NextSharePC: An Open-Source BitTorrent-based P2P
Client Supporting SVC

Michael Eberhard
Alpen-Adria-Universitaet
Klagenfurt
Universitaetsstrasse 65-67
Klagenfurt, Austria
michael.eberhard@aau.at

Andi Palo
University of Rome Sapienza
Department of Computer and

System Science
Via Ariosto 25, Rome, 00185,
Italy
andi@dis.uniroma.it

ABSTRACT

In this paper the open-source NextSharePC demo is pre-
sented, which allows to distribute layered video content over
P2P networks. The cost-efficient distribution of multimedia
content over P2P networks has become very popular in re-
cent years. Furthermore, multimedia content is consumed
on a variety of devices, which requires to provide content
in different qualities. By distributing layered content over
P2P networks the NextSharePC demo provides both, cost-
efficient distribution and a video quality suitable for various
devices. The different modules of NextSharePC and their
usage are described in detail in this paper. To the authors’
knowledge the NextSharePC demo is the first open-source
P2P implementation with full SVC support.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures

Keywords

P2P, SVC, open source, multimedia, streaming

1. INTRODUCTION

In this paper an open-source P2P system with full support
for the Scalable Video Coding (SVC) [12] of the Advanced
Video Coding (AVC) standard is presented. The utilized
P2P system is the NextShare system, which is based on the
BitTorrent protocol and has been developed within the P2P-
Next project [3]. The usage of P2P systems for streaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MMSys 12, February 22-24, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1131-1/12/02 ...$10.00.

Amit Kumar
STMicroelectronics
Plot no. 1, Knowledge Park IlI
Greater Noida, India 201308
amit.kumar-ast@st.com

Riccardo Petrocco
Technische Universiteit Delft
Mekelweg 4
Delft, The Netherlands
r.petrocco@gmail.com

Licio Mapelli
STMicroelectronics
Agrate Brianza, Via Olivetti
Milan, Italy

licio.mapelli@st.com

Mikko Uitto
VTT Technical Research
Centre of Finland
Kaitovayla 1
90571 Oulu, Finland
mikko.uitto@vtt.fi

multimedia content provides a popular alternative to mul-
timedia portals, as it allows the distribution of multimedia
content to thousands of users without requiring an expensive
distribution infrastructure. The usage of SVC ensures that
the user can easily select the desired streaming quality and
that changes in network conditions can be handled during
the streaming sessions.

SVC provides scalable video streams, which are composed
of a base layer and one or more enhancement layers, where
each enhancement layer can improve the temporal rate, the
spatial rate, or the quality of the video content. The scal-
able properties of SVC refer to the capability of adapting
the bitstream to varying terminal capabilities, network con-
ditions and the end user preferences by selectively discard-
ing parts of the scalable bitstream and still obtaining a bit-
stream which can be decoded.

When using P2P, the usage of SVC is clearly better suited
than distributing the same content in multiple qualities, as
all peers can share at least the lower layers with each other,
while only peers streaming exactly the same quality can
share content when using multiple files to provide different
qualities.

This paper describes the demo prototype called NextSharePC,

which is provided as open-source [3]. In Section 2, the pro-
ducer modules used for encoding and ingesting layered con-
tent into the P2P system are described. In Section 3, the
consumer modules used for streaming and consuming the
layered content from the P2P system are presented. Section
4 provides an overview of the usage of the demo prototype,
while Section 5 describes the demo setup. Finally, Section 6
concludes the paper.

2. PRODUCER MODULES

The producer modules are used to encode the content and
prepare it for ingest into the P2P system.

2.1 Encoder

The encoded bitstream contains a series of data packets
called Network Abstraction Layer Units (NALUs), each con-

taining either actual video data, or data required for proper
decoding of the bitstream, like Sequence Parameter Sets
(SPS) and Picture Parameter Sets (PPS) or Supplemental
Enhancement Information (SEI). All NALUs belonging to
one image for a time instant form an Access Unit (AU). In
order to map NALUs to input pieces for the P2P engine,
a rate control is required to adapt the intrinsic variability
of the bitstream rate for the packetization process. Thus,
the JSVM SVC encoder [5] has been extended with a Con-
stant Bit-Rate (CBR) algorithm. The CBR algorithm uses
the Quantization Parameter (QP) value in order to adapt
the variable rate bitstream for a limited bandwidth channel.
The CBR algorithm applied for the presented system uses
a buffer-based CBR control method proposed in [14], which
is based on buffer management and is suitable for multiple
layer coding. The CBR algorithm tries to achieve at the
end of each Intra period the same buffer fullness that was
available before encoding the last Intra picture. As a con-
sequence, it performs a constant bitrate encoding since ev-
ery Intra period of IDR length consists of roughly the same
number of bits:

