
Towards QoS Improvements of TCP-based Media
Delivery

Martin Prangl, Ingo Kofler, Hermann Hellwagner
Dept. of Information Technology

Klagenfurt University, Austria
Email: {firstname.lastname}@itec.uni-klu.ac.at

Abstract—The amount of audiovisual data available on the
Internet and thus of multimedia communication over today’s
networks is increasing at a rapid pace. Despite the availability
of specific media transport protocols like RTP, most content
providers make use of the well-established and reliable TCP
protocol to deliver audiovisual content over the Internet. The
reason is that TCP-based data delivery in general is much less
complicated for the clients to be served and over today’s networks
traversed (including proxies and firewalls), than making use
of UDP-based RTP connections. However, in case of network
bandwidth fluctuations and packet losses, TCP-based media
delivery may lead to annoying jerky playback at the client
side, due to retransmissions and late arrival of media data.
This papers deals with TCP-based perceptual QoS improvement
mechanisms for increasing the media experience for the consumer
under unstable network conditions. Our approach is based on
media content adaptation (transcoding) to fit the actual network
bandwidth continuously monitored by the sender. The proposed
mechanisms are applied at the application level at the server
side, leaving the existing TCP implementation untouched and
therefore enabling transparent use of existing media players. An
evaluation of a realistic use case is presented which underlines
the efficacy of our approach.

I. INTRODUCTION

The transport of multimedia contents over the Internet is
getting more and more popular. Video on Demand as well as
live television services are distributed over the Web, enabling
online consumption of a huge and rapidly growing set of media
contents. However, providing an acceptable Quality of Service
(QoS) level to the consumer forms a challenging problem
for several reasons. In contrast to common data transfer,
e.g., the exchange of documents or data files, the real time
consumption of audiovisual content is sensitive to bandwidth
fluctuations, delay and jitter. For solving this problem, several
QoS aware network architectures like Integrated Services [1],
Differentiated Services [2] or Multi-Protocol Label Switching
(MPLS) [3] are proposed for reserving resources for such
critical flows and prioritize them along the network chain,
respectively. Nowadays such intelligent network mechanisms
are rarely activated in network nodes. Guarantees on link
bandwidth, delay and jitter cannot be granted for an individual
end-to-end connection through the Internet, that is still a best
effort network. Even Voice over IP (VoIP) services, which rely
on similar QoS requirements, are becoming rapidly popular.
VoIP traffic consumes much less bandwidth and is therefore
less critical than traffic caused by audiovisual applications.
Furthermore, the bit rates of VoIP flows can be assumed as

constant, whereas video flows are characterized by variable bit
rate and burstiness.

Special transport protocols were developed and standardized
to support the requirements of real-time audiovisual applica-
tions. The so called Real-Time Transport Protocol (RTP) was
designed on top of the UDP transport protocol that does not
guarantee a reliable connection. In contrast to TCP, the design
goal was to avoid end-to-end retransmissions that lead to a
higher average delay and jitter. Instead, the protocol provides
means for timing of the media data and a sequence number
mechanism to detect lost packets. In combination with content
adaptation techniques [4], RTP is well suited for supporting
the vision of Universal Multimedia Access [5].

Nowadays a clear trend can be observed toward the use of
wireless technologies. Modern devices like PDAs or mobile
phones are connected to the Web by WLAN or UMTS
carriers, enabling convenient mobile and location independent
consumption of Web contents. However, the use of wireless
connections is critical in case of real time applications. Delay
and bandwidth are varying depending on the signal quality
which is sensitive to the location of the client as well as to
natural influences.

