
OSCILLATION COMPENSATING DYNAMIC ADAPTIVE STREAMING OVER HTTP

Christopher Mueller†, Stefan Lederer†, Reinhard Grandl†, and Christian Timmerer†‡∗

†bitmovin GmbH (http://www.bitmovin.net)
‡Alpen-Adria-Universität Klagenfurt, Institute of Information Technology (ITEC)

Klagenfurt am Wörthersee, Austria
†{firstname.lastname}@bitmovin.net, ‡christian.timmerer@itec.aau.at

ABSTRACT

Streaming multimedia over the Internet is omnipresent but still
in its infancy, specifically when it comes to the adaptation based
on bandwidth/throughput measurements, clients competing for lim-
ited/shared bandwidth, and the presence of a caching infrastructure.
In this paper we present a buffer-based adaptation logic in combi-
nation with a toolset of client metrics to compensate for erroneous
adaptation decisions. These erroneous adaptation decisions are due
to insufficient network information available at the client and issues
introduced when multiple clients compete for limited/shared band-
width and/or when caches are deployed. Our metrics enable the de-
tection of oscillations on the client – in contrast to server-based ap-
proaches – and provide an effective compensation mechanism. We
evaluate the proposed adaptation logic, which incorporates the oscil-
lation detection and compensation method, and compare it against a
throughput-based adaptation logic for scenarios comprising compet-
ing clients with and without caching enabled. In anticipation of the
results, we show how the presented metrics detect oscillation peri-
ods and how such undesirable situations can be compensated while
increasing the effective media throughput of the clients.

Index Terms— MPEG-DASH, Dynamic Adaptive Streaming
over HTTP, Oscillation Detection and Compensation, Clients Com-
peting for Bandwidth

1. INTRODUCTION

The transport of multimedia content over the Internet has gained mo-
mentum and entered our daily lives, whether it be a major live event
or on-demand video. For example, we see people accessing live
sport events or watching their favorite TV series on a plethora of de-
vices ranging from high-resolution, well-connected TV sets to smart
mobile devices with limited display and network capabilities. All
of these use cases have something in common where the content is
delivered over the Internet and on top of the existing infrastructure.

The basic concept of todays’ HTTP-based multimedia streaming
solutions is to provide multiple versions of the same content (e.g.,
different bitrates), chop these versions into (small) segments (e.g.,
two seconds), and let the client decide which segment (of which ver-
sion) to download next, based on its context (e.g., available band-
width). Typically, the relationship between the different versions is
described by a manifest, which is provided to the client prior to the

∗The research leading to these results has received funding from the Euro-
pean Unions Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 610370, ICoSOLE (”Immersive Coverage of Spatially Out-
spread Live Events, http://www.icosole.eu).

streaming session. The ISO/IEC MPEG Dynamic Adaptive Stream-
ing over HTTP (DASH) standard specifies representation formats for
both the manifest and segments [1]. For the manifest, DASH defines
the XML-based Media Presentation Description (MPD) representing
the data model, which is aligned with existing, proprietary solutions.

The most challenging part of a DASH client implementation is
the component that determines which segment to download next.
This component is often referred to as adaptation algorithm/logic.
After receipt of the MPD, it basically analyzes the available repre-
sentations (e.g., bitrates, resolutions) given the current context (e.g.,
bandwidth, display size) and starts downloading the segments ac-
cordingly. In case the context changes (e.g., due to a drop of the
available bandwidth), the client may switch to another representa-
tion that is suitable for the new context. The actual switching is
typically done at segment boundaries and, in general, the behaviour
of the adaptation logic has a direct influence on the system perfor-
mance [2–4]. The system performance depends on a number of met-
rics which can be both of objective and subjective nature. Our focus
is on objective metrics, which may be fine-tuned through subjec-
tive quality assessments. In a typical deployment, multiple clients
may compete with each other and may introduce unwished issues,
specifically when proxies/caches are deployed, which is often the
case in combination with CDNs [5]. In such a deployment oscilla-
tions may occur where clients often switch between different ver-
sions representing different qualities resulting in poor Quality of Ex-
perience (QoE) and reduced system performance. Proxy-based ap-
proaches may perform traffic shaping towards multiple clients [6]
while others prefer server-based traffic shaping to stabilize oscillat-
ing clients [7]. Additionally, on-demand rate adaptation [8] and re-
quest re-writing [9] are other proxy-based solutions but do not take
into account the issue when clients compete for bandwidth.

