
DYNAMIC ADAPTIVE STREAMING OVER HTTP/2.0

Christopher Mueller, Stefan Lederer, Christian Timmerer, and Hermann Hellwagner
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt am Wörthersee, Austria

{firstname.lastname}@itec.aau.at

ABSTRACT

MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a
new streaming standard that has been recently ratified as an
international standard (IS). In comparison to other streaming
systems, e.g., HTTP progressive download, DASH is able to
handle varying bandwidth conditions providing smooth streaming.
Furthermore, it enables NAT and Firewall traversal, flexible and
scalable deployment as well as reduced infrastructure costs due to
the reuse of existing Internet infrastructure components, e.g.,
proxies, caches, and Content Distribution Networks (CDN).
Recently, the Hypertext Transfer Protocol Bis (httpbis) working
group of the IETF has officially started the development of HTTP
2.0. Initially three major proposals have been submitted to the
IETF i.e., Googles' SPDY, Microsofts' HTTP Speed+Mobility and
Network-Friendly HTTP Upgrade, but SPDY has been chosen as
working draft for HTTP 2.0. In this paper we implemented
MPEG-DASH over HTTP 2.0 (i.e., SPDY), demonstrating its
potential benefits and drawbacks. Moreover, several experimental
evaluations have been performed that compare HTTP 2.0 with
HTTP 1.1 and HTTP 1.0 in the context of DASH. In particular,
the protocol overhead, the performance for different round trip
times, and DASH with HTTP 2.0 in a lab test scenario has been
evaluated in detail.

Index Terms – MPEG-DASH, HTTP 2.0, SPDY, Dynamic
Adaptive Streaming over HTTP, Evaluation.

1. INTRODUCTION
The Hypertext Transfer Protocol (HTTP) is currently one of most
used protocols on the application layer as shown in [1]. In
particular, real-time entertainment is one of the major drivers and
currently accounting for more than 50% of the Internet traffic in
North Americas' fixed access networks, where Netflix alone is
accounting for more than 30%. Considering that Netflix – and
also others – uses HTTP on the application layer for their
multimedia streaming system and that other HTTP traffic, i.e.,
Web browsing (16.59%), YouTube (9.9%), and Facebook
(1.84%), are accounting for more than 28% of the Internet traffic,
it implies that HTTP is the major protocol in modern networks
(see also [2]).
Although HTTP has been initially designed for best effort file
transfer, its flexible architecture does not prevent the advanced
use cases of modern networks, i.e., multimedia streaming, rich
Internet services, etc. However, there is room for improvements as
many services are still using HTTP 1.0 [3] which has been

specified in May 1996 or are not utilizing all features of HTTP 1.1
[4], such as persistent TCP connections or pipelining of HTTP
requests. For example, already deployed HTTP streaming
solutions such as Microsoft Smooth Streaming, Adobe Dynamic
Streaming, and Apple HTTP Live Streaming like shown in [5] do
not use HTTP 1.1 pipelining which could definitely increase the
streaming performance. Unfortunately, there are not many proxies
that support HTTP 1.1 pipelining due to the Head-of-Line
blocking problem [6] where one pending response could possibly
delay a range of other responses. The problem is that the proxy
has to send in-order responses, which means that earlier arriving
out-of-order responses will be blocked until the first (Head-of-
Line) response arrives.
In order to overcome these shortcomings the IETFs' Hypertext
Transfer Protocol Bis (httpbis) working group has recently started
the development process of HTTP 2.0. Three proposals have been
submitted to the IETF [7] where Google’s SPDY proposal [8] has
been chosen as working draft for HTTP 2.0. Moreover, several
major companies, e.g., Facebook, Twitter, Akamai, Mozilla, and
obviously Google itself support SPDY already or have announced
that they will support it in the near future.
SPDY is already used for all Google Web services when users
connect with the Google Chrome or Mozilla Firefox browser,
which implies that it will be already heavily tested and definitely
further improved due to the results of these tests. SPDY could be
used as session layer between HTTP and TCP to multiplex
multiple HTTP requests over one single TCP connection while
requiring no or little changes from the application layer. The
major benefits of SPDY are that it offers multiplexing over one
TCP connection, prioritized requests, compressed headers, and the
option for the server to push resources to the client.
In this paper, we have combined our open source available
MPEG-DASH [9] implementation [10], which could handle
HTTP 1.1 persistent connections with pipelining and HTTP 1.0
connections, with SPDY as well as SSL-encrypted SPDY and
evaluated that solution under restricted conditions. The paper
experimentally evaluates the overhead, bandwidth utilization, and
streaming performance of HTTP 1.0, HTTP 1.1, and SPDY.
Please note that in this paper HTTP 2.0 is synonymously used
with SPDY.
The remainder of this paper is organized as follows. Section 3
describes the SPDY protocol and its behavior in detail. Section 4
describes our test-bed and the integration of SPDY into the
MPEG-DASH client that has been used for all our experiments.
The evaluation results are detailed in Section 5 and Section 6
concludes the paper including further work.

