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ABSTRACT 
 

MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a 
new streaming standard that has been recently ratified as an 
international standard (IS). In comparison to other streaming 
systems, e.g., HTTP progressive download, DASH is able to 
handle varying bandwidth conditions providing smooth streaming. 
Furthermore, it enables NAT and Firewall traversal, flexible and 
scalable deployment as well as reduced infrastructure costs due to 
the reuse of existing Internet infrastructure components, e.g., 
proxies, caches, and Content Distribution Networks (CDN). 
Recently, the Hypertext Transfer Protocol Bis (httpbis) working 
group of the IETF has officially started the development of HTTP 
2.0. Initially three major proposals have been submitted to the 
IETF i.e., Googles' SPDY, Microsofts' HTTP Speed+Mobility and 
Network-Friendly HTTP Upgrade, but SPDY has been chosen as 
working draft for HTTP 2.0. In this paper we implemented 
MPEG-DASH over HTTP 2.0 (i.e., SPDY), demonstrating its 
potential benefits and drawbacks. Moreover, several experimental 
evaluations have been performed that compare HTTP 2.0 with 
HTTP 1.1 and HTTP 1.0 in the context of DASH. In particular, 
the protocol overhead, the performance for different round trip 
times, and DASH with HTTP 2.0 in a lab test scenario has been 
evaluated in detail. 
 

Index Terms – MPEG-DASH, HTTP 2.0, SPDY, Dynamic 
Adaptive Streaming over HTTP, Evaluation. 

 

1. INTRODUCTION 
The Hypertext Transfer Protocol (HTTP) is currently one of most 
used protocols on the application layer as shown in [1]. In 
particular, real-time entertainment is one of the major drivers and 
currently accounting for more than 50% of the Internet traffic in 
North Americas' fixed access networks, where Netflix alone is 
accounting for more than 30%. Considering that Netflix – and 
also others – uses HTTP on the application layer for their 
multimedia streaming system and that other HTTP traffic, i.e., 
Web browsing (16.59%), YouTube (9.9%), and Facebook 
(1.84%), are accounting for more than 28% of the Internet traffic, 
it implies that HTTP is the major protocol in modern networks 
(see also [2]). 
Although HTTP has been initially designed for best effort file 
transfer, its flexible architecture does not prevent the advanced 
use cases of modern networks, i.e., multimedia streaming, rich 
Internet services, etc. However, there is room for improvements as 
many services are still using HTTP 1.0 [3] which has been 

specified in May 1996 or are not utilizing all features of HTTP 1.1 
[4], such as persistent TCP connections or pipelining of HTTP 
requests. For example, already deployed HTTP streaming 
solutions such as Microsoft Smooth Streaming, Adobe Dynamic 
Streaming, and Apple HTTP Live Streaming like shown in [5] do 
not use HTTP 1.1 pipelining which could definitely increase the 
streaming performance. Unfortunately, there are not many proxies 
that support HTTP 1.1 pipelining due to the Head-of-Line 
blocking problem [6] where one pending response could possibly 
delay a range of other responses. The problem is that the proxy 
has to send in-order responses, which means that earlier arriving 
out-of-order responses will be blocked until the first (Head-of-
Line) response arrives. 
In order to overcome these shortcomings the IETFs' Hypertext 
Transfer Protocol Bis (httpbis) working group has recently started 
the development process of HTTP 2.0. Three proposals have been 
submitted to the IETF [7] where Google’s SPDY proposal [8] has 
been chosen as working draft for HTTP 2.0. Moreover, several 
major companies, e.g., Facebook, Twitter, Akamai, Mozilla, and 
obviously Google itself support SPDY already or have announced 
that they will support it in the near future. 
SPDY is already used for all Google Web services when users 
connect with the Google Chrome or Mozilla Firefox browser, 
which implies that it will be already heavily tested and definitely 
further improved due to the results of these tests. SPDY could be 
used as session layer between HTTP and TCP to multiplex 
multiple HTTP requests over one single TCP connection while 
requiring no or little changes from the application layer. The 
major benefits of SPDY are that it offers multiplexing over one 
TCP connection, prioritized requests, compressed headers, and the 
option for the server to push resources to the client. 
In this paper, we have combined our open source available 
MPEG-DASH [9] implementation [10], which could handle 
HTTP 1.1 persistent connections with pipelining and HTTP 1.0 
connections, with SPDY as well as SSL-encrypted SPDY and 
evaluated that solution under restricted conditions. The paper 
experimentally evaluates the overhead, bandwidth utilization, and 
streaming performance of HTTP 1.0, HTTP 1.1, and SPDY. 
Please note that in this paper HTTP 2.0 is synonymously used 
with SPDY. 
The remainder of this paper is organized as follows. Section 3 
describes the SPDY protocol and its behavior in detail. Section 4 
describes our test-bed and the integration of SPDY into the 
MPEG-DASH client that has been used for all our experiments. 
The evaluation results are detailed in Section 5 and Section 6 
concludes the paper including further work. 