As a consequence of the extended connectivity, also the
users’ demand for security increased during the last years. To-
day, security mechanisms like firewalls are integrated along the
network chain and at the client’s network access (end) points.
Modern operating systems are equipped with firewalling mech-
anisms as well. Enterprises usually separate their LANs from
the Web by the use of proxy servers. This fact represents a
problem for media content providers because incoming RTP
traffic is blocked by such security mechanisms in most cases.
Home users or small companies also often use a Network
Address Translation (NAT) gateway for connecting multiple
clients to a single shared Internet connection. Such popular
NAT devices represent a barrier for incoming RTP traffic as
well. In order to distribute media contents to a large group
of users, independence of security mechanisms and network
components within the whole network chain is required. For
this reason, most public content providers make use of the
simple and well-established TCP protocol for transporting
media contents to their clients. Of course, TCP delivery is
easy and uncomplicated but leads to drawbacks in case of real
time media consumption. The reason is that TCP is a reliable
protocol, thus lost media frames are retransmitted, and delayed



(potentially useless) frames are delivered. Furthermore, TCP
specific features like congestion control and flow control, are
harmful in this use case. As a consequence of insufficient
bandwidth, TCP-based on-the-fly consumption is annoying for
the user because the media session may suffer from missing
data periodically.

This paper focuses on how to improve the perceived QoS
of TCP-based media content delivery. The aim of our work is
to improve the possibly unsatisfactory behavior of the TCP-
based media consumption in case of bandwidth fluctuations.
In order to be independent from media player architectures
and to avoid annoying player software updates at the client
side, our approach is applied at the server side. In order to
achieve transparency w.r.t. the player’s point of view, our
improvements are applied at the application level, keeping
the existing TCP implementation untouched. With the help of
periodical link throughput measurements, the original media
content is shaped in such a way that it fits the actual network
conditions.

The remainder of this work is structured as follows. Section
II introduces the problems of efficient RTP-based delivery
in today’s network environment. Section III gives a brief
introduction into TCP-based media delivery. Section IV is
dedicated to our proposed adaptive server architecture for
TCP-based media delivery. Subsequently two algorithms for
QoS improvements are introduced. In Section V an evaluation
of the proposed approach based on media delivery over a
shared bottleneck link is given. Section VI finally concludes
the main findings of this work.

II. PROBLEMS OF RTP-BASED MEDIA DELIVERY

Typically, multimedia content is delivered using the Real-
time Transport Protocol (RTP) [6], a connectionless, unreliable
communication protocol based on UDP. The main reason is
that a reliable communication protocol (such as TCP) produces
too much overhead because it makes no sense to retransmit
lost packets. Such retransmitted, and therefore potentially late
packets (containing stream information of the past) may be
useless at the rendering client side and may have to be
discarded. Usually, the content delivery over RTP is controlled
by the server, which pushes the media content to a certain
UDP port given by the client. In order to give the client the
option to choose a certain content, to inform the server of
the listening port(s) and to enable interactive control to the
user (e.g., start, stop, pause) of the current session, another
communication protocol is needed. This protocol is called
Real-Time Streaming Protocol (RTSP, RFC2326) [6] and is
based on TCP. The RTSP requests are always initiated by the
client. Another optional protocol named Real-Time Control
Protocol (RTCP) can be used to provide statistical feedback,
e.g., lost packets, for QoS reactions (management) on the
server side.

However, delivering multimedia data over the Internet us-
ing RTP/RTSP has drawbacks as well. First, the elementary
streams have to be packetized according to specific RFCs,
depending on the used media formats (e.g., one packet for

one encoded frame). This is required because in case of packet
loss, the lost information should be confined to have as little
impact on the media presentation as possible. Furthermore,
this additional task implies that the delivery module has to
be extended if a new encoder is included in the system. The
second, most critical drawback is the traversal of restrictive
network nodes like firewalls, NAT routers or proxies in the
network chain.