In this paper, we present a novel, client-based adaptation logic
based on [5] that enables oscillation detection and compensation in
scenarios where multiple clients compete for (limited) bandwidth.
We show that in these scenarios oscillations occur and, if not con-
sidered by the adaptation logic, gets even worse when caches are
involved. Therefore, we present a set of metrics and tools which are
used by our proposed adaptation algorithm that compensates these
oscillations while adapting to dynamic context changes and maxi-
mizing link utilization (i.e., media throughput at the client) as well
as maintaining an overall smooth viewing experience (i.e., no stalls).
In anticipation of the results, our proposed adaptation algorithm suc-
cessfully detects oscillation – as opposed to pure quality switching
– and smooths the detected oscillations, e.g., by delivering a lower
bitrate for half the time and higher bitrate for the other half of the
time. Finally, our approach is purely client-centric and works over
the top without modifying the underlying infrastructure or putting

any requirements for content and service providers.
The remainder of the paper is organized as follows. Section 2

provides the problem statement showing that oscillations occur un-
der given conditions. Section 3 defines metrics and tools which are
used for our adaptation logic described in Section 4. Experimental
results are covered in Section 5 and Section 6 comprises conclusions
as well as points out future work.

2. PROBLEM STATEMENT

Dynamic adaptive streaming over HTTP allows for a flexible and
scalable deployment of media ecosystems [1] as the client encap-
sulates the entire streaming logic and no centralized controller is
needed, also thanks to the stateless design of HTTP. Additionally,
this kind of streaming approach enables the reuse of the already de-
ployed Internet infrastructure comprising proxies, caches, and con-
tent distribution networks (CDNs). However, the actual nature of this
ecosystem, which enables switching between individual quality lev-
els without a centralized controller, may also introduce drawbacks.
Therefore, in this section we highlight the problems that might oc-
cur when multiple clients compete for bandwidth in a DASH-like
streaming ecosystem including an experimental validation thereof.

The general assumption that TCP will accommodate the case
when multiple clients compete for bandwidth is invalidated in [5, 7]
where clients begin to oscillate, specifically by continuously switch-
ing between different quality levels. In particular, Akshabi et al. [7]
propose a server-based solution to mitigate the oscillation effect but
this may eliminate some major benefits such as the stateless design
and the usage of ordinary HTTP servers. Furthermore, in a large-
scale deployment where clients may request segments from multi-
ple sources (servers, proxies, CDN nodes), the adoption of a server-
based solution increases deployment costs and decreases scalability
as segment sources need to exchange additional information about
the oscillation state. In comparison, Mueller et al. [5] identify client
oscillations in conjunction with proxy caches and propose a client-
centric approach that does not require any modifications on the ex-
isting infrastructure.

In order to validate the problem statement we have performed
experiments to demonstrate the oscillation with and without caches
present. Our experimental setup consists of a content server that
provides an excerpt of 300s from the Big Buck Bunny sequence in
six different media bitrates with constant bitrate (350, 700, 1300,
1900, 2500, and 3400 kbps) and a segment length of 2 seconds. Two
clients are connected to the content server through a cache and a bot-
tleneck that simulates a predefined but varying available bandwidth
(2800-3200 kbps) as shown in Figure 1. The results shown in this
section are based on a throughput-based adaptation logic such as the
one from Liu et al. [3] which takes the throughput measurements of
the downloaded segment as a basis for the quality switching. That
is, if the throughput is higher than the media bitrate (according to
the manifest/MPD), a switch to the next higher representation is
performed, and if the throughput is lower than the media bitrate,
a switch to the next lower representation is done. This decision can
be done on a per segment basis. The same setup has been used for
the actual experimental results of the proposed adaptation logic (see
Section 5).