2. RELATED WORK
So far, we have not found any scientific related work, but there
are different reports, which evaluate the performance of the SPDY
protocol. [11] compares the performance of HTTP and SPDY

Acknowledgments: This work was supported in part by the EC in
the context of the ALICANTE (FP7-ICT-248652), SocialSensor
(FP7-ICT-287975), and QUALINET (COST IC 1003) projects
and partly performed in the Lakeside Labs research cluster at
AAU.

Figure 2. SPDY Data Frame

Figure 1. SPDY Control Frame

focusing on regular web traffic and page load times. They show
that the advanced features of HTTP/1.1, such as pipelining and
persistent connection, can bring HTTP close to the performance of
SPDY. However, [11] concentrates on regular web traffic as well
as small objects, and not on multimedia streaming or adaptive
multimedia streaming. [12] shows the performance of SPDY in
mobile networks focusing on page load times and regular web
browsing traffic. The results show that it can significantly reduce
page load times compared to HTTP but it is not clear which
features of HTTP have been enabled. It seems that [12] compares
SPDY with HTTP/1.0 in mobile networks, where the advantages
of SDPY, such as persistent connections enable a significant
performance improvement.

3. SPDY PROTOCOL
This section describes the SPDY protocol and its communication
scheme in detail. The protocol is based on TCP and maintains a
single connection for each session, in comparison to HTTP, which
does not mandate persistent connections. During a session
multiple streams can be opened between the client and the server
in full-duplex mode. Typically, only one SPDY connection
between a server and a client exists until the client navigates to
another server. The servers should leave connections open as long
as possible until a given threshold timeout or when a client
initiates a connection close.
SPDY is fully compatible with HTTP and could be integrated as a
session layer between HTTP and TCP. The HTTP request will be
mapped into a SPDY stream and vice versa for the HTTP
response headers. Additionally, it is also possible to send multiple
requests in parallel to support HTTP 1.1 pipelining. Therefore,
SPDY offers an interface for HTTP which simplifies its
integration for already existing HTTP applications. After this
handover from HTTP to SPDY the whole communication will be
handled on the SPDY framing layer until a response arrives which
will be passed to the HTTP layer. The network communication
that takes place on the SPDY layer will be further described in the
next section.

3.1 Framing
The SPDY network communication is based on frames that are
exchanged between the client and the server based on a TCP
connection. This framing layer comprises two frame types, i.e.,
the control frame depicted in Figure 1 and the data frame depicted
in Figure 2. Each frame has a common header of exactly 8 bytes,
which has been designed to simplify the parsing and minimize the
framing overhead. The server or client can easily distinguish
between control and data frames from the first bit named control
bit, which is depicted in Figure 1 and Figure 2 on the top left
corner with a “C”. The control bit is always one for control frames
and zero for data frames. The 15 bits version field of the control
frame indicates the used SPDY version, which is SPDY version 2
for all of our experiments. The type field denotes the type of the
control frame, which could be:

 SYN_STREAM: This frame allows the sender to create a
stream between the sender and the receiver and it can also be
used to send additional metadata or HTTP request headers
that can be mapped into the payload section of this frame.