A. Firewalls

Assume that a client is located behind a firewall and requests
content from the media server by sending a TCP-based RTSP
Message. This (outgoing) message passes the firewall and
consequently the media server receives the content request
including the port and IP address of the client for establishing
the RTP/UDP connection for content delivery. After the server
receives the RTSP PLAY message, the server starts the RTP
packetization and transmits the data via the connectionless
UDP protocol to the user’s terminal. The problem in this case
is that the firewall blocks incoming connections from the Web
(from the media server) because it does not know anything
about the session (the request is coming from the user). It
would be possible to configure the firewall to pass the UDP
packets of the media server but the challenge is that the media
servers (IP addresses) as well as the available ports on the
clients are dynamically changing. Clients are usually using a
set of media servers, not only one particular. Furthermore the
user is in general not familiar and/or not allowed to configure
the firewall according to his/her individual preferences. A
solution would be to implement additional logic within the
firewall, that keeps track of the exchanged RTSP messages and
allows incoming UDP packets on the ports and IP addresses
negotiated within the RTSP session. A novel draft of such
a session awareness of firewalls for avoiding the problem of
blocking incoming RTP packets is discussed at the end of this
section. However, to the best of our knowledge such a session
tracking logic is not implemented in current firewall products.

B. Network Address Translation (NAT)

Clients behind a NAT router are using a local IP address
which is not valid in the Internet. The NAT router is translating
the local requests to the Web by replacing the client’s local
IP address to the router’s global (valid) IP address and man-
ages/tracks the ports for forwarding the answer from the Web
back to the requesting local client. From the media server’s
point of view, the NAT router is requesting a content for
consumption. The forwarded RTSP OK server answer reaches
the client as in the previous use case because the NAT router
knows to which local client the answer belongs. The problem
occurs if the media server starts sending the RTP/UDP packets
to the NAT router. The NAT router does not know what to do
with these packets because it does not consider the semantics
of the previous RTSP/TCP communication. As a consequence,
the RTP packets are rejected at the NAT router, the client does
not receive the media stream.



C. Proxy Servers

Assume that a client is connected to the Internet by a
proxy server. This approach for a connection to the Internet
is widely used in companies and large work groups. The
proxy server receives the RTSP request and forwards it (by
replacing the client IP address with the proxy IP address) to
the media server. Note that this proxy server has to support an
RTSP-specific TCP port. If the proxy only supports the HTTP
protocol, it does not understand the RTSP message and as a
consequence rejects the client request. The RTSP forwarding
step is similar to the NAT router’s task in the previous use
case. The proxy is not able to forward the media stream reply
from the server because it is not accepting and distributing
UDP packets. This feature would require a special multimedia
proxy [7], which is not widespread. Only a connection to
the server without intermediate network nodes, that perform
either NAT or act as proxy, enables the user to receive the
media stream from an RTP-based media server. Nowadays, this
“optimal” unsecure use case rarely exists in real life because
the security awareness of the community is growing rapidly.
Furthermore, modern network devices like routers as well as
operating systems are equipped with firewalling mechanisms
by default.

Recapitulating the previous use cases, the problem receiving
the RTP stream results from two UDP protocol specific
features. First, the RTP connection is initiated by the server.
Such uncontrolled connection from “outside” alerts firewall
mechanisms. Second, the underlying UDP protocol is connec-
tionless, which means that NAT routers or proxies do not know
to which connection the RTP packets belong.

These drawbacks of the RTP media delivery are well known
in the multimedia research community. Currently, there is a
draft of the so called NSIS Signaling Layer Protocol (NSLP)
[8] available, which is designed to request the dynamic config-
uration of firewalls and NAT routers along the data path. This
proposed functionality includes the dynamic configuration of
firewall rules as well. Another approach is followed in the
scope of the Universal Plug-and-play (UPnP) framework [9].
There, clients like a media player can make use of services
offered by routers or NAT devices and can configure them to
pass through the RTP stream to the player. This technology is
already in use in network devices like DSL modems. However,
the telecommunication industry is demanded to enforce this or
similar mechanisms, otherwise the existing implementation of
RTP becomes more and more unattractive.