First, we present the results of the throughput-based adaptation
algorithm with and without cache. Figure 2 shows the results for
client 1 (in red on the left) and client 2 (in blue on the right) without
a cache. The upper part shows the requested media bitrate and the
lower part depicts the buffer fill state, both over the entire length of
the session (300s). Client 1 starts 10 seconds before client 2 and,

Fig. 1: Experimental Setup.

���������q	��
�q�
����

	
�
�
�

3

4

f

S

c
���������q	��
�q�
����

�����

�
��
�
�
�
�

3

43

f3

S3

c3

�������

3 o3 433 4o3 f33 fo3 S33

�����

�������

3 o3 433 4o3 f33 fo3 S33

Fig. 2: Throughput-based Adaptation without Cache for Client 1
(red/left) and Client 2 (blue/right).

thus, is able to fully utilize the bottleneck in the beginning, i.e., it
selects the quality level with 2500 kbps. As soon as client 2 starts
its session, both clients have to share the bottleneck bandwidth and,
if done in a fair manner, each client will get a share of about 1400
kbps of the available bandwidth. The representation with 1300 kbps
comes very close but throughput measurements are sometimes above
and sometimes below this bitrate due the behavior of the underlying
TCP implementation. Thus, the throughput measurements in both
clients lead to an oscillation between the 700 and 1300 kbps respec-
tively. This oscillation decreases between second 100 and 200 after
increasing the bottleneck bandwidth to 3200 kbps.

In this scenario, no quality level is available that fits exactly the
available bandwidth. Therefore, both clients select a lower quality
level which fills up their buffers until they are full which result in the
ON/OFF state already shown by Akshabi et al. [7]. Once the buffer
is full, the throughput measurements return an erroneous value as
the client implementation (on the application layer) cannot continu-
ously read data from the transport layer while TCP keeps receiving
data that will be buffered within the kernel. Additionally, with this
behavior both clients influence each other in a negative way. For
example, in second 125 client 1 stops the download process (as the
buffer is full) which leads to an oscillation on client 2. After client 1
continuous with the download, client 2 has to switch to a lower qual-
ity level. The same behavior occurs in second 160 but here client 2
stops its download process and client 1 starts to oscillate.

Figure 3 shows the behavior of the throughput-based adaptation
logic with a cache which should enable a more efficient usage of the
bottleneck. However, when comparing the results with the experi-
ment without a cache, the adaptation behavior on both clients gets
worse and both clients frequently oscillate between 1300 and 2500
kbps. This problem is also shown in [5] with different throughput-
based adaptation logics (i.e., Microsoft Smooth Streaming and the
DASH VLC plugin).

���������q	��
�q�
����
	
�
�
�

3

4

f

S

c
���������q	��
�q�
����

�����

�
��
�
�
�
�

3

43

f3

S3

c3

�������

3 o3 433 4o3 f33 fo3 S33

�����

�������

3 o3 433 4o3 f33 fo3 S33

Fig. 3: Throughput-based Adaptation with Cache for Client 1
(red/left) and Client 2 (blue/right).

3. METRICS AND TOOLS

This section describes metrics to be used as an input to our adapta-
tion logic in order to detect issues as highlighted in Section 2. Each
metric can be seen as an individual tool that characterizes the adap-
tation or download process in a specific manner. We show how to
combine these tools to efficiently detect and characterize oscillation
and quality switching behavior in a way that allows for a smooth
balancing of the streaming session. In the following, we define the
metrics clustered depending on whether they are specific to the adap-
tation or the buffer state.

