peer for which the results are presented is connected to four 
neighbour peers. Every minute a change of the network conditions 
occurs. At the beginning, the download bandwidth provided by 
the neighbour peers allows to download the first two layers. After 
the first minute, the download bandwidth decreases to allow the 
download of only the base layer. After another minute, the 
available download bandwidth is increased to allow the download 
of all layers. With the start of the fourth minute the bandwidth 
decreases to allow the download of two layers and for the final 
minute the bandwidth increases to allow the download of all 
layers. 
The figure shows the PSNR of the received video for each of the 
120 timeslots at a single peer. The PSNR for a piece is determined 
by calculating the average of the PSNR values for all frames 
contained within the piece. The buffer initialization phase takes 5 
timeslots and the sliding window size is 10 timeslots (~25 
seconds). The figure illustrates the differences of the KP-based 
algorithms to the baseline algorithm. It should be noted to the 
performance of the KP-based algorithms can differ in specific 
cases (discussed later in this section), but for the settings of the 
test-run their performance in terms of received video PSNR was 
the same, as they use the same formula for utility calculation. 
At the beginning of the streaming the network conditions allow to 
download the first two layers. The baseline algorithm performs an 
unnecessary quality switch at the beginning, as the buffer for the 
lower layers was only partly filled during the initialization phase 
(i.e., 5 of the 10 timeslots of the sliding window were filled) and 
the baseline algorithm firstly fills the entire sliding window for the 
lower layers before downloading the pieces for the desired 
quality. On the other hand, the KP-based algorithms take the more 
urgent deadline of the higher layer pieces into account and make 
sure that no quality switch is performed. At timeslot 25 the first 
decrease of the network bandwidth occurs. The baseline algorithm 
reduces the quality immediately, as it only filled the buffer for the 
lower layers. The KP-based algorithm can delay the quality switch 
for a few timeslots due to the higher layer buffer filling, which 
can be useful if there is just a short fluctuation of the network 
conditions. 
When the quality increases to allow download of all layers at 
timeslot 49, the baseline algorithm increases the quality as soon as 
it has enough bandwidth to download one higher layer piece, 
while the KP-based algorithms fill the buffer and delay the step-
up in quality due to the algorithm monitoring the quality switches 

 
Figure 2. Evaluation of the Algorithms. 

 



 

 

(again, this avoids quality switches when there are only temporary 
network fluctuations). However, the algorithms can subsequently 
perform a switch directly to the highest layer. At timeslot 73 the 
network bandwidth decreases to allow the download of two 
layers, and at timeslot 97 the network bandwidth changes again to 
allow the download of all layers. The behaviour of the algorithms 
is similar to the previous changes of the network bandwidth. 
The main advantages of the KP-based algorithms in the presented 
test run are that unnecessary quality switch during initialization 
are avoided, as the consideration of the deadline during the utility 
calculation ensures that urgent pieces of higher layers are 
downloaded in time. Additionally, the KP-based algorithms react 
better to temporary bandwidth fluctuations due to the filling of the 
buffer also for higher layers (if the network conditions get worse) 
and the monitoring algorithm which avoids premature quality 
switches to higher layers (if the network conditions improve). In 
the presented test run the changes in bandwidth conditions 
remained always constant for a minute, but if, e.g., the decrease in 
bandwidth at timeslot 25 would only last for a few seconds, the 
baseline algorithm would perform a quality switch that the KP-
based algorithms could avoid. 
As the KP-based algorithms use the same formula for the utility 
calculation of the pieces, the results are the same for the test 
sequence in Figure 2. However, the KP-based algorithms differ in 
some aspects. Firstly, the complexity of the greedy algorithm that 
has been specifically developed for piece-picking is at 
O(m⋅n⋅log(max(m,n))). The complexity of the DP algorithm is 
O(S⋅m⋅n), or O(S⋅m⋅n2) if the dependency between the pieces is 
considered. Finally, the complexity of the HEU algorithm is 
O(m2⋅(n-1)2⋅z), but includes the peer selection process as well. 
However, the peer selection process can be performed on its own 
with a complexity of O(m⋅n⋅z), which makes the HEU algorithm 
still rather complex in comparison to the other algorithms. First 
runtime profiling results have confirmed what is already indicated 
by the time complexity statements, i.e., that the greedy algorithm 
can perform the piece selection significantly faster than the DP 
and the HEU algorithm. It should also be noted that the runtime 
performance of the KP-based algorithms depends strongly on the 
sliding window size (and hence the number of pieces that need to 
be considered for download). 
In terms of received video PSNR the algorithms usually perform 
similar, but the DP algorithm without considering the dependency 
can download useless pieces, if the bitrate of the higher layer is 
smaller than the bitrate of the next lower layer (i.e., there is only 
sufficient bandwidth to download the higher layer piece, see (10)). 
For the greedy algorithm, the condition for selecting only useful 
pieces (11) is less restrictive and only requires that the utility per 
cost unit is higher for lower layer pieces. 