III. TCP-BASED MEDIA DELIVERY

Content providers like YouTube1 usually want to broadcast
their content to a huge set of clients. In order achieve this
goal, TCP-based media delivery is currently seen as the best
choice for the reasons already mentioned above. Furthermore,
the TCP-based communication between the requesting client
and the server is easy. Many multimedia players (e.g., VLC2)

1http://www.youtube.com
2http://www.videolan.org

as well as Web-based plug-ins (e.g., Adobe Flash3) support the
Hypertext Transfer Protocol (HTTP) for receiving the media
stream, which is also known as progressive download. In
principle, the media content is published by simply moving
it into the documents directory of an HTTP Web server.
The player at the client side downloads the requested content
piecewise into its buffer and decodes and renders the media
data on-the-fly.

If the client does not have enough bandwidth available
or significant bandwidth fluctuations occur during the media
consumption, the client’s buffer is drained periodically. In such
a case, the player is unable to decode the media content in time
which leads to a jerky playback. A solution for keeping the
session running smoothly, which consequently increases the
perceptual QoS for the consuming user, is given as follows.

IV. INCREASING QOS OF TCP-BASED MEDIA SESSIONS

Content adaptation is seen as a key concept to deliver media
content independently of the terminal capabilities, network
conditions, and user preferences. For example, content adap-
tation enables a client, equipped with an H.264-AVC/MP3
compatible media player, to consume an audiovisual content,
originally encoded in MPEG-2/MP2 at a high bit rate. Also if
the client’s network link suffers from insufficient bandwidth
to consume the original content (at high bit rate), the content
can be adapted so that its resulting degraded version meets the
given resource limitations. Audiovisual content can be adapted
in many dimensions. The video part can be adapted in the
spatial domain, which means to change the spatial resolution
of each frame; in the temporal domain, by reducing the number
of frames per second; and in the signal-to-noise ratio (SNR)
domain, by modifying the encoder specific quantization value
for the frame compression. A degradation of the audio part
can be achieved by reducing the sample rate, the amount of
bits per sample, and/or the number of audio channels.

Typically, the decision in which way the content should
be adapted in order to maximize the utility for the user is
complex and depends on the given resources, the individual
user preferences, and the terminal capabilities. This adaptation
decision taking process is usually performed initially right
after the content request. The resulting decision is expressed by
unique target media stream parameters like frame rate, spatial
resolution, etc., which are used to configure the content adap-
tation engine. In our implementation, the adaptation decision
is encoded into an HTTP URL which is dynamically created
according to the terminal capabilities and user preferences.
This URL includes the content identification as well and is
used by the media player or the Web-based player plug-in for
requesting the adapted media content. This work addresses
the dynamic case of adaptation, where the link conditions are
assumed to be changing dynamically. The initial adaptation
decision for the specific request is assumed to be given (by
the URL). For more information about the adaptation decision
taking process, the reader is referred to [10].

3http://www.adobe.com



The main part of our system consists of an adaptation engine
and a delivery module, each running in a separate process. The
delivery module implements a very slim HTTP server, which
basically relies on a simple TCP socket communication. Only
the HTTP GET command (RFC1945) handling is needed for
receiving, parsing, and serving the player’s media request. The
simple GET request enables the player to request a specific
media file by submitting a corresponding URL to the server,
e.g., http://mediaserver.com:8080/starwars.avi. This simple
request invokes (like in case of a usual HTTP server) the
delivery module to open the file starwars.avi and to send the
byte stream of the file subsequently to the client. This use
case does not invoke any adaptation on the content and is used
to evaluate our improvements in Section V later. In order to
enable our system to perform on-the-fly content adaptation,
the URL can contain adaptation parameters as discussed
before. For example, a transcoding request for downscaling
the video to 320x200 pixels, reducing the frame rate to 10 fps
and encoding it as an H.264 video can be signaled in the
URL as follows: http://mediaserver.com:8080/starwars.avi?
vc=h264&s=320x200&fr=10. After receiving the URL from
the client, the delivery module decodes the URL and parses
the parameters for further use.