2. RELATED WORK 
So far, we have not found any scientific related work, but there 
are different reports, which evaluate the performance of the SPDY 
protocol. [11] compares the performance of HTTP and SPDY 
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focusing on regular web traffic and page load times. They show 
that the advanced features of HTTP/1.1, such as pipelining and 
persistent connection, can bring HTTP close to the performance of 
SPDY. However, [11] concentrates on regular web traffic as well 
as small objects, and not on multimedia streaming or adaptive 
multimedia streaming. [12] shows the performance of SPDY in 
mobile networks focusing on page load times and regular web 
browsing traffic. The results show that it can significantly reduce 
page load times compared to HTTP but it is not clear which 
features of HTTP have been enabled. It seems that [12] compares 
SPDY with HTTP/1.0 in mobile networks, where the advantages 
of SDPY, such as persistent connections enable a significant 
performance improvement. 

3. SPDY PROTOCOL 
This section describes the SPDY protocol and its communication 
scheme in detail. The protocol is based on TCP and maintains a 
single connection for each session, in comparison to HTTP, which 
does not mandate persistent connections. During a session 
multiple streams can be opened between the client and the server 
in full-duplex mode. Typically, only one SPDY connection 
between a server and a client exists until the client navigates to 
another server. The servers should leave connections open as long 
as possible until a given threshold timeout or when a client 
initiates a connection close. 
SPDY is fully compatible with HTTP and could be integrated as a 
session layer between HTTP and TCP. The HTTP request will be 
mapped into a SPDY stream and vice versa for the HTTP 
response headers. Additionally, it is also possible to send multiple 
requests in parallel to support HTTP 1.1 pipelining. Therefore, 
SPDY offers an interface for HTTP which simplifies its 
integration for already existing HTTP applications. After this 
handover from HTTP to SPDY the whole communication will be 
handled on the SPDY framing layer until a response arrives which 
will be passed to the HTTP layer. The network communication 
that takes place on the SPDY layer will be further described in the 
next section. 

3.1 Framing 
The SPDY network communication is based on frames that are 
exchanged between the client and the server based on a TCP 
connection. This framing layer comprises two frame types, i.e., 
the control frame depicted in Figure 1 and the data frame depicted 
in Figure 2. Each frame has a common header of exactly 8 bytes, 
which has been designed to simplify the parsing and minimize the 
framing overhead. The server or client can easily distinguish 
between control and data frames from the first bit named control 
bit, which is depicted in Figure 1 and Figure 2 on the top left 
corner with a “C”. The control bit is always one for control frames 
and zero for data frames. The 15 bits version field of the control 
frame indicates the used SPDY version, which is SPDY version 2 
for all of our experiments. The type field denotes the type of the 
control frame, which could be: 

 SYN_STREAM: This frame allows the sender to create a 
stream between the sender and the receiver and it can also be 
used to send additional metadata or HTTP request headers 
that can be mapped into the payload section of this frame. 

 SYN_REPLY: This frame will be sent when the receiver of a 
SYN_STREAM frame accepts the stream creation from the 
sender. It typically contains also the response metadata or the 
HTTP response headers mapped into the payload section of 
this frame. 