The metrics and tools are defined for a given time window
comprising a set of segments s with bitrate θ of length t seconds
denoted by ∆ = {(θi, ti), (θi+1, ti+1), ..., (θj−1, tj−1), (θj , tj)}
with i, j ∈ N, and i < j. Hence, our metrics may be applied on
a sliding window over recently retrieved segments and support vari-
able segment length which is also supported by DASH.

3.1. Adaptation-specific Metrics and Tools

Equation 1 defines the mean µ of the recently retrieved segments as
the average calculated from the media bitrate of segments θk and
the length of each segment tk. The size of the window may be ad-
justed with the parameters i and j, which are an index into ∆ with i
referring to the first segment and j to the last segment.

µi,j =

∑j
k=i θk × tk∑j

k=i tk
(1)

Based on Equation 1 we define the quality switching variance σ
as a modification of the variance. Therefore, we define Equation 2
which determines whether a segment should be considered for cal-
culating the quality switching variance by returning 1 when bitrates
of successive segments are different (i.e., θk 6= θk−1) which indi-
cates a quality switching event or when there is only one segment
retrieved (i.e., |∆| = 1).

Γk =

1 if |∆| = 1

1 if |∆| > 1, θk 6= θk−1

0 otherwise
(2)

Equation 3 defines the quality switching variance σ over a given
time window starting from segment i to segment j taking only qual-
ity switching events into account thanks to Γ from Equation 2.

Please note that only switching events will influence the quality
switching variance.

σ2
i,j =

∑j
k=i+1 Γk × (θk × tk − µi,j × tk)2∑j

k=i tk
(3)

In order to consider the switching direction, i.e., up to a higher or
down to lower quality level, we define φ in Equation 4 which returns
1 for up switches, −1 for down switches, and 0 in case no switch
occurs.

φk =

1 if θk > θk−1

−1 if θk < θk−1

0 otherwise
(4)

The oscillation variance ω in Equation 5 is similar to the qual-
ity switching variance and takes the direction of the quality switches
into account. This metric converges to zero when an oscillation oc-
curs and, thus, it shall be used in conjunction with the quality switch-
ing variance as shown in Section 4.

ω2
i,j =

∑j
k=i+1 φk × (θk × tk − µi,j × tk)2∑j

k=i tk
(5)

3.2. Buffer-specific Metrics and Tools

In [4] we show that an adaptation algorithm based on a mathemati-
cal buffer model improves the efficiency of earlier adaptation algo-
rithms [10] that were mainly based on throughput measurements and
basic buffer metrics. The buffer model is based on a mathematical
function that restricts the available quality levels based on the buffer
fill state, which can be fitted to the available quality levels and the
network conditions.

In this paper we provide a generic approach for describing this
buffer model. We show examples for such models that calculate the
quality level restriction ξ for a segment si based on the buffer fill
state δ. Therefore, various functions may be used, e.g., linear (6a),
exponential (6b), logarithmic (6c), etc. and parameterized with the
variables as shown in Equation 6.

ξ(si) = a+ δi × b (6a)

ξ(si) = a× eδi×b (6b)
ξ(si) = a× logb(δi × c) (6c)

where i ∈ [1, N] represents the segment index, δi the buffer fill state
at decoding of segment i, and a, b, c are constant parameters to fine-
tune the model.

The parameters can be used to increase or decrease the aggres-
siveness of the buffer model and as consequence also of the adap-
tation process. In this paper we adopt the logarithmic function, i.e.,
Equation 6c, which enables a smoother adaptation even for low qual-
ity levels as the slope of the function decreases monotonously. Thus,
also low quality levels need a higher buffer fill states compared to the
exponential approach. The exponential function, where the slope in-
creases monotonously, is a more aggressive approach because lower
quality levels can be already selected with very low buffer fill states.
In [5] we used the exponential approach resulting in increased media
throughput but also a higher risk for stalling.

Finally, Equation 7 calculates the worst case buffer δwcb(θk)
based on the bitrate of the segment θk and the segment length tk
as well as the minimum measured throughput of the current session
minji .