The adaptation engine’s task is to adapt or transcode the
requested content. In our framework, the well known and very
powerful multimedia library ffmpeg4 is used, which enables the
system to support the most common video and audio codecs.
As already mentioned, each client request is served by the
delivery module in a separate process. If there is no need for
adaptation, the delivery process transmits the media data to the
client and terminates if the end of the media stream is reached
or the client is terminating the session. Otherwise, if there
is a need for content adaptation, the corresponding delivery
process spawns an adaptation process, which is responsible for
the adaptation task. The information in which way the content
has to be adapted is known by the delivery process that takes
the values from the parsed URL parameters. Therefore, it is
able to spawn and initialize the adapting child accurately.

During the content delivery, there is a need for permanent
information exchange between the parent (delivery) and the
child processes (adaptation engine), as shown in Figure 1.
One communication channel is needed to forward the adapted
content from the child to the parent. There is a need for
synchronization between these two processes because the
adaptation process must not produce the adapted content
faster than the delivery process can send it to the consuming
client. This issue is solved by using a special communication
channel, a pipe which is known as one of the core concepts of
interprocess communication. Note, that the media flow to the
client is slowed down according to the available bandwidth
since the client-server communication is based on TCP. If
the player pauses the session (by simply stopping reading
from the socket), the delivery module pauses the delivery as
well because it is writing to a blocking TCP socket. Since in

4http://ffmpeg.mplayerhq.hu/

this case the delivery process is blocked and does not read
from the pipe anymore, the pipe will get full which causes
the adaptation process to block as well. If the available link
bandwidth becomes lower than the encoding media bit rate,
the media flow is not continuously consumable by the client.

However, there is one fact which can be used to enable
“smooth” media rendering at the client side. Because the
delivery module writes the media data into a blocking TCP
socket, it can estimate the real actual delivery bit rate with
ease (by simply counting bytes within a time slot of one
second). Based on this information the adaptation engine is
able to react to the dynamic bit rate fluctuations. As shown
in Figure 1 the delivery process writes the delivery bit rate
statistics periodically into a shared memory segment, which is
accessible by the adaptation child process as well. An efficient
mechanism for avoiding media rendering problems caused by
bandwidth fluctuations is given as follows.

Fig. 1. Interprocess communication between delivery module and adaptation
engine.

A. Handling Bandwidth Fluctuations

Figure 2 shows a bandwidth fluctuation diagram containing
the available bandwidth (bw), the actual delivery bit rate (dbr)
enforced by the player, and the actual media stream bit rate
(br). If br, which is enforced by the encoder, is lower than
bw, there is no problem. Let this case be the initial point
(t=0). The delivery module captures the delivery bit rate (dbr)
every second, which is indicated by points in the graph. After
t=1 bw begins to decrease, and at t=2.5 the critical level,
where br = bw, is reached. At the next capture point of
dbr, the delivery module and consequently the adaptation
process notice that bw < dbr. At this time, the adaptation
engine adjusts br = dbr. Note that, because of the discrete
measurement points, this algorithm causes an excess of the
media stream bit rate (br > dbr) between the measurement
points in case of a falling slope of dbr (red line). This
exceeding bit rate consumption can usually be compensated
by the input buffer of the media player. A continuous falling
slope of dbr would empty the client buffer at some point in
time, depending on the buffer’s size. At t=5 where bw reaches
a stable level, br is adjusted to dbr as well. During this stable
period the player tries to refill its buffer by trying to read
faster from the socket (by increasing dbr). This is not possible
because it gets blocked as a consequence of bw not being
greater than dbr. At t=6, bw starts increasing monotonically.
Now the player is able to increase dbr for buffer refilling.



Fig. 2. Handling Bandwidth Fluctuations

As a consequence, at t=7 the delivery module subsequently
increases br according to the measurement of dbr (green
lines). This action forces the player to amplify the increase of
dbr. At t=9, br reached its initial value, the buffer is refilled.
As a consequence dbr = br at t > 9.
Remark 1: The mechanism works as long as the client buffer
does not underrun.
Remark 2: The adaptation engine was implemented by adjust-
ing br at an abstract (encoder independent) level. All encoders
under consideration maintain the bit rate adjustment in the
SNR domain. As a consequence, this mechanism works only
in a certain dynamic range of bandwidth fluctuations. If bw
gets too low, the media playback will become jerky again.