6. CONCLUSION 
In this paper a number of piece-picking algorithms based on the 
KP have been presented. These algorithms have been well 
investigated in combinatorial optimization for some time and find 
the solution for an optimization problem onto which the piece-
picking problem can be mapped. We have shown that these 
algorithms can be applied to the piece-picking problem 
considering the requirements of a Bittorrent-based system. The 
greedy algorithm can perform as well as the other KP-based 
algorithms at clearly lower complexity. In the evaluation section, 
a comparison of the KP-based algorithms to a baseline algorithm 
that is often applied in the context of layered piece-picking has 

been presented, in which the KP-based algorithms have shown a 
better performance during initialization and when quality switches 
occur. 
Due to space constraints the evaluation of the KP-based 
algorithms was limited to the presentation of a single test run that 
is representative for the results gathered during many experiments 
in our simulation framework. In the future, the proposed 
algorithms will be integrated into our NextShare P2P system and 
extensively tested in our project’s living lab [10], and a more 
detailed evaluation will be performed. 

7. ACKNOWLEDGMENTS 
This work is supported in part by the European Commission in the 
context of the P2P-Next project (FP7-ICT-216217). Additional 
support of the Hungarian Science and Technology Foundation 
(AT-2/07), the Austrian Agency for International Cooperation in 
Education and Research (HU-6/08), and the Hungarian National 
Science Fund and the National Office for Research and 
Technology (Grant No. OTKA 67651) are gratefully 
acknowledged. 

8. REFERENCES 
[1] Schwarz, H., Marpe, D., and Wiegand, T. 2007. Overview of 

the Scalable Video Coding Extension of the H.264/AVC 
Standard. IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 17, no. 9 (Sept. 2007), 1103-1120. 

[2] Szkaliczki, T., Eberhard, M., Hellwagner, H., and Szobonya, 
L. 2010. Piece Selection Algorithm for Layered Video 
Streaming in P2P Networks. Electronic Notes in Discrete 
Mathematics, Elsevier, vol. 36, 1265-1272.  

[3] Martello, S. and Toth, P. 1990. Knapsack Problems: 
Algorithms and Computer Implementation. John Wiley and 
Sons, New York. 

[4] Liu, Z., Shen, Y., Ross, K. W., Panwar, S. S., and Wang, Y. 
2009. LayerP2P: Using Layered Video Chunks in P2P Live 
Streaming. IEEE Transactions on Multimedia, vol. 11, no. 7 
(August 2009), 1340-1352. 

[5] Capovilla, N., Eberhard, M., Mignanti, S., Petrocco, R., and 
Vehkaperä, J. 2010. An Architecture for Distributing 
Scalable Content over Peer-to-Peer Networks. Proceedings 
of the Second MMEDIA Conference, 1-6. 

[6] Andonov, R., Poirriez, V., and Rajopadhye, S. 2000. 
Unbounded Knapsack Problem: Dynamic Programming 
Revisited. European Journal of Operational Research, No. 
123, Issue 2, 394-407. 

[7] Khan, S., Li, K. F., Manning, E. G., and Akbar, M. M. 2002. 
Solving the Knapsack Problem for Adaptive Multimedia 
Systems. Studia Informatica Universalis 2 (1), 161-182. 

[8] Baumgart, I., Heep, B., and Krause, S. 2007. Oversim: A 
Flexible Overlay Network Simulation Framework. 
Proceedings of the 10th IEEE Global Internet Symposium 
(May 2007), 79-84. 

[9] Varga A., and Hornig R. 2008. An Overview of the 
Omnet++ Simulation Environment. Proceedings of the 1st 
International Conference on Simulation Tools and 
Techniques for Communications, Networks and Systems, 1-
10. 

[10] P2P-Next Living Lab, http://livinglab.eu, last accessed on 
26/07/2010. 