 RST_STREAM: This frame will be used to terminate the 
session. When the initiator of the stream sends this frame, it 
indicates that the session should be canceled. When the 
receiver of a stream sends this frame, it indicates that an error 
has occurred on the receiver side. 

 SETTINGS: The settings frame contains a set of id-value 
pairs that could be used to configure the stream parameters. 
Generally this frame could be sent at any time either from the 
server or the client to signal, e.g., the available upload or 
download bandwidth, the round trip time, the allowed 
maximum concurrent streams etc. 

 NOOP: This frame is the no-operation frame. When the 
server or the client receives this frame, it could simply throw 
away this frame. 

 PING: This frame could be sent either from the server or the 
client to measure the round trip time. The receiver of this 
frame should send an identical frame to the sender as soon as 
possible. 

 GOAWAY: This frame can be sent from the server or the 
client and tells the receiving endpoint that it should no longer 
use this connection for further communication. This 
mechanism enables a proper shutdown of the connection. 
Obviously a race condition will be introduced between the 
client and the server, due to this scheme. Hence, it contains a 
stream identifier, which should identify the last stream that 
will be accepted by the endpoint that has sent the GOAWAY 
frame. Streams with higher stream identifiers than the 
identifier of the GOAWAY frame will be canceled. 

 HEADERS: This frame could be optionally sent on a stream 
at any time to modify already sent headers or to add new 
header fields. 

In comparison to the control frame, the data frame contains a 
Stream-ID field instead of the Version and Type field of the 
control frame. The Stream-ID field simply identifies the stream 
that the data frame belongs to. This is very important because 
multiple streams can be used in parallel. Therefore, it is needed to 
separate between data of concurrent streams. 
The Flags field of the control frame and data frame has 8 bits and 
is in case of the control frame dependent on the individual frame 
type and in case of the data frame it could only signal the end of 
the stream so that no additional round trip will be introduced to 
signal the end of a stream. 

3.2 Streams 



 
Figure 3. Experimental Setup 

SPDY streams are sequences of frames that can be created either 
by the server or by the client. The streams are bidirectional, i.e., 
the server and the client can simultaneously send data. When 
using HTTP over SPDY one stream will be opened for each 
HTTP request and the stream will not be used for any further 
requests. However, this does not influence the performance as 
streams can be created on an established connection without an 
additional round trip. In general, streams will be created with a 
SYN_STREAM control frame that contains the HTTP headers that 
will be mapped to SYN_STREAM frame name-value pairs in the 
payload section of this frame. 
The Stream-ID of the SYN_STREAM depends on the initiator of 
the stream, i.e., streams opened by the server contain even 
Stream-IDs and streams opened by the client contain odd Stream-
IDs. Subsequent opened streams must follow this scheme, which 
means that all further client-initiated streams have to contain odd 
Stream-IDs and vice versa for server streams. Typically streams 
are bidirectional, but the stream creator could configure the stream 
in unidirectional mode with a flag in the SYN_STREAM frame. 
The receiver of a SYN_STREAM should immediately respond with 
a SYN_REPLY when it accepts the stream or with a RST_STREAM 
to cancel the stream request. After this stream negotiation, data 
frames will be exchanged until one frame contains a FLAG_FIN. 

4. TEST-BED 

4.1 Experimental Setup 
This section describes our test-bed. We have consistently used the 
same content for all of our experiments from the dataset of the 
University Klagenfurt [13]. The content has been encoded with 
x264 at 14 different bitrates (100, 200, 350, 500, 700, 900, 1100, 
1300, 1600, 1900, 2300, 2800, 3400, and 4500 kbps) with a GOP 
(Group of Pictures) size of 48 to enable a 2 seconds segmentation. 
Our test network is depicted in Figure 3 and consists of four 
nodes, i.e., Evaluation Client, Bandwidth Shaping, Network 
Emulation, and HTTP/SPDY Server, which are all based on 
Ubuntu Linux 12.04. Moreover, all nodes have similar hardware 
to provide a homogenous test-bed that enables an objective 
comparison. The Bandwidth Shaping node depicted in Figure 3 is 
responsible for the bandwidth restriction in the network which 
will be configured with Linux Traffic control (tc) and the 
Hierarchal Token Bucket (htb) system. The Network Emulation 
node has been used to configure the RTT for our experiments with 
Linux netem. The HTTP/SPDY server component hosts a 
common Apache Web server which has been extended for the 
SPDY experiments with the mod_spdy plugin [14]. Although SSL 
is mandatory for SPDY, it is possible to disable it within 
mod_spdy. 