B. Determining Available Bit Rate

In general, a higher bit rate leads to a higher perceived
quality for the client. Therefore, a QoS aware multimedia
framework should efficiently use all available resources. Apart
from handling bandwidth fluctuations as shown before, it is
possible that the available bandwidth is rising or the user does
not know his/her correct bandwidth limit. In this case another
mechanism is implemented as shown in Figure 3.

The available bandwidth is initially higher than the stream
bit rate (t=0). As a consequence, the delivery bit rate is equal
to the stream bit rate. The measurement of the delivery bit
rate is done in intervals, marked by points as mentioned
in the previous section. The automatic bandwidth detection
algorithm works as follows. If the delivery bit rate is equal
to the stream bit rate at two sequential measurements (e.g.,
dbrt=1 = dbrt=2), the stream bit rate is increased by a constant
∆ br = 5% of brt=0. (brt=2 = brt=1 + ∆ br). In other
words, the delivery module tries to push more data to the
client. As a consequence, the player at the client side has
to consume this amount of data in the same time as before
(real time consumption). Consequently, the client pulls the
data faster which results in an increased delivery bit rate
as well (dbrt=3 = brt=3). This successive increase of br is
repeated until the delivery bit rate is smaller than the stream
bit rate (determined at t=11). At this point br is reduced:
brt=11 = brt=10 −∆ br. If br is smaller than dbr at the next

measurement, br gets increased again (t=12). The temporarily
higher delivery bit rate is compensated by the buffer at the
client side. Note, that the average delivery bit rate is not
changing at t ≥ 10. If dbr is reduced as a consequence of
a decrease of the available link bandwidth (bw), the dynamic
bandwidth adjustment algorithm as discussed before is applied.
Please note that the delivery module tries to push more data
(br > dbr) to the client only if a constant average delivery bit
rate (dbr) is detected. This can be compared to the additive
increase behavior of the TCP congestion control mechanism.
For this reason, both presented algorithms can used in parallel
without influencing each other.

V. EVALUATION

In order to demonstrate the perceived QoS improvements
of our approach, we performed some real-world experiments.
For that purpose we used an MPEG-2 video stream that was
captured by a DVB-S card with a bit rate of approximately
3.8 Mbps and a duration of 80 seconds. The video stream
was made available on our adaptive server implementation.
As a client application, we used two instances of the popular
multimedia player VLC which were running on the same
client machine. The player was configured to use a buffer of
approximately 5 seconds which seems to be a suitable value
for the playback of content streamed via HTTP. On the link
between the server and the client machine a traffic shaper was
deployed that limited the throughput to 6 Mbps. The traffic
shaper should emulate the behavior of a DSL link that is
commonly used to connect a home network to the Internet.
In the case of two simultaneous streams with a bit rate of
3.8 Mbps each, the bandwidth required by the streams will
exceed the maximum throughput and will cause a choppy
playback at the client. To quantify the smoothness of the
playback we used the statistics provided by the VLC player.
We decided to use the number of events in which pictures
arrived too late and were skipped during the playback as a
measure of smoothness. In order to show the advantage of
our algorithm, we first measured the smoothness of the video
in the case where no adaption was performed. For that purpose
we requested the video stream with player 1 (t=0). Since the bit