Target IDR Size = AvgBitPict x IDR Length (1)

where AvgBitPict is the average amount of bits per picture
obtained as the ratio of the target bitrate and the sequence’s
frame rate. In order to produce a nearly constant amount
of bits for the Target IDR size, the algorithm checks the
buffer fullness and compares the current buffer occupancy
level with the target level. In case the buffer is too empty,
the QP is increased, while in case of a possible overflow,
the QP is decreased and the filler NALUs are inserted. The
encoder along with the buffer-based CBR is able to achieve
good bit-rate control performance and to maintain uniform
image quality throughout the sequence at the same time. As
the CBR still produces small bitrate fluctuations [14], these
fluctuations are considered while creating the base and en-
hancement layer pieces as described in the following section.

2.2 Ingest

The ingest modules take the encoded audio and video con-
tent as input and prepare the content for P2P distribution.

2.2.1 NALU Splitter

The functionality of the Splitter is similar to a demuxer.
The basic idea behind the Splitter application is to create a
separate file for each SVC layer. This allows to distribute
the files separately in NextShare, which is important for
easy selection of the desired target quality. As the SVC ele-
mentary stream encapsulates all the layers into one file, the
Splitter application creates a separate file per layer and fits
the corresponding NALUs into it. Each file can be seen as a
continuous stream of BitTorrent pieces (or GOPs) belonging
to the same layer. The input parameters for the Splitter are
the number of frames per piece and the piece size. When a
NALU does not fit into the block it is dropped. If a piece
still contains empty space after all NALUs have been fit-
ted in, a filler NALU is appended in order to maintain the
constant block size.

As the CBR algorithm of the SVC encoder produces small
bitrate fluctuations, the Splitter’s input parameters are tuned
to avoid NALU dropping while creating the file. Thus, the
target bitrate during encoding is chosen a bit lower than the
bitrate which would fit into the desired piece size. If the

CBR algorithm produces a higher bitrate, this ensures that
all desired NALUs can still be fit into the piece. In case of a
lower bitrate, a filler NALU is used for padding. Although
this results in a slight overhead in piece size (~2% of the
piece are used for padding), the overhead ensures that no
NALUs are dropped during ingest.

2.2.2 Muxer

After splitting the SVC elementary stream into base and
enhancement layers, the base layer and the audio track are
forwarded to the Muzer module. The video and audio con-
tent are split in pieces, each piece belonging to a specific
time slot (in case of SVC, each piece contains a closed GOP).
Each GOP of the video base layer is multiplexed with it’s
audio part for every time slot. As the base layer file and the
audio track have a costant bitrate, the piece for each time
slot will contain the same number of bits. The only vari-
able factor will be the muxing overhead and the consecutive
padding. Each time slot typically contains audio and video
content with a length of 2.56 seconds (64 frames at 25 fps).

To provide the audio and video content together in a suit-
able container format, there are many different transport
stream containers available. The NextShare architecture
does not require a specific container format, but for the sys-
tem’s implementation the MPEG-4 File Format (MP4) is
used as container format. MP4 is a popular container format
and is supported by almost all media players and devices.
Furthermore, the intrinsic overhead that MP4 introduces is
low compared to the MPEG-2 Transport Stream (MPEG-
TS), e.g., in the presented system the overhead due to the
multiplexing is about 7% (and would be ~50% for MPEG-
TS). To consider the MP4 container’s overhead, the bitrate
during encoding is again selected lower than possible for the
selected piece size. If all of the allocated overhead is not re-
quired for muxing, the remaining space of the piece is padded
with MP4 empty boxes in order to reach a constant piece
size. This results in a self-contained backwards-compatible
media file for every time slot, which can be processed also by
media players only supporting AVC. In the demo prototype
MP4-Box [1], which is available as open-source, was used for
multiplexing.