 SYN_REPLY: This frame will be sent when the receiver of a
SYN_STREAM frame accepts the stream creation from the
sender. It typically contains also the response metadata or the
HTTP response headers mapped into the payload section of
this frame.

 RST_STREAM: This frame will be used to terminate the
session. When the initiator of the stream sends this frame, it
indicates that the session should be canceled. When the
receiver of a stream sends this frame, it indicates that an error
has occurred on the receiver side.

 SETTINGS: The settings frame contains a set of id-value
pairs that could be used to configure the stream parameters.
Generally this frame could be sent at any time either from the
server or the client to signal, e.g., the available upload or
download bandwidth, the round trip time, the allowed
maximum concurrent streams etc.

 NOOP: This frame is the no-operation frame. When the
server or the client receives this frame, it could simply throw
away this frame.

 PING: This frame could be sent either from the server or the
client to measure the round trip time. The receiver of this
frame should send an identical frame to the sender as soon as
possible.

 GOAWAY: This frame can be sent from the server or the
client and tells the receiving endpoint that it should no longer
use this connection for further communication. This
mechanism enables a proper shutdown of the connection.
Obviously a race condition will be introduced between the
client and the server, due to this scheme. Hence, it contains a
stream identifier, which should identify the last stream that
will be accepted by the endpoint that has sent the GOAWAY
frame. Streams with higher stream identifiers than the
identifier of the GOAWAY frame will be canceled.

 HEADERS: This frame could be optionally sent on a stream
at any time to modify already sent headers or to add new
header fields.

In comparison to the control frame, the data frame contains a
Stream-ID field instead of the Version and Type field of the
control frame. The Stream-ID field simply identifies the stream
that the data frame belongs to. This is very important because
multiple streams can be used in parallel. Therefore, it is needed to
separate between data of concurrent streams.
The Flags field of the control frame and data frame has 8 bits and
is in case of the control frame dependent on the individual frame
type and in case of the data frame it could only signal the end of
the stream so that no additional round trip will be introduced to
signal the end of a stream.

3.2 Streams

Figure 3. Experimental Setup

SPDY streams are sequences of frames that can be created either
by the server or by the client. The streams are bidirectional, i.e.,
the server and the client can simultaneously send data. When
using HTTP over SPDY one stream will be opened for each
HTTP request and the stream will not be used for any further
requests. However, this does not influence the performance as
streams can be created on an established connection without an
additional round trip. In general, streams will be created with a
SYN_STREAM control frame that contains the HTTP headers that
will be mapped to SYN_STREAM frame name-value pairs in the
payload section of this frame.
The Stream-ID of the SYN_STREAM depends on the initiator of
the stream, i.e., streams opened by the server contain even
Stream-IDs and streams opened by the client contain odd Stream-
IDs. Subsequent opened streams must follow this scheme, which
means that all further client-initiated streams have to contain odd
Stream-IDs and vice versa for server streams. Typically streams
are bidirectional, but the stream creator could configure the stream
in unidirectional mode with a flag in the SYN_STREAM frame.
The receiver of a SYN_STREAM should immediately respond with
a SYN_REPLY when it accepts the stream or with a RST_STREAM
to cancel the stream request. After this stream negotiation, data
frames will be exchanged until one frame contains a FLAG_FIN.