δwcb(θk)i,j =
θk × tk
mini,j

(7)

The output is the minimum buffer fill state in seconds that shall
be available prior to the download of segment sk which shall guar-
antee no stalls at the client while downloading this segment.

4. BUFFER-BASED ADAPTATION ALGORITHM WITH
OSCILLATION DETECTION AND COMPENSATION

In this section we describe how to use the metrics and tools intro-
duced in Section 3 to detect oscillations and to improve the adapta-
tion logic compared to [4]. In particular, we combine the methods
from [5] with [4] and apply a dynamic buffer model at runtime based
on our metrics and tools. The improvements address the oscilla-
tion issues as described in Section 2, i.e., buffer overrun, competing
bandwidth, and caching.

4.1. Oscillation Detection

For the oscillation detection we propose the oscillation factor ρ as
defined in Equation 8 which depends on the quality switching vari-
ance σ and the oscillation variance ω over a given time window of
segments.

ρi,j =

{
1− ωi,j

σi,j
if σi,j > 0

0 otherwise
(8)

Figure 4 illustrates the oscillation detection based on a prede-
fined adaptation behavior (the x-axis provides the seconds for all
subfigures). Figure 4a shows a predefined adaptation behavior for
a given media bitrate, which is used to demonstrate our metrics for
a window size of 20 seconds. The quality switching variance (i.e.,
σ) and oscillation variance (i.e., ω) are shown in Figure 4b and Fig-
ure 4c depicts the oscillation factor (i.e., ρ).

At the beginning the client starts with the lowest available qual-
ity level and continuously switches up to the highest quality level.
During that period both the quality switching variance and oscilla-
tion variance are equal, which results in a oscillation factor of zero.
This behavior confirms our previous statement that the oscillation
variance alone cannot be used to distinguish between plain quality
switching and real oscillations. As soon as the the quality switch-
ing and oscillation variance start to become different, the oscillation
factor increases which, in fact, indicates an oscillation as shown in
Figure 4a around second 25.

4.2. Buffer-based Adaptation

For our actual adaptation logic we adopt a logarithmic behavior
(cf. Equation 6c) because the slope of the function decreases
monotonously. This enables more flexibility in case of low buffer
fill states, which means that the client can faster switch to higher
quality levels at the beginning or recover from low buffer fill states,
in comparison to an exponential behavior (cf. Equation 6b) where
the slope increases monotonously. In the following section we will
describe the semantics of the parameters a, b and c. We will also
show that the parameter configuration works for arbitrary bitrates as
we set parameter a depending on the maximum bitrate that is avail-
able in the manifest/MPD.

The parameter c can be used to enable a minimum buffer fill
state referred to as steady state that the system should maintain be-
fore it is able to start the adaptation process, e.g., switching to a

(a) Predefined adaptation behavior for a given bitrate over time.

(b) Quality switching variance σ and oscillation variance ω which
jointly indicate real oscillation if the values start to become different.

(c) Oscillation factor ρ which increases as soon as σ and ω start to
become different.

Fig. 4: Oscillation Detection based on a predefined Adaptation Be-
havior.

different representation. This means that the client will download
the lowest quality level until the buffer is at least filled with a cer-
tain amount of multimedia data until it starts to adapt to the current
bandwidth conditions. In the following section we will show that
only parameter c is influencing this steady state and that it can be
used to modify the range of the steady state. We can use Equation 6c
with ξ = a × logb(δ × c) to show that parameter c sets the steady
state of the buffer, i.e., the range where ξ ≤ 0 and where ξ > 0,
independent from the other two parameters, i.e., a and b.

For example, if we want our adaptation process to maintain a
steady state until the buffer is filled at least 20%, we can use Equa-
tion 6c transformed, i.e., ξ ≤ 0 → c ≤ 1

δ
, with δ = 0.2, which

results in c ≤ 5. Therefore, setting parameter c to 5 prevents the
adaptation process until the buffer has reached a fill state of at least
20% (δ = 0.2), because if ξ ≤ 0, the lowest representation will be
selected.