2.2.3 Metadata Creator

The Metadata Creator extracts the properties of the SVC
layers and the parameter sets from the SVC bitstream and
provides them as a Session Description Protocol (SDP) file
to the media player. To gather the relevant attributes for
the SVC layers, the metadata creator analyzes the Scalabil-
ity Information SEI Message (SSEI) at the beginning of the
SVC bitstream. The SSEI contains for every layer a num-
ber of attributes, including the bitrate, the framerate, and
the spatial resolution, which are extracted by the Metadata
Creator. Furthermore, the Metadata Creator extracts the
SPS and PPS elements. To provide this information to the
media player, the extracted information is wrapped into an
SDP file formatted according to [10], which allows to signal
the properties of the scalable layers and their dependencies
on each other. The SDP file is subsequently provided to the
media player before the streaming process starts, to ensure
that the De-Packetizer and Decoder have all the required
information to initialize their modules.

2.2.4 Content Distribution

Once the files containing the different layers have been
created, they are saved in a specific directory along with
the metadata file. Subsequently, a torrent file for that spe-
cific directory is created, which is fully compliant with the
Bittorrent specification [6], and can be distributed by ev-
ery BitTorrent compliant tracker. Utilizing the torrent file,
the content is split into pieces of equal size and can be dis-
tributed in the NextShare P2P system. As each layer is
provided in a separate file, the users can decide their target
playback quality by selecting which files to download.

3. CONSUMER MODULES

This section describe how the layered content is down-
loaded from the P2P system and how the processing chain
until the presentation of the video works.

3.1 Module initialization

In the current implementation of the system, modules are
initialized following an iterative process.

Figure 1 shows the initialization sequence of the three in-
dependent modules, consisting of the P2P Client, the Re-
quest Interface, and the Media Player. The user interacts
with the Media Player, for which a modified version of the
VLC Media Player [4] is utilized. Once the user presses the
play button, the P2P Client is initialized, or alternatively,
if the engine is already running and listening to incoming
requests, a start command followed by the torrent location
triggers the content retrieval. The P2P engine assigns a
unique RTP address to the Media Player, which is used to
set the player’s listening channel for incoming data. Assign-
ing a unique address for each Media Player instance allows
the P2P engine to participate in multiple swarms, allowing
the simultaneous playback of different videos.

The Request Interface module is than initialized with the
following parameters:

e A local HTTP address from which the Request Inter-
face will be receiving the downloaded layers from the
P2P engine.

e The RTP address previously provided to the Media
Player, which is utilized by the Request Interface mod-
ule to provide the final data stream to the player.

After the modules have been initialized, The P2P Client
initializes a local HT'TP server that will respond to the in-
coming requests from the Request Interface module. The
P2P Client provides data to the Request Interface only af-
ter an initial buffer has been downloaded, usually set to 20
seconds of stream containing at least the base layer pieces.
Once the initial buffer has been filled, the P2P engine starts
replying to the HTTP requests of the Request Interface,
providing a piece with content for one time slot in response
to every request. This behavior provides a certain level of
synchronization between the involved modules, considering
that once the Request Interface’s and Media Player’s buffers
are filled, data will be requested at constant intervals, due
to the constant bitrate encoding.

The presented initialization phase can also be performed
by launching the modules independently. For using the
demo in test environments, an instance of the P2P engine
acting as seeder and content provider is firstly initialized.
Afterwards, the consumer modules are initialized with the

P2P Client Media Player Req. Interface

* torrent

tp: localhost: xxx

o

[End of File]

quit on user event

Browser tab closed

quit on user event

Media Player

Figure 1: Sequence Diagram for Consumer Modules

required parameters, preserving the order previously dis-
cussed and presented in Figure 1.

In the following, each of the modules on the consumer side
are described in more detail.

3.2 P2P Client

The P2P Client is the module responsible for downloading
the pieces of the layers and providing them in correct order
to the Request Interface module. Upon receiving the torrent
file, the P2P Client detects the order of the different layers,
which are distributed in separate files, and schedules the
algorithm responsible of retrieving the data, which is called
Piece Picker.

The Piece Picker starts downloading the stream as soon
as an initial set of peers has been contacted, following the
algorithm presented in [7]. Once data has been retrieved
and verified using the cryptographic hashes provided in the
torrent file, the P2P engine stores the data on disk, allowing
the retransmission to other peers and offline playback capa-
bilities, and fills a data stream used by the HTTP server to
send data to the Request Interface module.

During the development of the system, several piece-picking
algorithms, which try to provide the best possible playback
quality for the given network conditions, have been investi-
gated and integrated into the P2P engine. Details for the
piece-picking algorithms are provided in [8] and [9].