4. TEST-BED

4.1 Experimental Setup
This section describes our test-bed. We have consistently used the
same content for all of our experiments from the dataset of the
University Klagenfurt [13]. The content has been encoded with
x264 at 14 different bitrates (100, 200, 350, 500, 700, 900, 1100,
1300, 1600, 1900, 2300, 2800, 3400, and 4500 kbps) with a GOP
(Group of Pictures) size of 48 to enable a 2 seconds segmentation.
Our test network is depicted in Figure 3 and consists of four
nodes, i.e., Evaluation Client, Bandwidth Shaping, Network
Emulation, and HTTP/SPDY Server, which are all based on
Ubuntu Linux 12.04. Moreover, all nodes have similar hardware
to provide a homogenous test-bed that enables an objective
comparison. The Bandwidth Shaping node depicted in Figure 3 is
responsible for the bandwidth restriction in the network which
will be configured with Linux Traffic control (tc) and the
Hierarchal Token Bucket (htb) system. The Network Emulation
node has been used to configure the RTT for our experiments with
Linux netem. The HTTP/SPDY server component hosts a
common Apache Web server which has been extended for the
SPDY experiments with the mod_spdy plugin [14]. Although SSL
is mandatory for SPDY, it is possible to disable it within
mod_spdy.

4.2 MPEG-DASH SPDY Client
On the client side we have extended the open source available
MPEG-DASH VLC plugin [10] with the most complete SPDY
library, spdylay [15]. The architecture of the plugin is quite
flexible which simplified the integration of SPDY and SSL-
encrypted SPDY connections.
Figure 4 shows the simplified architecture of the network part of
the MPEG-DASH VLC plugin. We have extended this part with
the SPDYConnection and the SPDYSSLConnection, which are
utilizing the spdylay library. As the HTTPConnectionManager
consistently uses the IHTTPConnection interface, no changes
outside of this part are needed. Therefore, it is possible to
objectively compare the performance of the MPEG-DASH client
with different network protocols, i.e., HTTP 1.0, HTTP 1.1,
SPDY, and SPDY with SSL encryption while maintaining the
same behavior of the adaptation logic, buffer, etc.

5. EXPERIMENTAL EVALUATION
This section provides the evaluation of the SPDY protocol for
MPEG-DASH, focusing on different critical variables such as
overhead, RTT, and performance. The system has been tested
under laboratory test scenarios and all experiments have been
consistently performed with the same content and the test-bed as
described in Section 4.

5.1 Overhead Analysis
This section theoretically analyses the overhead of the protocols
below SPDY, i.e., TCP, IP and Ethernet. Therefore it provides the
theoretical lower bound on top of which SPDY will add an
additional overhead. Beside that, the entire overhead of SPDY and
HTTP-based MPEG-DASH streaming has been practically
evaluated with our test-bed and the results will be described in the
following section.
SPDY is using TCP on the transport layer and IP on the network
layer. This introduces an overhead of 20 bytes for the TCP header
[16] (+ additional 12 bytes for the optional header fields) and
another 20 bytes for the IP header [17]. As Ethernet [18] is used
on the link layer, an additional 14-byte frame header is added to
the TCP/IP packets. Ethernet restricts the Maximum

Figure 4. MPEG-DASH Plugin Extension

Figure 5. Protocol Overhead

Transportation Unit (MTU) to 1500 bytes. The lower bound of the
TCP/IP protocol overhead can be calculated: considering the
resulting maximum payload of the TCP packet of 1448 bytes and
the Ethernet frame size of 1514 (incl. Ethernet frame header), this
results in an overhead of 4.56% caused by these headers. In
addition to this, one has to consider packets needed for TCP
connection establishment and ACKs, as well as other Ethernet
overhead like check sequence etc.
On top of TCP, SPDY introduces further overhead due to the
framing. In the following evaluations, the protocol overhead
produced by HTTP as well as SPDY is investigated in practice to
give a comparison to the calculated lower bound.