We have fitted parameter b while using parameter c = 5, which
enables the steady state until the buffer is filled at least 20%. The
buffer fill state (0 ≤ δ ≤ 1) is ranging from 0 to 1; 0 means that
the buffer is empty and 1 means that the buffer is full. Setting pa-
rameter c to 5 enables a range of 0 to 5 for the logarithmic function.
Therefore, using a logarithm with the base of 5 (b = 5) will result
in a maximum of 1, i.e., δ = 1 and we define that the logarithm
with δ = 0 is equal to 0. Additionally, we set parameter a equal
to the maximum available bitrate (according to the manifest/MPD),
which enables an automatic adjustment to different media configu-
rations based on the MPD. As a consequence, our parameter setup
can be used for arbitrary bitrates. This setup would enable the max-
imum available bitrate only when the buffer is fully filled (δ = 1)
but for our adaptation process we decided to use a more aggressive
setting which enables the maximum bitrate when the buffer is 80%
filled. Therefore, we have used a base of 4, i.e., b = 4, which results
in 1 when δ = 0.8. In order to confirm the fitting above, we can

use Equation 6c to show if ξ is set to the maximum available media
bitrate brmax and parameters a and c are used as above (i.e., a is
brmax and c = 5) with δ = 0.8 (i.e., 80% buffer fill state), that
brmax = brmax × logb(0.8 × 5) results in b = 4. Furthermore,
we define that 0 ≤ ξ. If the buffer is decreasing the client would
also reduce the quality level, due to the fact that the buffer restric-
tion would not allow high quality levels with low buffer fill states.
Buffer underrun should not happen due to the adaptation behaviour
but if it happens it would lead to stalls. The buffer will be measured
in seconds and therefore an explicit relation between segments with
size of seconds and buffer exists.

4.3. Compensation Algorithm

In order to reduce the oscillation, we use the oscillation detection as
described in Section 4.1 in combination with a Compensation Algo-
rithm (CA) defined in Algorithm 1. In case an oscillation is detected,
the CA aims to smooth it. The CA will be activated when the os-
cillation factor exceeds a predefined threshold (cf. lines 1-9) and
has two phases: a low quality phase referred to as low compensation
(cf. lines 10-26) and a high quality phase referred to as high com-
pensation (cf. lines 19-26). In the low compensation, the adaptation
logic maintains the low quality level of the detected oscillation phase
until a backoff timer expires or when the buffer fill state falls below
δwcb of the corresponding quality level. In the high compensation, it
remains on the high quality level of the detected oscillation until the
buffer fill state falls below the level as it was when the CA was acti-
vated. Additionally, the algorithm exits the high compensation when
the buffer increases during that phase which indicates a bandwidth
increase. This mechanism intends to smooth the oscillation utilizing
the contents of the buffer.

1 if ρj
i
> threshold and compensation == false then

2 saved δi = δi ;

3 low quality = min quality
j
i

;

4 high quality = max quality
j
i

;

5 compensation = true;
6 compensationLowQuality = true;
7 compensationHighQuality = false;
8 backoff = increase backoff();
9 end

10 if compensationLowQuality == true then
11 decrease backoff();

12 if backoff > 0 and δi < δwcb(low quality
j
i
) then

13 quality level next segment = low quality;
14 else
15 compensationLowQuality = false;
16 compensationHighQuality = true;
17 end
18 end
19 if compensationHighQuality == true then
20 if δi > saved δi and δi decreasing then
21 quality level next segment = high quality;
22 else
23 compensationHighQuality = false;
24 compensation = false;
25 end
26 end

Algorithm 1: Compensation Algorithm (CA).

5. EXPERIMENTAL RESULTS

In this section we describe our experimental results. We compare
our adaptation logic comprising the improved buffer model includ-
ing the oscillation detection and compensation algorithm against a
throughput-based adaptation logic based on the set-up as described
in Section 2.