4.2 MPEG-DASH SPDY Client 
On the client side we have extended the open source available 
MPEG-DASH VLC plugin [10] with the most complete SPDY 
library, spdylay [15]. The architecture of the plugin is quite 
flexible which simplified the integration of SPDY and SSL-
encrypted SPDY connections. 
Figure 4 shows the simplified architecture of the network part of 
the MPEG-DASH VLC plugin. We have extended this part with 
the SPDYConnection and the SPDYSSLConnection, which are 
utilizing the spdylay library. As the HTTPConnectionManager 
consistently uses the IHTTPConnection interface, no changes 
outside of this part are needed. Therefore, it is possible to 
objectively compare the performance of the MPEG-DASH client 
with different network protocols, i.e., HTTP 1.0, HTTP 1.1, 
SPDY, and SPDY with SSL encryption while maintaining the 
same behavior of the adaptation logic, buffer, etc. 

5. EXPERIMENTAL EVALUATION 
This section provides the evaluation of the SPDY protocol for 
MPEG-DASH, focusing on different critical variables such as 
overhead, RTT, and performance. The system has been tested 
under laboratory test scenarios and all experiments have been 
consistently performed with the same content and the test-bed as 
described in Section 4. 

5.1 Overhead Analysis 
This section theoretically analyses the overhead of the protocols 
below SPDY, i.e., TCP, IP and Ethernet. Therefore it provides the 
theoretical lower bound on top of which SPDY will add an 
additional overhead. Beside that, the entire overhead of SPDY and 
HTTP-based MPEG-DASH streaming has been practically 
evaluated with our test-bed and the results will be described in the 
following section. 
SPDY is using TCP on the transport layer and IP on the network 
layer. This introduces an overhead of 20 bytes for the TCP header 
[16] (+ additional 12 bytes for the optional header fields) and 
another 20 bytes for the IP header [17]. As Ethernet [18] is used 
on the link layer, an additional 14-byte frame header is added to 
the TCP/IP packets. Ethernet restricts the Maximum 

 
Figure 4. MPEG-DASH Plugin Extension 
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Transportation Unit (MTU) to 1500 bytes. The lower bound of the 
TCP/IP protocol overhead can be calculated: considering the 
resulting maximum payload of the TCP packet of 1448 bytes and 
the Ethernet frame size of 1514 (incl. Ethernet frame header), this 
results in an overhead of 4.56% caused by these headers. In 
addition to this, one has to consider packets needed for TCP 
connection establishment and ACKs, as well as other Ethernet 
overhead like check sequence etc. 
On top of TCP, SPDY introduces further overhead due to the 
framing. In the following evaluations, the protocol overhead 
produced by HTTP as well as SPDY is investigated in practice to 
give a comparison to the calculated lower bound. 

5.2 Overhead Evaluation 
The overhead evaluation has been performed with several quality 
levels (media bitrates), i.e., 100, 350, 700, 1300, 2800, and 4500 
kbps as depicted in Figure 5. We have tested all protocols, i.e., 
HTTP 1.0, HTTP 1.1, SPDY, and SPDY with SSL encryption 
within our test-bed (Figure 3). For this experiment, the bandwidth 
shaping component as well as the network emulation component 
have been disabled, so that no other variables are influencing the 
experiment. The quality level has been fixed for each individual 

experiment. Hence, the adaption process does not affect the 
experiment. 
The overall throughput has been calculated from the network 
statistics of ifconfig and the effective media throughput (payload) 
has been measured with the MPEG-DASH VLC plugin. The 
overhead will then be calculated as follows: 

overhead = 1 −
media throughput
overall throughput

                                            (1) 