5.2 Overhead Evaluation
The overhead evaluation has been performed with several quality
levels (media bitrates), i.e., 100, 350, 700, 1300, 2800, and 4500
kbps as depicted in Figure 5. We have tested all protocols, i.e.,
HTTP 1.0, HTTP 1.1, SPDY, and SPDY with SSL encryption
within our test-bed (Figure 3). For this experiment, the bandwidth
shaping component as well as the network emulation component
have been disabled, so that no other variables are influencing the
experiment. The quality level has been fixed for each individual

experiment. Hence, the adaption process does not affect the
experiment.
The overall throughput has been calculated from the network
statistics of ifconfig and the effective media throughput (payload)
has been measured with the MPEG-DASH VLC plugin. The
overhead will then be calculated as follows:

overhead = 1 −
media throughput
overall throughput

 (1)

Moreover, each of the individual experiments, e.g., 100 kbps
quality level, has been performed 3 times and an average has been
calculated that is depicted in Figure 5. The figure shows the
overhead for the effective media bitrate as described in Equation
(1).
The graph shows that SPDY has a slightly higher overhead
compared to HTTP 1.1 due to the framing layer. Only for the 100
kbps media bitrate, i.e., quality level, SPDY is more efficient
thanks to the header compression and small payload. For all other
quality levels, the header compression is good but it could not
compensate the overhead that gets introduced as a consequence of
the framing. Nevertheless, the difference is rather small and the
current server implementation could only send data packets with a
maximum payload of 4096 bytes or less. Moreover, most of the
time the payload of the data packets is smaller which further
decreases the efficiency. However, this is a tradeoff because when
data is available it should be sent as soon as possible, even when it
is not enough to efficiently fill a data frame, otherwise a
significant delay would be introduced that is much more critical
than the overhead incurred.
SPDY with SSL encryption is less efficient than the other
protocols, but due to the header compression it could also
outperform HTTP 1.0 in the case of the 100 kbps quality level.
For all other experiments, its overhead is higher than that of
HTTP 1.0. Furthermore, it introduces a computational effort on
the server and on the client which could probably negatively
influence the packing of the data frames due to the delay that gets
introduced.

5.3 Link Utilization Evaluation
Several experiments have been performed to evaluate the
performance of HTTP 1.0 and HTTP 1.1 compared to SPDY and
SPDY with SSL encryption under restricted bandwidth conditions

Figure 6. Link Utilization under HTTP 1.0

Figure 7. Link Utilization under HTTP 1.1

and round trip times (RTT) with different quality levels. We have
used 6 different quality levels (100, 700, 900, 1900, 3400, and
4500 kbps) for each RTT experiment. The RTT is ranging from 0
to 150 ms: 0 to 25 ms is typical for local area networks, 50 to 100
ms is typical for fixed line Internet connections, and 150 ms is
typical for mobile networks.
Figure 6 shows the link utilization of HTTP 1.0 under different
bandwidth conditions and RTT configurations. The vertical axis
shows the link utilization in percent and the horizontal axis shows
the restricted bandwidth in kbps. For each experiment, the
bandwidth has been restricted to the media bitrate under
consideration. The link utilization has been calculated from the
effective media throughput, which has been measured with the
MPEG-DASH VLC plugin, and the available bandwidth that has
been restricted with the Bandwidth Shaping component of our
test-bed, as follows:

link utilization = media throughput
available bandwidth

 (2)

In case of a low RTT, HTTP 1.0 performs more or less well but

with a higher RTT, i.e., 100 ms and 150 ms, the link utilization is
very low especially for high bandwidths and quality levels, e.g.,
4500 kbps quality level with 4500 kbps bandwidth restriction. The
reason for that is that HTTP 1.0 opens one TCP connection per
segment request. Due to TCP slow start, it is not possible to utilize
the maximum available bandwidth even with the increased initial
congestion window on the server and the increased TCP receive
window on the client of Ubuntu Linux 12.04 which is 10 times of
the MSS.
It is obvious that the link utilization would be worse with a low
quality level, e.g., 100 kbps, and a high available bandwidth, e.g.,
4500 kbps, due to the smaller size of the segments compared to
the header overhead of HTTP 1.0, but it is not common that such
a low quality level will be used for high bandwidths. Therefore,
we have used high quality levels with high bandwidths and low
quality levels with low bandwidths.
Figure 7 shows the performance of HTTP 1.1 for RTT = 0 ms and
RTT = 150 ms. For the sake of simplicity, we have omitted the
intermediate RTTs due to the small differences. The difference of
the link utilization between these two RTT levels is rather small