The results of our proposed adaptation logic without and with
cache are shown in Figure 5 and Figure 6, respectively. Compared
to the previous figures, they also include the oscillation factor and

���������q	��
�q�
����

	
�
�
�

3

4

f

S

c
���������q	��
�q�
����

�����

�
��
�
�
�
�

3

43

f3

S3

c3
�����

���
����
��q�����

3

3pf

3pc

3pn

3pl

4

�������

3 o3 433 4o3 f33 fo3 S33

���
����
��q�����

�������

3 o3 433 4o3 f33 fo3 S33

Fig. 5: Buffer Model based Adaptation including Compensa-
tion Algorithm without Cache for Client 1 (red/left) and Client 2
(blue/right).

���������q	��
�q�
����

	
�
�
�

3

4

f

S

c
���������q	��
�q�
����

�����

�
��
�
�
�
�

3

43

f3

S3

c3
�����

���
����
��q�����

3

3pf

3pc

3pn

3pl

4

�������

3 o3 433 4o3 f33 fo3 S33

���
����
��q�����

�������

3 o3 433 4o3 f33 fo3 S33

Fig. 6: Buffer Model based Adaptation including Compensation Al-
gorithm with Cache for Client 1 (red/left) and Client 2 (blue/right).

the threshold is set to 0.7 (determined experimentally). Hence, each
time the oscillation factor passes this threshold, the compensation al-
gorithm is activated. Figure 5 shows the behavior of our buffer model
based adaptation algorithm without a cache. The adaptation is much
smoother compared to the throughput-based adaptation and after a
stabilization phase at the beginning it never falls below the quality

��������	�
g×����g�����g3���������
��������g������	���g3���������

�

��
��
�
g�

�
��

�

��
�
g�

��
��
�

�

g�
�

�
�
��

pAy

T%pAy

��	�g���
����

A QA pAA pQA nAA nQA TAA

Fig. 7: Comparison of Quality Switching Variance for Client 1 with-
out Cache.

��������	�
g×����g�����g3���������
��������g������	���g3���������

�

��
��
�
g�

�
��

�

��
�
g�

��
��
�

�

g�
�

�
�
��

pAy

T%pAy

��	�g���
����

A QA pAA pQA nAA nQA TAA

Fig. 8: Comparison of Quality Switching Variance for Client 1 with
Cache.

level with 1300 kbps. Furthermore, the adaptation logic adequately
detects oscillations and compensates those with our compensation
algorithm. In particular, in second 25 the adaptation logic detects
the oscillations and compensates it with the low quality level which
lasts until approximately second 40 followed by the high compensa-
tion until the buffer reaches the previous state at around second 50.
Another compensation phase starts at second 75 and the high com-
pensation starts approximately at second 100, the point in time when
the bottleneck increases to 3200 kbps. The increased bandwidth is
recognized during the high compensation (second 125) which the
adaptation logic preempts followed by a switch to a higher quality
level. The adaptation logic detects another oscillation at second 150
which leads to another compensation phase that lasts almost until the
end of the experiment.

We also evaluate our adaptation logic with a cache enabled and
its results are shown in Figure 6. In comparison to the throughput-
based adaptation it is able to utilize the cache in way that it can main-
tain a higher base quality (i.e., 1900 kbps) excluding the startup sta-
bilization phase. Moreover, oscillations are detected, compensated,
and the buffer fill state remains stable at an acceptable level.

Finally, we compare the average media bitrate and quality
switching variance of our proposed adaptation logic versus the
throughput-based adaptation logic. The results reveal that our pro-
posed adaptation logic achieves for both clients on average a higher
media bitrate of 11.2% if no caches are involved and 20% for the
scenario with caches enabled. Concerning the quality switching
variance, Figure 7 and Figure 8 show that our proposed adaptation
logic has less quality switching variance, i.e., 86.95% for the sce-
nario without cache and 90.75% if the cache is enabled.