Moreover, each of the individual experiments, e.g., 100 kbps 
quality level, has been performed 3 times and an average has been 
calculated that is depicted in Figure 5. The figure shows the 
overhead for the effective media bitrate as described in Equation 
(1). 
The graph shows that SPDY has a slightly higher overhead 
compared to HTTP 1.1 due to the framing layer. Only for the 100 
kbps media bitrate, i.e., quality level, SPDY is more efficient 
thanks to the header compression and small payload. For all other 
quality levels, the header compression is good but it could not 
compensate the overhead that gets introduced as a consequence of 
the framing. Nevertheless, the difference is rather small and the 
current server implementation could only send data packets with a 
maximum payload of 4096 bytes or less. Moreover, most of the 
time the payload of the data packets is smaller which further 
decreases the efficiency. However, this is a tradeoff because when 
data is available it should be sent as soon as possible, even when it 
is not enough to efficiently fill a data frame, otherwise a 
significant delay would be introduced that is much more critical 
than the overhead incurred. 
SPDY with SSL encryption is less efficient than the other 
protocols, but due to the header compression it could also 
outperform HTTP 1.0 in the case of the 100 kbps quality level. 
For all other experiments, its overhead is higher than that of 
HTTP 1.0. Furthermore, it introduces a computational effort on 
the server and on the client which could probably negatively 
influence the packing of the data frames due to the delay that gets 
introduced. 

5.3 Link Utilization Evaluation 
Several experiments have been performed to evaluate the 
performance of HTTP 1.0 and HTTP 1.1 compared to SPDY and 
SPDY with SSL encryption under restricted bandwidth conditions 

 
Figure 6. Link Utilization under HTTP 1.0 

 
Figure 7. Link Utilization under HTTP 1.1 



and round trip times (RTT) with different quality levels. We have 
used 6 different quality levels (100, 700, 900, 1900, 3400, and 
4500 kbps) for each RTT experiment. The RTT is ranging from 0 
to 150 ms: 0 to 25 ms is typical for local area networks, 50 to 100 
ms is typical for fixed line Internet connections, and 150 ms is 
typical for mobile networks. 
Figure 6 shows the link utilization of HTTP 1.0 under different 
bandwidth conditions and RTT configurations. The vertical axis 
shows the link utilization in percent and the horizontal axis shows 
the restricted bandwidth in kbps. For each experiment, the 
bandwidth has been restricted to the media bitrate under 
consideration. The link utilization has been calculated from the 
effective media throughput, which has been measured with the 
MPEG-DASH VLC plugin, and the available bandwidth that has 
been restricted with the Bandwidth Shaping component of our 
test-bed, as follows: 

link utilization = media throughput
available bandwidth

                                (2) 

In case of a low RTT, HTTP 1.0 performs more or less well but 

with a higher RTT, i.e., 100 ms and 150 ms, the link utilization is 
very low especially for high bandwidths and quality levels, e.g., 
4500 kbps quality level with 4500 kbps bandwidth restriction. The 
reason for that is that HTTP 1.0 opens one TCP connection per 
segment request. Due to TCP slow start, it is not possible to utilize 
the maximum available bandwidth even with the increased initial 
congestion window on the server and the increased TCP receive 
window on the client of Ubuntu Linux 12.04 which is 10 times of 
the MSS. 
It is obvious that the link utilization would be worse with a low 
quality level, e.g., 100 kbps, and a high available bandwidth, e.g., 
4500 kbps, due to the smaller size of the segments compared to 
the header overhead of HTTP 1.0, but it is not common that such 
a low quality level will be used for high bandwidths. Therefore, 
we have used high quality levels with high bandwidths and low 
quality levels with low bandwidths. 
Figure 7 shows the performance of HTTP 1.1 for RTT = 0 ms and 
RTT = 150 ms. For the sake of simplicity, we have omitted the 
intermediate RTTs due to the small differences. The difference of 
the link utilization between these two RTT levels is rather small 
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compared to HTTP 1.0 as the implementation takes advantage of 
the persistent connection and pipelining features of HTTP 1.1. 
This means that for each experiment only a single TCP connection 
will be used and TCP slow start is only influencing the 
performance at the beginning of the session and not at the 
beginning of every segment. 
Furthermore, we have also evaluated SPDY shown in Figure 8 
and SPDY with encryption shown in Figure 9. SPDY without 
encryption performs equally well like HTTP 1.1 because all 
streams will be multiplexed over a single TCP connection. SPDY 
with SSL encryption has a lower link utilization compared to 
SPDY and HTTP 1.1. Nevertheless, it is obviously also robust 
against high RTTs due to the single persistent TCP connection. 