Figure 9. Test Scenario

Figure 8. Link Utilization under SPDY

Figure 10. Link Utilization under SPDY SSL

compared to HTTP 1.0 as the implementation takes advantage of
the persistent connection and pipelining features of HTTP 1.1.
This means that for each experiment only a single TCP connection
will be used and TCP slow start is only influencing the
performance at the beginning of the session and not at the
beginning of every segment.
Furthermore, we have also evaluated SPDY shown in Figure 8
and SPDY with encryption shown in Figure 9. SPDY without
encryption performs equally well like HTTP 1.1 because all
streams will be multiplexed over a single TCP connection. SPDY
with SSL encryption has a lower link utilization compared to
SPDY and HTTP 1.1. Nevertheless, it is obviously also robust
against high RTTs due to the single persistent TCP connection.

5.4 Laboratory Scenario
We have also evaluated all solutions with the VLC MPEG-DASH
plugin with a pre-defined bandwidth trace as depicted in Figure
10(a). The vertical axis describes the available bandwidth in kbps
and the horizontal axis describes the time in seconds. Each
experiment lasts exactly 160 seconds and the available bandwidth
which is available during the experiment ranges from 1 Mbps to 6
Mbps. The content set provides 14 different media qualities
ranging from 100 kbps to 4500 kbps which the client could
individually choose at segment boundaries. All experiments have
been performed with the same adaptation logic that is based on
the buffer fill state and the measured throughput of the last
segment. The buffer has been restricted for all experiments to 40
seconds. Each solution has been tested several times with RTT =
0, 25, 50, 100, and 150 ms and the average of each experiment is
depicted in Figure 10(b). The vertical axis of Figure 10(b) shows
the media throughput in kbps. It has been measured with the VLC
MPEG-DASH plugin. The average maximum throughput has
been calculated from the pre-defined bandwidth trace in Figure
10(a) which could be seen as the maximum achievable
throughput. This line depicts the maximal achievable throughput
without any overhead and optimal adaptation decisions, which is
the upper bound for all transferring mechanisms in this laboratory
setup.
Figure 10(b) shows that HTTP 1.1, SPDY, and SPDY with SSL
encryption perform equally well and quite stable over all RTTs.
As expected, HTTP 1.0 could not achieve the same media
throughput especially for high RTTs due to the problems that have
already been described in Section 5.3, i.e., one TCP connection
per segment and TCP slow start.

6. CONCLUSIONS
In this paper we have described the working draft for HTTP 2.0,
i.e., SPDY and its usage for DASH-based media streaming. The
structure of the protocol as well as its behavior has been described
in detail. Additionally, the protocol has been combined with the
MPEG-DASH standard. Moreover, several experimental
evaluations have been performed focusing on dynamic
multimedia streaming based on SPDY as well as SPDY with SSL
encryption. We have evaluated the overhead that gets introduced
due to the framing of SPDY and shown that it is not as efficient as
HTTP 1.1. Nevertheless, SPDY and SPDY with SSL encryption
are very robust against increasing RTT because they are
maintaining only one single TCP connection during the whole
communication. Furthermore, we have also evaluated all solutions
with an abstract test scenario where the SPDY solutions as well as
HTTP 1.1 performed equally well. However SPDY implicitly
solves the Head-of-Line blocking problem of HTTP 1.0 and due