Fig. 3. Available Bandwidth Detection

TABLE I
NUMBER OF FRAME-SKIP EVENTS

Normal Adaptive
Run Player 1 Player 2 Player 1 Player 2

1 23 30 2 0
2 31 23 1 3
3 20 28 1 10
4 13 31 1 6
5 16 28 4 0

Average 21 28 2 4

rate of the stream was significantly lower than the capacity of
the link, the playback was smooth. After 40 seconds (t=40) we
requested the same stream with player 2 and tried to consume
both video streams simultaneously for additional 40 seconds.
As a result of the insufficient capacity, both players were not
able to download the video stream as fast as they consumed
them. This forced both player instances to skip frames that
arrived too late which resulted in a choppy playback. The
number of such frame-skip events of both players 1 and 2
in the case of a normal, non-adaptive delivery can be found in
Table I. In order to get significant numbers, the experiments
were performed five times and finally the mean value was
calculated. During the 80 seconds of the experiments, on
average each of the players had to skip frames 25 times.
Then we performed the same experiment again, but with the
dynamic bandwidth adjustment algorithm enabled. The results
show that the adaptation of the video led to an improved
smoothness at both players. On average only 3 late frames
had to be skipped at both players within the 80 seconds of the
experiment’s duration.

VI. CONCLUSION

In this paper, we presented an approach to increase the
perceived QoS for TCP-based video streaming over best
effort networks like the global Internet. This improvement
is accomplished by the continuous adaptation (transcoding)
of the video stream and taking into account TCP throughput
measurements at the server side. Based on our experimental
setup, we demonstrated that our proposed algorithm leads to
a smoother playback at the client in cases where the video
stream has to share the bandwidth of a bottleneck link with

other TCP flows. Another important advantage of our approach
is that it works independently of the player used by the client.
No explicit signalling information or feedback to the server
is necessary. A drawback of the video encoders considered so
far is that a continuous video adaptation can only performed
in the SNR domain since other parameters like the frame rate
cannot be modified on-the-fly. This limits the bit rate ranges in
which the adaptation can be performed. Additionally, this kind
of adaptation is very CPU intensive and therefore a tradeoff
between perceived QoS for the consumer and operational
costs has to be made. In order to tackle this problem, our
future work will utilize the emerging scalable extension of the
H.264/AVC codec that is designed to support computationally
cheap adaptation by simple truncations or extractions of parts
of the video bitstream.

REFERENCES

[1] D. Estrin, S. Berson, S. Herzog, D. Zappala, The Design of the RSVP
Protocol, ISI Final Technical Report, University of Southern California,
Information Sciences Institute, July 1996.

[2] V. Fineberg, “A Practical Architecture for Implementing End-to-End QoS
in an IP Network”, IEEE Communications Magazine, vol. 40, iss. 1, pp.
122-130, January 2002.

[3] X. Xiao, L.M. Ni, “Internet QoS: A Big Picture”, IEEE Network, vol.
13, no. 2, pp. 8-18, March/April 1999.

[4] M. Prangl, H. Hellwagner, T. Szkaliczki, “A Semantic-based Multi-
modal Utility Approach for Multimedia Adaptation”, Proceedings of the
7th International Workshop on Image Analysis for Multimedia Services
(WIAMIS), pp. 67–70, April 2006.

[5] M. Prangl, T. Szkaliczki, H. Hellwagner, “A Framework for Utility-based
Multimedia Adaptation”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 17, no. 6, pp. 719–728, June 2007.

[6] J. F. Kurose, K. W. Ross, Computer Networking - A Top-down Approach
Featuring the Internet, 3rd ed., Addison-Wesley, Amsterdam, 2004.

[7] L. Böszörmenyi, H. Hellwagner, P. Schojer, “Metadata-driven Op-
timal Transcoding in a Multimedia Proxy”, Multimedia Systems,
ACM/Springer, vol. 13, no. 1, pp. 51–68, Sept. 2007.

[8] NSIS Working Group Internet Draft, NAT/Firewall NSIS Signaling Layer
Protocol (NSLP), version 14, July 2007.

[9] UPnP Forum, Internet Gateway Device (IGD) Standardized Device Con-
trol Protocol, version 1.0, November 2001.

[10] M. Prangl, R. Bachlechner, H. Hellwagner, “A hybrid recommender
strategy for personalised utility-based cross-modal multimedia adapta-
tion”, IEEE International Conference on Multimedia and Expo (ICME),
pp. 1707–1710, Beijing, July 2007.