3.3 Request Interface

As illustrated in Figure 1, the Request Interface module
requests pieces from the P2P Client and forwards them to
the media player. In this section the two major parts of the
module, the Demuxer and the RTP Packetizer, are described
in detail.

ERROR CONCEALMENT

US = Upscale

|

I

_ ~ 7

EL2: VGA| R I

(spatial) | I soppbilsl >< |

: ‘4«}' =T | =T " Qi:

| B |] (|D :

EL":Q‘A"I : " %) W) I ,‘. ‘.;’ﬂ |

= ; Jol| ol | P 8|

| I

| - !

over| 1 | NP | NG| | 00| |
| o - I -

| |

| I

| I

Figure 2: The Decoding Process using Error Concealment

3.3.1 Demuxer

The demuxer is only used for the processing of base layer
pieces, which have been previously wrapped into the MP4
file format to ensure backwards-compatibility to a variety of
media players. After receiving a base layer piece, the de-
muxing of the MP4 file format is performed. The minimum
number of pieces retrieved from the background process for
each time slot is one, corresponding to the multiplexed base
layer track together with audio track. If also enhancement
layer pieces are received, these are directly forwarded to the
RTP Packetizer module. The Demuxer extracts the audio
and video content by demultiplexing the piece. Again, MP4-
Box was utilized for this task. The extracted video part con-
tains 2.56 seconds of AVC video content while the extracted
audio part contains 2.56 seconds of MP3 audio content. Sub-
sequently, the Demuxer module passes the extracted content
to the RTP Packetizer module.

3.3.2 RTP Packetizer

This module is composed of two sub-modules: one for
streaming the video content and one for streaming the audio
content to the Media Player. The audio and video streams
use two different RTP destination ports and thus represent
two separate sessions.

The video streaming sub-module is responsible for cre-
ating RTP packets from an elementary SVC stream. This
module is compliant with the RTP protocol [11], and it sup-
ports Single Session Transmission Mode with Non-Interleaved
Packetization Mode (STAP-A, FU-A), as described in [16].
The module streams the base layer and and all available en-
hancement layers to the Media Player. It is invoked as a
synchronous function call from the Demuxer module after
the latter has demuxed the video content. The timestamps
for every RTP packet are increased monotonically.

The audio streaming sub-module is a standalone process.
It utilizes the open source Live555 library, which provides
implementations for multiple streaming protocols. The pro-
cess listens for incoming data on its pipe. As soon as the
data available on the pipe is enough to construct an RTP
packet, it retrieves the content from the pipe and sends a
new packet to the Media Player. The RTP packets are sent
in a burst when sufficient data is available on the pipe and
does not transmit anything for the remainder of the time
lot. This bursts are compensated for playback by the Media
Player’s receiver buffer.

3.4 Media Player

In this section the media player is described in detail. As
basis for the implementation, the VLC Media Player is uti-
lized.

3.4.1 De-Packetizer

As the Packetizer module is creating two different RTP
sessions for audio and video, the De-Packetizer is listen-
ing at two different RTP port in a loop with a buffering
time set at initialization. The buffering time allows the De-
Packetizer to buffer a certain amount of content before the
stream is sent to the Decoder. The RTP De-Packetizer is us-
ing the modified live555 library to support SVC files, which
is integrated into the VLC. The VLC is initialized by us-
ing the SDP file from the Metadata Creator as input. It
retrieves the various input parameters to de-packetize and
decode the audio and video stream. The liveb55 library is
modified to initialize the decoder with the parameter sets
(SPS and PPS) of the highest layer. If not all layers of the
SVC file are received, the Error Concealment module inte-
grated with the Decoder is utilized to upscale the video to
the desired resolution.

3.4.2 Decoder

To decode the SVC stream after de-packetization, the
OpenSVC decoder [2] has been integrated into VLC. OpenSVC
is integrated as decoding library into VLC media player to
be used for decoding and rendering of SVC content. The
OpenSVC decoder has been chosen as it provides real-time
decoding capabilities even on less powerful machines. For
the demo prototype, the OpenSVC and VLC media player
have been tested for SVC streams with up to 3 enhancement
layers and SD playback quality, which works in real-time on
casual laptops.

3.4.3 Error Concealment

The error concealment strategies for the SVC Decoder are
critical in error-prone video transmission conditions. The
target for the concealment is not only to prevent the De-
coder from crashing, but also to provide sufficient quality
of experience (QoE) for the end user. Currently, many of
the implemented SVC error concealment algorithms are de-
signed from the basics of the AVC decoder, including, e.g.,
pixel-value interpolation and frame copying of correctly re-
ceived video data for the concealment [13] [15].