to the lack of proper adoption of HTTP 1.1 on caches it could
definitely enhance the streaming performance of future networks.
As seen in our experiments, SPDY achieves very good results
with MPEG-DASH when SSL encryption is disabled. Currently,
SPDY mandates the SSL encryption but especially for multimedia
streaming this is not necessary as the content would be DRM
encrypted anyway. Furthermore, the additional SSL encryption
would introduce additional computational overhead on both the
server and the client without any need.
Our future work will include the evaluation of SPDY based
multimedia streaming within real world mobile environments and
use cases where multiple clients compete for a bottleneck.

7. REFERENCES
[1] Sandvine, “Global Internet Phenomena Report Fall 2011”, Sandvine

Intelligent Broadband Networks, 2011.
[2] L. Popa, A. Ghodsi, and I. Stoica. 2010. “HTTP as the narrow waist

of the Future Internet”. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (Hotnets-IX). ACM, New
York, NY, USA

[3] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer Protocol
-- HTTP/1.0, URL: http://www.ietf.org/rfc/rfc1945.txt (last access
Dec. 2012).

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, URL:
http://www.ietf.org/rfc/rfc2616.txt (last access: Dec. 2012).

[5] C. Mueller, S. Lederer, C. Timmerer, “An Evaluation of Dynamic
Adaptive Streaming over HTTP in Vehicular Environments,” In
Proc. of the 4th Workshop on Mobile Video (MoVid12), Feb. 2012.

[6] K. J. Grinnemo, T. Andersson, A. Brunstrom, “Performance Benefits
of avoiding head-of-line blocking in SCTP,” In Proceedings of
ICAS/ICNS, 2005.

[7] HTTP 2.0 Call for Expression of Interest, http://trac.tools.ietf.org/
wg/httpbis/trac/wiki/Http2CfI, (last access: Dec. 2012).

[8] M. Belshe, R. Peon, “SPDY Protocol”, http://tools.ietf.org/html/
draft-mbelshe-httpbis-spdy-00 (last access: Dec. 2012).

[9] ISO/IEC DIS 23009-1.2, “Information Technology — Dynamic
Adaptive Streaming over HTTP (DASH) — Part 1: Media
Presentation Description and Segment Formats”. C. Mueller, C.
Timmerer, “A VLC Media Player Plugin enabling Dynamic
Adaptive Streaming over HTTP,” In Proceedings of the ACM
Multimedia 2011, Scottsdale, Arizona, Nov. 2011.

[10] C. Mueller, C. Timmerer, “A VLC Media Player Plugin enabling
Dynamic Adaptive Streaming over HTTP,” In Proceedings of the
ACM Multimedia 2011, Scottsdale, Arizona, Nov. 2011.

[11] J. Padhye, F. Nielson, “A comparison of SPDY and HTTP
performance”, 2012.

[12] M. Welsh, B. Greenstein, M. Piatek, “SPDY Performance on Mobile
Networks”, https://developers.google.com/speed/articles/spdy-
for-mobile, (last access: April 2013).

[13] S. Lederer, C. Mueller, C. Timmerer, “Dynamic Adaptive Streaming
over HTTP Dataset”, ACM Multimedia Systems, Chapel Hill, North
Carolina, USA, Feb. 2012.

[14] Apache mod_spdy module, http://code.google.com/p/mod-spdy/,
(last access: Dec. 2012).

[15] Spdylay, http://spdylay.sourceforge.net/, (last access: Dec. 2012).
[16] Transmission control Protocol, RFC 793, URL:

http://tools.ietf.org/html/rfc793(last access: Dec. 2012).
[17] Internet Protocol, RFC 791, URL:

http://tools.ietf.org/html/rfc791(last access: Dec. 2012).
[18] IEEE 802.3-2800 Ethernet, URL: http://standards.ieee.org/

about/get/802/802.3.html (last access: Dec. 2012).