5.4 Laboratory Scenario 
We have also evaluated all solutions with the VLC MPEG-DASH 
plugin with a pre-defined bandwidth trace as depicted in Figure 
10(a). The vertical axis describes the available bandwidth in kbps 
and the horizontal axis describes the time in seconds. Each 
experiment lasts exactly 160 seconds and the available bandwidth 
which is available during the experiment ranges from 1 Mbps to 6 
Mbps. The content set provides 14 different media qualities 
ranging from 100 kbps to 4500 kbps which the client could 
individually choose at segment boundaries. All experiments have 
been performed with the same adaptation logic that is based on 
the buffer fill state and the measured throughput of the last 
segment. The buffer has been restricted for all experiments to 40 
seconds. Each solution has been tested several times with RTT = 
0, 25, 50, 100, and 150 ms and the average of each experiment is 
depicted in Figure 10(b). The vertical axis of Figure 10(b) shows 
the media throughput in kbps. It has been measured with the VLC 
MPEG-DASH plugin. The average maximum throughput has 
been calculated from the pre-defined bandwidth trace in Figure 
10(a) which could be seen as the maximum achievable 
throughput. This line depicts the maximal achievable throughput 
without any overhead and optimal adaptation decisions, which is 
the upper bound for all transferring mechanisms in this laboratory 
setup. 
Figure 10(b) shows that HTTP 1.1, SPDY, and SPDY with SSL 
encryption perform equally well and quite stable over all RTTs. 
As expected, HTTP 1.0 could not achieve the same media 
throughput especially for high RTTs due to the problems that have 
already been described in Section 5.3, i.e., one TCP connection 
per segment and TCP slow start. 

6. CONCLUSIONS 
In this paper we have described the working draft for HTTP 2.0, 
i.e., SPDY and its usage for DASH-based media streaming. The 
structure of the protocol as well as its behavior has been described 
in detail. Additionally, the protocol has been combined with the 
MPEG-DASH standard. Moreover, several experimental 
evaluations have been performed focusing on dynamic 
multimedia streaming based on SPDY as well as SPDY with SSL 
encryption. We have evaluated the overhead that gets introduced 
due to the framing of SPDY and shown that it is not as efficient as 
HTTP 1.1. Nevertheless, SPDY and SPDY with SSL encryption 
are very robust against increasing RTT because they are 
maintaining only one single TCP connection during the whole 
communication. Furthermore, we have also evaluated all solutions 
with an abstract test scenario where the SPDY solutions as well as 
HTTP 1.1 performed equally well. However SPDY implicitly 
solves the Head-of-Line blocking problem of HTTP 1.0 and due 

to the lack of proper adoption of HTTP 1.1 on caches it could 
definitely enhance the streaming performance of future networks. 
As seen in our experiments, SPDY achieves very good results 
with MPEG-DASH when SSL encryption is disabled. Currently, 
SPDY mandates the SSL encryption but especially for multimedia 
streaming this is not necessary as the content would be DRM 
encrypted anyway. Furthermore, the additional SSL encryption 
would introduce additional computational overhead on both the 
server and the client without any need. 
Our future work will include the evaluation of SPDY based 
multimedia streaming within real world mobile environments and 
use cases where multiple clients compete for a bottleneck. 
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