The error concealment scenarios in the presented P2P
SVC chain differs from the usual setup regarding the man-

Figure 3: Demo Screenshot

ner how packet losses occur in traditional end-to-end video
streaming. One piece containing a GOP is always received in
the current P2P chain, meaning that random packet/frame
losses are not possible. Thus, if pieces are lost the Decoder
receives either a GOP with a spatially lower resolution (if
spatial scalability is used) or a GOP with lower quality (if
quality scalability is used).

The SVC standard defines that the decoder is able to han-
dle the spatial or quality degradation in the middle of the
sequence as long as the GOP structure follows the standard.
Usually this means that IDR pictures are used to break the
decoding chain between the GOPs (i.e., only closed GOPs
are produced during encoding). On the player side, such as
in VLC, this can be a challenge when using spatially scalable
videos, since the resolution can vary during the playback.
To prevent fluctuations in the spatial resolution, a picture
upscaling functionality was implementation as an error con-
cealment method and as a separate block between the De-
coder and VLC player. By using the upscaling, the Media
Player always receives the video with the target resolution
during playback.

The implemented error concealment method monitors the
resolution of the first IDR picture in the received content for
the time slot. If it does not receive sufficient enhancement
layers to reach the target resolution, the upscaling function
is activated and the low-resolution picture (usually the base
layer) is upscaled into the target resolution by utilizing 4-tap
integer-based filters. The upscaling causes some blurriness
to the high-resolution picture which can be reduced by using
a higher bitrate for the base layer.

The decoding process while using error concealment is il-
lustrated in Figure 2. After the NAL unit is decoded with
the OpenSVC Decoder, the error concealment block checks
whether the frame is ready to be forwarded to the Media
Player. If this is the case, but the received resolution does
not match the target resolution, the frame is forwarded to
the Error Concealment module.

4. USAGE

The provided demo prototype consists of two parts: the
producer tools allow to encode and packetize the content
and subsequently seed the content in the P2P system. The
consumer tools are used to download and play the content
from the P2P network.

At the producer side, the raw video files firstly need to be
encoded using the SVC Encoder. The SVC Encoder takes
the configuration file, which allows to specify the layer prop-
erties, as input. Subsequently, the SVC Splitter is used to

create separate files for each layer. The SVC Splitter takes
the desired pieces size in bytes and the frames per piece as
input parameter. The Metadata Creator parses the header
of the SVC stream to extract the relevant data and create
the SDP file. After the files are created, the base layer is
muxed with the audio content using MP4-Box. Finally, the
torrent file is created using the script create_svc_torrent and
the P2P Engine is started to seed the content to other peers.

On the consumer side, the P2P Client, the Request Inter-
face, and the Media Player are all started. The P2P Client
utilizes the torrent file to connect to the seeding P2P En-
gine. The Request Interface is started using the ports for
communicating with the P2P Client and the Media Player
as parameters. Finally, the Media Player is started using
the port for communicating with the Request Interface and
the SDP file as parameters. Once the user decides to start
the playback, the Media Player initializes the communica-
tion chain as illustrated in Figure 1. In addition, the VLC
Media Player uses the following parameters:

e --reset-plugins-cache: resets the cache
e --reset-config: resets the vlc configuration
e -demux h264: enables SVC decoding

e —-h264-svc-force-video: forces all the possible late frames
to be displayed

e —-h264-svc-error-concealment <VALUE>: enables/disables

error concealment

o —-buffering-time <VALUE>: buffering time for the Live555

library

When the user triggers the play command of the VLC
Media Player, the playback is started soon afterwards.

S. DEMO SETUP

In the demo setup, a part of the producer tools and the
entire consumer chain are shown. A screenshot of the run-
ning demo is provided in Figure 3. At the producer site, the
SVC content has already been prepared for ingest, as real-
time SVC encoding in high quality is not possible with the
optimized JSVM encoder. Thus, the seeding of the content
into the NextShare P2P system is demonstrated. The con-
sole displayed in Figure 3 shows the download bitrate pro-
vided by the seeder to the P2P client consuming the content.
At the consumer site, the P2P client, which downloads the
pieces for the different layers based on the network condi-
tions, is shown. The P2P client downloads the pieces priori-
tized by their playback deadlines and layers [8][9]. Changes
to the network conditions can optionally be emulated us-
ing a bandwidth simulator, to ensure that dynamic network
conditions can be simulated even if the demo is shown on
a single machine. The pieces downloaded by the P2P client
are requested by the Request Interface in time for playback
and forwarded to the Media Player. Furthermore, the Media
Player is started, which performs the playback of the con-
tent and changes the playback quality dynamically based on
the pieces provided by the Request Interface. The playback
of the media player is also shown in Figure 3.