6. CONCLUSIONS AND FUTURE WORK

In this paper we highlight problems in todays’ adaptive streaming
systems caused by throughput-based adaptation mechanisms and
their influence when clients compete for bandwidth, specifically in
the presence of caches. With the presented buffer-based adaptation
models, clients metrics, and oscillation compensation algorithm we
provide a comprehensive toolset to compensate for undesirable client
behavior caused by incomplete network information and optimize
the DASH streaming performance at the same time. The experi-
mental results validate our findings, i.e., oscillation detection and
compensation (with and without caches enabled) while increasing
the media throughput at the client (+11.2% without cache, +20%
with cache) and increasing the hit rate at the cache (+17.42%) while
maintaining a steady buffer fill state. Finally, our oscillation detec-
tion and compensation algorithm is a client-centric approach which
enables scalability and keeps maintaining the advantages of DASH.

Future work items comprise large-scale evaluations within real-
world environments using actual bandwidth traces and heteroge-
neous client implementations, e.g., a mixture of (old-fashioned) pro-
gressive download clients and DASH-based clients with different
adaptation logics including those which are specifically addressing
similar issues as addressed in this paper (e.g., [7]). Finally, the pa-
rameters for the adaptation logic could be fine-tuned and validated
through (crowdsourced) subjective quality assessments.

7. REFERENCES

[1] Iraj Sodagar, “The MPEG-DASH Standard for Multimedia Streaming
Over the Internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[2] Saamer Akhshabi, Sethumadhavan Narayanaswamy, Ali C. Begen, and
Constantine Dovrolis, “An Experimental Evaluation of Rate-Adaptive
Video Players over HTTP,” Signal Processing: Image Communication,
vol. 27, no. 4, pp. 271 – 287, 2012.

[3] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj, “Rate Adaptation
for Adaptive HTTP Streaming,” in Proceedings of the second annual
ACM conference on Multimedia systems, New York, NY, USA, 2011,
MMSys ’11, pp. 169–174, ACM.

[4] C. Mueller, D. Renzi, S. Lederer, S. Battista, and C. Timmerer, “Using
Scalable Video Coding for Dynamic Adaptive Streaming over HTTP in
Mobile Environments,” in Signal Processing Conference (EUSIPCO),
2012 Proceedings of the 20th European, 2012, pp. 2208–2212.

[5] C. Mueller, S. Lederer, and C. Timmerer, “A Proxy Effect Analysis and
Fair Adaptation Algorithm for Multiple Competing Dynamic Adaptive
Streaming over HTTP Clients,” in Visual Communications and Image
Processing (VCIP), 2012 IEEE, 2012, pp. 1–6.

[6] Rémi Houdaille and Stéphane Gouache, “Shaping HTTP Adaptive
Streams for a Better User Experience,” in Proceedings of the 3rd Mul-
timedia Systems Conference, New York, NY, USA, 2012, MMSys ’12,
pp. 1–9, ACM.

[7] Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis,
and Ali C. Begen, “Server-based Traffic Shaping for Stabilizing Os-
cillating Adaptive Streaming Players,” pp. 19–24, 2013.

[8] Wei Pu, Zixuan Zou, and Chang Wen Chen, “Video Adaptation Proxy
for Wireless Dynamic Adaptive Streaming over HTTP,” in Packet
Video Workshop (PV), 2012 19th International, 2012, pp. 65–70.

[9] Ali El Essaili, Damien Schroeder, Dirk Staehle, Mohammed Shehada,
Wolfgang Kellerer, and Eckehard Steinbach, “Quality-of-Experience
driven Adaptive HTTP Media Delivery,” in IEEE International Con-
ference on Communications (ICC 2013), Budapest, Hungary, Jun 2013.

[10] Christopher Mueller, Stefan Lederer, and Christian Timmerer, “An
Evaluation of Dynamic Adaptive Streaming over HTTP in Vehicular
Environments,” in Proceedings of the 4th Workshop on Mobile Video,
New York, NY, USA, 2012, MoVid ’12, pp. 37–42, ACM.