6. CONCLUSION

In this paper a demo prototype for distributing and con-
suming SVC content over a BitTorrent-based P2P system
was presented. In Section 2, the producer modules are pre-
sented. The SVC Encoder encodes the raw video content
to SVC utilizing a CBR algorithm. For ingest, the encoded
bitstream is split into files for each layer, the base layer is
muxed with the audio content, and the metadata required
for playback is extracted. Finally, the content is split into
pieces and seeded by the P2P Engine for download by other
peers.

In Section 3 the consumer tools are presented. The P2P
Client downloads the pieces from the seeding peer while
prioritizing lower layer pieces. The Request Interface re-
quests the pieces from the P2P Client, demuxes the base
layer, and provides the audio and video content to the Me-
dia Player as RTP streams. The Media Player contains the
RTP De-Packetizer, the SVC Decoder, and the Error Con-
cealment module. The Media Player triggers the playback,
de-packetizes the RTP packets, forwards the video content to
the SVC Decoder, and uses the Error Concealment module
to upscale the video content in case the spatial enhancement
layers are not received in time for playback.

The implementation of the SVC/P2P prototype was per-
formed to show how the quality of streaming video content
over P2P can be improved by using SVC. The prototype is to
the authors’ knowledge the first open-source P2P prototype
with full SVC support.

7. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant agreement no 216217 (P2P-Next).

8. REFERENCES

[1] GPAC. URL: http://gpac.wp.institut-telecom.fr/.
Last accessed 12-December-2011.

[2] Open SVC decoder. URL:
http://sourceforge.net /projects/opensvedecoder/.
Last accessed 12-December-2011.

[3] The P2P-Next project. URL:
http://www.p2p-next.org. Last accessed
12-December-2011.

[4] VLC media player. URL:
http://www.videolan.org/vlc/. Last accessed
12-December-2011.

[5] JSVM 9.15 Software Manual, 2009.

[6] B. Cohen. BitTorrent Protocol 1.0. URL:
http://www.bittorrent.org. Last accessed
12-December-2011.

[7] M. Eberhard, A. Kumar, S. Mignanti, R. Petrocco,
and M. Uitto. A framework for distributing scalable
content over peer-to-peer networks. International
Journal On Advances in Internet Technology,
4(1&2):1-13, 2011.

[8] M. Eberhard, T. Szkaliczki, H. Hellwagner,

L. Szobonya, and C. Timmerer. Knapsack
problem-based piece-picking algorithms for layered
content in peer-to-peer networks. In Proceedings of the
2010 ACM workshop on Advanced Video Streaming
Techniques for Peer-to-Peer Networks and Social

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Networking, AVSTP2P ’10, pages 71-76, New York,
NY, USA, 2010. ACM.

R. Petrocco, M. Eberhard, J. Pouwelse, and

D. Epema. Deftpack: A robust piece-picking algorithm
for scalable video coding in P2P systems. In
Proceedings of the International Symposium on
Multimedia 2011, ISM’11, to be published.

T. Schierl and S. Wenger. Signaling media decoding
dependency in the session description protocol. RCF
5538, 2009.

H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson. RFC 3550: A Transport Protocol for
Real-Time Applications (RTP), 2003.

H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the scalable video coding extension of the H.264/AVC
standard. 17(9):1103-1120, Sept. 2007.

S.Kumar, L.Xu, M.K.Mandal, and S.Panchanathan.
Error resiliency schemes in H.264/AVC standard.
Elsevier Journal of Visual Communication and Image
Representation, 17(2):425-450, 2006.

T.Anselmo and D.Alfonso. Buffer-based constant
bit-rate control for scalable video coding. PCS 2007,
2007.

M. Uitto and J.Vehkaperi. Spatial enhancement layer
utilisation for SVC in base layer error concealment. In
Mobimedia ’09 Proceedings of the 5th International
ICST Mobile Multimedia Communications Conference,
London, United Kingdom, 2009.

S. Wenger, Y.-K. Wang, T. Schierl, and

A. Eleftheriadis. RTP Payload Format for Scalable
Video Coding, 2011.

